
Crystal Reports™ 8.5
Technical Reference Guide

Seagate Software IMG Holdings, Inc.
915 Disc Drive
Scotts Valley

California, USA 95066

© 2001 Seagate Software Information Management Group Holdings, Inc., 915 Disc
Drive, Scotts Valley, California, USA 95066. All rights reserved.

Seagate, Seagate Software, Crystal Reports, Crystal Enterprise, Crystal Analysis,
Seagate Info, Seagate Holos and the Seagate logo are trademarks or registered
trademarks of Seagate Software Information Management Group Holdings, Inc. and/
or Seagate Technology, Inc. All other trademarks referenced are the property of their
respective owner.

Documentation Issue 1. Febuary 2001.

No part of this documentation may be stored in a retrieval system, transmitted or
reproduced in any way, except in accordance with the terms of the applicable software
license agreement. This documentation contains proprietary information of Seagate
Software IMG Holdings, Inc., and/or its suppliers.

Contents
Chapter 1: Visual Basic Solutions
Enhancements to the Crystal Report Print Engine API 2

Using the Crystal Report Engine API in Visual Basic 5

Crystal ActiveX Controls ... 10

Crystal Report Engine Automation Server 12

Grid Controls and the Crystal Report Engine 20

Chapter 2: Crystal Report Engine
Introduction to the Crystal Report Engine 26

Crystal Report Engine API .. 31

Working with Parameter Values and Ranges 45

Working with section codes .. 46

Crystal Report Engine API variable length strings 51

Handling preview window events ... 59

Distributing Crystal Report Engine applications 64

Additional sources of information ... 64

Chapter 3: Report Designer Component Object Model
Overview of the Report Designer Object Model 66

Unification of the RDC object model .. 67

Object Naming Conflicts ... 67

Objects and Collections ... 68

Application Object ... 68

Area Object ... 74
Crystal Reports User’s Guide i

Areas Collection ... 77

BlobFieldObject Object ... 77

BoxObject Object ... 79

CrossTabGroup Object .. 80

CrossTabGroups Collection ... 81

CrossTabObject Object .. 82

Database Object .. 85

DatabaseFieldDefinition Object ... 92

DatabaseFieldDefinitions Collection .. 93

DatabaseTable Object .. 93

DatabaseTables Collection .. 98

ExportOptions Object .. 100

FieldDefinitions Collection .. 104

FieldMappingData Object .. 106

FieldObject Object ... 106

FormattingInfo Object ... 112

FormulaFieldDefinition Object .. 112

GraphObject Object .. 115

GroupNameFieldDefinition Object .. 120

FieldDefinition Object ... 121

IReportObject .. 122

LineObject Object ... 123

MapObject Object ... 124

ObjectSummaryFieldDefinitions Collection 125

OlapGridObject Object .. 127
ii Crystal Reports User’s Guide

OleObject Object .. 128

Page Object ... 130

PageEngine Object ... 132

PageGenerator Object ... 135

Pages Collection ... 141

ParameterFieldDefinition Object ... 142

ParameterFieldDefinitions Collection .. 148

PrintingStatus Object ... 150

Report Object .. 150

ReportAlert Object ... 163

ReportAlerts Collection ... 164

ReportAlertInstance Object .. 167

ReportAlertInstances Collection ... 167

ReportObjects Collection ... 168

RunningTotalFieldDefinition Object .. 168

RunningTotalFieldDefinitions Collection 172

Section Object ... 174

Sections Collection .. 185

SortField Object ... 187

SortFields Collection .. 187

SpecialVarFieldDefinition Object .. 189

SQLExpressionFieldDefinition Object .. 190

SQLExpressionFieldDefinitions Collection 191

SubreportLink Object ... 193

SubreportLinks Collection .. 193
Crystal Reports User’s Guide iii

SubreportObject Object .. 195

SummaryFieldDefinition Object .. 198

SummaryFieldDefinitions Collection .. 200

TableLink Object .. 202

TableLinks Collection .. 202

TextObject Object ... 204

Enumerated Types .. 207

Chapter 4: Programming the Crystal Report Viewers
Enhancements to the Report Viewer ... 234

Application Development with Crystal Report Viewers 234

Crystal Report Viewer for ActiveX ... 235

The Crystal Report Viewer Java Bean ... 242

Chapter 5: Report Viewer Object Model
Report Viewer/ActiveX Object Model Technical Reference 246

Enumerated Types .. 268

The Report Viewer/Java Bean Technical Reference 271

Chapter 6: Crystal Report Engine
Print Engine Functions .. 278

Print Engine Structures .. 453

Microsoft Windows Structures ... 533

Print Engine Constants ... 541

Obsolete Functions, Structures, and Constants 561
iv Crystal Reports User’s Guide

Chapter 7: Active Data
Active Data Driver .. 564

Crystal Data Object ... 575

Crystal Data Source Type Library ... 579

Chapter 8: Crystal Data Source Object Models
Crystal Data Source Object Models .. 590

Crystal Data Objects ... 590

CrystalComObject ... 590

Crystal Data Source Type Library .. 597

Chapter 9: The Crystal Active Data Driver Reference
Overview .. 602

Chapter 10: Creating User-Defined Functions in C
Overview of User-Defined Functions in C 606

Programming User-Defined Functions in C 606

Name of the function ... 606

Purpose of the function ... 607

Function data ... 607

Return types ... 608

Programming the UFL .. 608

Setting Up a UFL Project ... 610

Function Definition .. 610

Returning User-Defined Errors ... 616

Obtaining parameter values from the parameter block 616
Crystal Reports User’s Guide v

Picture Function - a sample UFL function 617

Module Definition (.def) File ... 619

UFJOB Modules .. 620

Implement InitJob and TermJob ... 622

Chapter 11: Creating User-Defined Functions in Visual Basic
Overview of User-Defined Functions in Visual Basic 624

Programming User-Defined Functions in Visual Basic 624

Visual Basic and Crystal Reports ... 629

Sample UFL Automation Server ... 633

Chapter 12: Creating User-Defined Functions in Delphi 3.0
Overview of User-Defined Functions in Delphi 636

Programming User-Defined Functions in Delphi 636

Delphi and Crystal Reports ... 639

Appendix A: International Office Directory
International Office Directory .. 646

North and South American Offices ... 646

Asia/Pacific Offices ... 646

Europe ... 648

Africa and Middle East .. 651
vi Crystal Reports User’s Guide

Visual Basic Solutions 1

Crystal Reports offers you a wide range of solutions for your
reporting needs. This chapter provides a general overview of
the more common Crystal Reports development tools. These
include the Crystal Report Engine API, Crystal ActiveX
Control, and Crystal Report Engine Automation Server, but
not the Report Designer Component. The Report Designer
Component is the preferred Development tool and is
described in previous chapters.
Crystal Reports Technical Reference Guide 1

Enhancements to the Crystal Report Print Engine API
Enhancements to the Crystal Report Print Engine API
There are many enhancements to the API that correspond to enhancements in
Version 8 and 8.5 of Crystal Reports. For a more detailed description of the
enhancements that follow, refer to the documentation for the related functionality
in the Crystal Reports User’s Guide. For developer reference information on each of
the new and enhanced calls, see the Crystal Reports Developer’s Help
(CrystalDevHelp.chm) or the Crystal Reports Technical Reference Guide.

Many new API structures and functions have been introduced and many existing
ones have been enhanced, as outlined in the following sections:
� “Version 8.5 enhancements” on page 2
� “Version 8 enhancements” on page 3

Version 8.5 enhancements
The following enhancements apply to version 8.5 of Crystal Reports.
� “Create, modify, and monitor Report Alerts” on page 2
� “Get report version information” on page 3
� “New additions to the PEReportOptions structure” on page 3
� “Additional error codes” on page 3

Create, modify, and monitor Report Alerts

Report Alerts are custom messages created in the Crystal Reports Designer that
appear when certain conditions are met by data in a report. Report Alerts may
indicate action to be taken by the user or information about report data. For more
information see Report Alerts in the Crystal Reports User Guide.

Two new structures and seven new functions have been added to the Crystal
Report Engine API to allow you to create, modify, and monitor Report Alerts at
runtime. These structures and their functions are:
� “PEAlertInstanceInfo” on page 453
� “PEGetNthAlertInstanceInfo” on page 333
� “PEReportAlertInfo” on page 494
� “PEGetNReportAlerts” on page 328
� “PEEnableNthAlert” on page 296
� “PEGetNthReportAlert” on page 343
� “PESetNthAlertConditionFormula” on page 418
� “PESetNthAlertDefaultMessage” on page 419
� “PESetNthAlertMessageFormula” on page 420
2 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Get report version information
In the CRPE API you may now get the report’s version information. A new
structure, “PEVersionInfo” on page 518, has been added to hold the major number,
minor number, and letter information. The structure is returned by calling the
newly added function, “PEGetReportVersion” on page 359.

New additions to the PEReportOptions structure
In the CRPE API, three new elements are now supported in the structure,
“PEReportOptions” on page 496:
� alwaysSortLocally
� isReadonly
� canSelectDistinctRecords

You may use the CRPE API calls, “PEGetReportOptions” on page 357 and
“PESetReportOptions” on page 436, to obtain or set report options.

Additional error codes
The CRPE API now supports three new error codes. These error codes are:
� PE_ERR_READONLYPARAMETEROPTION
� PE_ERR_MINGREATERTHANMAX
� PE_ERR_INVALIDSTARTPAGE

For more information see “Error Codes” on page 545.

Version 8 enhancements
The following enhancements apply to version 8 of Crystal Reports.
� “Launch Seagate Analysis” on page 3.
� “Basic and Crystal Syntax support” on page 4.
� “Charting enhancements” on page 4.
� “Hierarchical grouping” on page 5.
� “Hyperlinks & On-demand subreports” on page 5.

Launch Seagate Analysis
You may now have users click a button on the preview window toolbar to launch
Seagate Analysis and open the current report.

A new event, LaunchSeagateAnalysisEvent, has been added. If you enable the
event, and the user clicks the Launch Seagate Analysis button, the
LaunchSeagateAnalysisEvent will be fired. The user will be prompted to save the
file and Seagate Analysis will be launched with the current report open.

There are a number of other enhancements in the CRPE API that complement
those in corresponding components of the Crystal Report Designer.
Crystal Reports Technical Reference Guide 3

Enhancements to the Crystal Report Print Engine API
Basic and Crystal Syntax support

Since the Crystal Reports formula language has been enhanced to support a Basic-
like syntax as well as the Crystal syntax, existing Formula API calls have been
modified accordingly.

In all the Formula calls now, SET uses the syntax specified by the user and GET sets
a flag that the user can later retrieve.

Two new API calls, PESetFormulaSyntax and PEGetFormulaSyntax, have also
been added.

Charting enhancements
The following are several enhancements for charting:
� Automatic scaling for axes
� Default titles
� Legend layout
� Fractional point size

Automatic scaling for axes

In the CRPE API, three new elements are now supported in the structure,
PEGraphAxisInfo:
� dataAxisYAutoScale
� dataAxisY2AutoScale
� seriesAxisAutoScale

You may use the CRPE API calls, PEGetGraphAxisInfo and PESetGraphAxisInfo,
to obtain or set automatic scaling for the graph axes.

Default titles

The Crystal Report Designer, by default, now creates title, subtitle, footnote, X-axis
title, Y-axis title and Z-axis title. In the CRPE API, you can use
PEGetGraphTextDefaultOption and PESetGraphTextDefaultOption to manipulate
these items. To use these calls, you will need to specify a PE_GTT_* constant that
corresponds to each of the titles, and set useDefault as TRUE or FALSE.

Legend layout

In the CRPE API, you may now set the legendLayout element in
PEGraphOptionInfo structure to one of the PE_GLL_* constants. You may also use
the CRPE API calls, PEGetGraphOptionInfo and PESetGraphOptionInfo, to get or
set legend layout options.
4 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Fractional point size

For fonts, there is now support for fractional point sizes including the 10.5 point font
size commonly used in Japanese. A new twipSize element has been added to the
structure PEFontColorInfo. Related functions and methods now return or apply the
twipSize element if the pointSize element is zero. The functions affected are:
� PEGetGraphFontInfo
� PESetGraphFontInfo

Hierarchical grouping

In the Crystal Report Designer, you may now use hierarchical grouping to arrange
data in a report to show hierarchical relationships in your data.

To support hierarchical grouping, the PEGroupOptions structure and the
PEGetGroupOptions and PESetGroupOptions calls in the CRPE API have been
modified.

Hyperlinks & On-demand subreports

The CRPE API has been enhanced to support hyperlinks and on-demand subreports.

New elements have been added to the PETrackCursorInfo structure to support
these enhancements:
� short ondemandSubreportCursor – this cursor can be set to display over on-

demand subreports when drilldown for the window is enabled; the default is
PE_TC_MAGNIFY_CURSOR.

� short hyperlinkCursor – this cursor can be set to display over any report object
that contains hyperlink text; the default is PE_TC_HAND_CURSOR.

� new cursor types:
� PE_TC_BACKGROUND_PROCESS_CURSOR
� PE_TC_GRAB_HAND_CURSOR
� PE_TC_ZOOM_IN_CURSOR
� PE_TC_REPORT_SECTION_CURSOR
� PE_TC_HAND_CURSOR

Using the Crystal Report Engine API in Visual Basic
This section provides additional information for developers working in Visual
Basic. Several features of the Crystal Report Engine must be handled differently in
Visual Basic than in other development environments. In addition, some of the
topics here are designed to simply assist Visual Basic programmers in the design
of applications using the Crystal Report Engine.
Crystal Reports Technical Reference Guide 5

Using the Crystal Report Engine API in Visual Basic
The following topics are discussed in this section:
� “When to Open/Close the Crystal Report Engine” on page 6.
� “Embedded Quotes in Visual Basic Calls to the Crystal Report Engine” on

page 6.
� “Passing Dates/Date Ranges in Visual Basic using the Crystal Report Engine

API Calls” on page 7.
� “Identifying String Issues in Visual Basic Links to the Crystal Report Engine”

on page 8.
� “Hard-coded Nulls in Visual Basic User Defined Types” on page 8.
� “Visual Basic Wrapper DLL” on page 9.
� “CRPE32.DEP” on page 9.

When to Open/Close the Crystal Report Engine
In a Visual Basic application, you can either open the Crystal Report Engine when
you open your application or when you open a form. As a general rule, it is always
best to open the Crystal Report Engine when you open the application and close it
when you close the application. Here is why:
� When you open and close a form, the Crystal Report Engine opens every time

you open the form and closes every time you close the form. If you print a
report, close the form, and later decide to print a report again, the application
has to reopen the Crystal Report Engine when you open the form, creating a
time delay while running your application.

� When you open and close the application, the Crystal Report Engine opens as
you start the application, and stays open as long as the application is open. Once
the Crystal Report Engine is open, you can print a report as often as you wish
without the need to reopen the Crystal Report Engine every time you print.

Embedded Quotes in Visual Basic Calls to the Crystal Report Engine
When you pass a concatenated string from Visual Basic to the Crystal Report
Engine (for example, for a record selection formula), it is important that the
resulting string has the exact syntax that the Crystal Report Engine expects. You
should pay special attention to embedded quotes in concatenated strings because
they are often the source of syntax errors.

Several examples follow. The first example shows code with a common embedded
quote syntax error and the last two examples show code using the correct syntax.

Incorrect syntax
VBNameVariable$ = “John”

Recselct$ = “{file.LASTNAME} = “ + VBNameVariable$

This code results in the string:
{file.LASTNAME} = John
6 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Since John is a literal string, the Formula Checker expects to see it enclosed in
quotes. Without the quotes, the syntax is incorrect.

Correct syntax
VBNameVariable$ = “John”

Recselct$ = “{file.LASTNAME} = “ +

(chr$(39) + VBNameVariable + chr$(39)

This code results in the string:

{file.LASTNAME} = 'John'

This is the correct syntax for use in a Crystal Reports record selection formula. This
is the syntax you would use if you were entering a selection formula directly into
Crystal Reports.
VBNameVariable$ = “John”

Recselct$ = “{file.Lastname} = “

(+ “'” + VBNameVariable + “'”

This code also results in the string:

 {file.LASTNAME} = 'John'

Again, the correct syntax.

Passing Dates/Date Ranges in Visual Basic using the Crystal Report
Engine API Calls

You may want to pass date or date range information from your Visual Basic
application to the Crystal Report Engine for use in formulas, selection formulas,
etc. Here is an example showing a way to do it successfully:

1 Start by opening a print job and assigning the print job handle to a variable.
JobHandle% = PEOpenPrintJob (“C:\CRW\CUSTOMER.RPT”)

2 Create variables that hold the year, month, and day for both the start and end
of the range.

StartYear$ = 1992

StartMonth$ = 01

StartDay$ = 01

EndYear$ = 1993

EndMonth$ = 12

EndDay$ = 31

3 Now build a string to pass to the record selection formula. This is done in two
steps:

� First, build the starting and ending dates for the date range.
� Assign the starting date string to the variable StrtSelect$.
� Assign the ending date string to the variable EndSelect$.
Crystal Reports Technical Reference Guide 7

Using the Crystal Report Engine API in Visual Basic
StrtSelect$ = “{filea.STARTDATE} < Date

(“ + StartYear$ + “, “ + StartMonth$ + “, “

+ StartDay$ +“)”

EndSelect$ = “{filea.ENDDATE} < Date

(“ + EndYear$ + “, “ + EndMonth$ +

“, “ + EndDay$ +“)”

� Second, build the selection formula using the StrtSelect$ and EndSelect$
variables.

Recselct$ = StrtSelect$ + “ AND “ + EndSelect$

4 Once your formula is built, set the record selection formula for the report.
RetCode% = PESetSelectionFormula

(JobHandle%, RecSelect$)

5 Finally, print the report.
RetCode% = PEStartPrintJob (JobHandle, 1)

RetCode% = PEClosePrintJob (JobHandle, 1)

6 Modify this code to fit your needs.

Identifying String Issues in Visual Basic Links to the Crystal Report Engine
When passing a string to the Crystal Report Engine as part of the Custom-Print
Link, you may think that you are passing one thing when the program, in fact, is
passing something entirely different. This can happen easily, for example, when
you are passing a concatenated string that you have built using variables. A small
syntax error (with embedded quotes, for example) can lead to an error message
and a failed call. A simple debugging procedure follows.

To Identify a String Issue (bug)
To identify a string bug, have the program display what it is passing in a message
box. To do so, put a line of code similar to the following immediately after the call
in question:
MsgBox (variablename)

Look at the string that is displayed and make certain that it is exactly what Crystal
Reports expects for a string.
� If the syntax is incorrect, look for errors in the concatenated string you have built.
� If the syntax is correct, look for other problems that could have caused the call

to fail.
� If you are not sure if the syntax is correct, write down the string from the message

box, enter it in the Crystal Reports Formula Editor, and click the Check button. If
there is an error in the string, the Formula Checker will identify it for you.

Hard-coded Nulls in Visual Basic User Defined Types
When you assign a string to a user defined type in Visual Basic, it is necessary to
hard-code a null immediately after the string. For example:
myStruct.stringField = “Hello” + CHR$(0)
8 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Visual Basic Wrapper DLL
Some of the features of the Crystal Report Engine API are not directly available to
Visual Basic programmers, due to restrictions in the Visual Basic language, while
others present technological issues that are better handled differently from what
was originally designed in the Report Engine API. To avoid problems calling
functions in the API, you may want to consider using the “Crystal ActiveX
Controls” on page 10, or the “Crystal Report Engine Automation Server” on
page 12. However, if you prefer to work with the API, Crystal Reports includes the
Visual Basic Wrapper DLL, CRWRAP32.DLL.

The Visual Basic Wrapper DLL has been designed specifically for programming in
the Visual Basic environment and can be used to build Crystal Report Engine
applications in Visual Basic 4.0 or later. The CRWRAP.BAS module, installed by
default in the \Seagate Software\Crystal Reports directory, redefines many of the
functions and structures defined in GLOBAL.BAS. When working with the Crystal
Report Engine API, add both modules to your Visual Basic project.

The functions and structures defined in the Visual Basic Wrapper DLL provide an
interface for handling export formats, parameter fields, SQL server and ODBC logon
information, graphs, printing, and more. For complete information on each of the
structures and functions included, search for Visual Basic Wrapper for the Crystal Report
Engine in the Crystal Reports Developer’s Help (CrystalDevHelp.chm). In most cases,
each function or structure has a corresponding function or structure in the original
Crystal Report Engine API with a similar name. When working in Visual Basic though,
you must use the functions and structures provided by the Visual Basic Wrapper DLL.

CRPE32.DEP
The crpe32.dep dependency file contains only the most often used runtime files for
Visual Basic. The file can be modified to include any runtime file. To include a file
that is not being distributed when using the existing crpe32.dep, you may add the
new file to the "Additional Runtime DLLs" section. However, you must continue a
sequential order to the Uses=.

For example:

If you want to include the p2BACT.DLL, you must add it under the "Additional
Runtime DLLs" section of crpe32.dep.

If the last numbered Uses= is:
Uses46=\program files\seagate software\sschart\SSCSDK32.DLL

To include the p2BACT.DLL, add the following line to crpe32.dep:
Uses47=..\crystal\p2BACT.DLL
Crystal Reports Technical Reference Guide 9

Crystal ActiveX Controls
Crystal ActiveX Controls
ActiveX controls bring more powerful applications to desktops and networks.
ActiveX moves beyond applications that produce static documents to a Windows
environment that provides active controls, documents, and client applications that
can operate and interact not only with each other, but also with network intranets
and the global Internet.

ActiveX controls provide plug-in capabilities that let you add application components,
and even entire applications, to your own development projects without writing a line
of code. Crystal Reports includes the Crystal ActiveX Control. Use the ActiveX Control
to easily add all of the report processing power of Crystal Reports to your own Visual
Basic, Visual C++, Borland C++, Delphi, and other applications.

Note:
� The development tools may refer to an ActiveX Control by any of the

following names: OLE Control, OCX Control, Custom Control, or ActiveX
Control. As long as the term used refers to a control with an .OCX filename
extension, it is synonymous with the term ActiveX Control used here.

The following topics are discussed in this section:
“Adding the ActiveX Control to your Project” on page 10
“Using the ActiveX Controls” on page 11
“Crystal Report Engine Automation Server” on page 12

Adding the ActiveX Control to your Project
This section demonstrates how to add the Crystal ActiveX Control to an application
project being designed in Visual Basic versions 5.0 and 6.0. If you wish to use the
ActiveX Control in a different development environment or a different version of
Visual Basic, please refer to the documentation that came with your development
tools for information on adding an ActiveX or OLE Control (OCX) to your project.

The Crystal ActiveX Control was installed in the \WINDOWS\SYSTEM directory
when you installed Crystal Reports. You add the ActiveX Control to your Visual
Basic project using the Components command on the Visual Basic Project menu.

1 Open Visual Basic.

2 Open the project to which you want to add the ActiveX Control.

3 Choose Components from the Project menu.
The Components dialog box appears.

� If Crystal Report Control appears in the Available Controls list, click the check
box next to it, click OK, and skip to Step 6.

� If Crystal Report Control does not appear in the Available Controls list, click
Browse. The Add ActiveX Control dialog box appears.
10 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Note: Crystal Report Control is the name of the Crystal ActiveX Control when it
is added to a development project. The term ActiveX Control refers to a type of
control, while Crystal Report Control is the name of the ActiveX Control provided
by Crystal Reports.

4 Use the controls in the Add ActiveX Control dialog box to locate and select the
CRYSTL32.OCX file. This file was installed in your \WINDOWS\SYSTEM
directory when you installed Crystal Reports. Once you locate and select the
file, click Open.

5 Crystal Report Control will now appear in the Available Controls list box.
Click the check box next to the name of the control, and click OK.
Visual Basic adds the Crystal ActiveX Control to your toolbox. The tool looks
like this:

6 To add the ActiveX Control to a form, double-click the tool in the toolbox and
Visual Basic installs it on the active form.

Note: For instructions on how to add an ActiveX Control or OLE control to
development applications other than Visual Basic, refer to the documentation that
came with the development application you are using.

Using the ActiveX Controls
Once you have the ActiveX Control object on your form, you build the connection
between your application and Crystal Reports by setting the object's properties at
design time or changing properties at runtime. The ActiveX properties let you specify:
� the name of the report you want to print in response to an application event.
� the destination for that report (window, file, or printer).
� the number of copies you want to print (if your report is going to the printer).
� print file information (if your report is going to a file).
� preview window sizing and positioning information (if your report is going to

a window).
� selection formula information (if you want to limit the records in your report).
� sorting information.
� other related properties.

Crystal ActiveX Control properties can be changed either at design time or at
runtime. Note, however, some properties are available only at runtime. These
properties do not appear in the Properties list at design time.

Note: For a complete description of each property in the Crystal ActiveX
Control, refer to the Crystal ActiveX Control Reference in the Techrefvol2.pdf.
Crystal Reports Technical Reference Guide 11

Crystal Report Engine Automation Server
Changing Properties for the ActiveX Control

1 Click the ActiveX control on your form to select it.

2 Right-click and choose Crystal Properties from the shortcut menu.
The Property Pages dialog box appears.

3 Use the tabs and controls in this dialog box to change the ActiveX Control
properties at design time.

Note: ActiveX Control properties also appear in the Visual Basic Properties list
box. For instructions on using the Properties list box, refer to your Visual Basic
documentation.

Changing Properties at Runtime

You can set most of the ActiveX Control properties at runtime by adding simple
entries to your procedure code. Runtime property settings replace settings you
make via the Properties list at design time.

Use the “Action” on page 1252 property or the “PrintReport” on page 1335
method to actually process the report at runtime. The Action property and the
PrintReport method can only be used at runtime, and are the only means by which
a report can actually be generated by the ActiveX Control.

For information on how to set ActiveX Control properties at runtime, refer to their
syntax by searching for each property by name in the Crystal Reports Developer’s Help
(CrystalDevHelp.chm). Included are examples of how to set each property at runtime.

Crystal Report Engine Automation Server
The Crystal Report Engine Automation Server has been designed as both an object-
oriented approach to adding Crystal Report Engine features to your applications,
and as an ideal method for displaying reports in web pages. If you work in a
development environment that supports access to COM-based automation
servers, such as Visual Basic, you will quickly make full use of the Crystal Report
Engine Automation Server to add powerful reporting to your applications. In
addition, if you manage a web server that supports Active Server Pages, such as
Microsoft’s Internet Information Server (IIS) or Personal Web Server, the Crystal
Report Engine Automation Server satisfies all of your dynamic reporting needs.

The Crystal Report Engine Automation Server (CPEAUT32.DLL) was installed in
your \WINDOWS\SYSTEM directory when you installed Crystal Reports. The
Crystal Report Engine Automation Server is an in-process automation server
based on the Component Object Model (COM). This automation server provides
an IDispatch interface, but is not programmable through a vtable interface. For
Visual Basic programmers and in Active Server Pages, handling the IDispatch
interface is almost transparent. For more information on the Component Object
Model and COM interfaces, refer to Microsoft documentation.
12 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
The following topics are discussed in this section:
� “Adding the Automation Server to your Visual Basic Project” on page 13
� “Using the Automation Server in Visual Basic” on page 14
� “Object Name Conflicts” on page 16
� “Viewing the Crystal Report Engine Object Library” on page 17
� “Handling Preview Window Events” on page 17
� “Distributing the Automation Server with Visual Basic Applications” on

page 19
� “Sample Applications” on page 19

Adding the Automation Server to your Visual Basic Project
Before you can use the Crystal Report Engine Automation Server with a Visual
Basic project, it must be registered on your system, and you must add it to your
project. If you selected to install Development Tools when you installed Crystal
Reports, the automation server will have already been registered on your system.
If you did not select Development Tools, run the Crystal Reports setup application
again, select Custom installation, and make sure Development Tools are installed.

Note: The following procedures demonstrate the use of the Report Engine
Automation Server in versions 5.0 and later of Visual Basic. For information on using
automation servers in earlier versions of Visual Basic, or in other development
environments, please refer to the documentation that came with your software.

To add the automation server to a project in Visual Basic versions 5.0
or 6.0:
1 With your project open in Visual Basic, choose References from the Project

menu. The References dialog box appears.

Note: For complete information on adding ActiveX components to a project,
refer to your Visual Basic documentation.

2 The Available References list box shows all available component object
libraries currently registered on your system. Scroll through this list box until
you find the Crystal Report Engine 8 Object Library. This is the Crystal Report
Engine Automation Server.

Note: If the Crystal Report Engine Object Library does not appear in the
Available References list box, use the Browse button to locate and select the
Crystal Report Engine Automation Server (CPEAUT32.DLL) in your
\WINDOWS\SYSTEM directory.

3 Toggle on the check box next to the Crystal Report Engine 8 Object Library
reference. This makes the Crystal Report Engine Automation Server available
to your project.

4 Click OK in the References dialog box.
Crystal Reports Technical Reference Guide 13

Crystal Report Engine Automation Server
Using the Automation Server in Visual Basic
There are five primary steps to using the Crystal Report Engine Automation Server
in your Visual Basic project:
� “Creating an Application Object” on page 14
� “Obtaining a Report Object” on page 14
� “Using the Report Object” on page 15
� “Releasing Objects” on page 15
� “Handling Errors” on page 16

Creating an Application Object

The Application object in the Crystal Report Engine Automation Server’s object
library is the only object that can be created. Using the Application object, you can
obtain a report object by opening a report file, manipulate aspects of the report
object, such as select formulas and sort fields, then print or export the report.

Since the Application object is the only creatable object exposed by the Crystal
Report Engine Automation Server, you must create an Application object before
you can perform any other tasks using the Crystal Report Engine. Use code similar
to the following to create an Application object in your Visual Basic project:
Dim app As CRPEAuto.Application

Set app = CreateObject(“Crystal.CRPE.Application”)

Alternately, you can use the following code:

Dim app as New CRPEAuto.Application

Crystal.CRPE.Application is the Application object’s ProgID (programmatic
identifier). Visual Basic uses this ID to create an instance of the Application object,
which can then be used to obtain a Report object. For a complete description of the
CreateObject function, refer to your Visual Basic documentation.

Obtaining a Report Object

You obtain a Report object by specifying a Crystal Reports (.RPT) file and opening
it with the OpenReport method of the Application object:
Dim report As CRPEAuto.Report

Set report = app.OpenReport(“c:\reports\xtreme.rpt”)

The OpenReport method has only one parameter, the path of the report file you
want to access. By setting a report object according to the return value of this
method, you can proceed to manipulate, print, preview, or export the report using
other objects, methods, and properties available in the Crystal Report Engine
Automation Server’s object library.
14 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Using the Report Object

Once you obtain a Report object, you can use that object to make runtime changes
to the report file, then send the report to a printer, a preview window, a disk file,
an e-mail address, an ODBC data source, or a group folder in Microsoft Exchange
or Lotus Notes. Note that the changes you make at runtime are not permanent;
they do not change the original report file, they only affect the output of the report
during the current Crystal Report Engine session.

Through the report object, you obtain access to different aspects of the report file,
such as selection formulas, subreports, sort fields, and format settings. For
example, the following code changes the record selection formula for the report:

report.RecordSelectionFormula = “{customer.Region} = ’CA’"

Refer to the reference section of this manual for complete information on all objects,
properties, and methods available in the object library and how to use them.

Once you make all desired changes and review settings for the report using the
functionality available in the automation server, you can print, preview, or export
the report just as you do from Crystal Reports. The automation server provides
default settings for these activities, or you can specify your own settings. The
simplest technique for sending the report to a printer would look like this:

report.PrintOut

Without receiving any parameters, the PrintOut method simply sends the report
to the default printer with default settings. For more information about methods
for the Report object, search for each method by name in Crystal Reports Developer’s
Help (CrystalDevHelp.chm).

Releasing Objects

Visual Basic will clean up any objects that have not been released when your
application terminates. However, since objects use memory and system resources
that cannot be accessed by other running applications, you should get into the
habit of releasing any objects when you are finished with them.

To release an object, simply set it equal to Nothing:
Set report = Nothing

Set app = Nothing
Crystal Reports Technical Reference Guide 15

Crystal Report Engine Automation Server
Handling Errors

Error trapping for the Crystal Report Engine Automation Server can be handled
just like normal error trapping in Visual Basic. When an error occurs in the
automation server, the error is sent to Visual Basic which sets the properties of the
Err object appropriately. To avoid runtime problems, you should trap for errors
inside your Visual Basic code. A typical error trapping routine might look
something like this:
On Error GoTo HandleError

’ Several lines of

’ Visual Basic code

HandleError:

 If (Err.Number <> 0) Then

 MsgBox (Err.Description)

 End If

The advantage of handling automation server errors like this is that they can be
handled at the same time other Visual Basic errors are handled, making your code
more efficient and easier for other developers to understand.

Object Name Conflicts
Some object names in the Crystal Report Engine Object Library may conflict with
object names in other object libraries attached to your Visual Basic projects. For
instance, if your project includes the Data Access Objects (DAO) Object Library,
the DAO Database object can conflict with the Report Engine Object Library’s
Database object. Another common name conflict can occur between the Report
Engine’s OLEObject and the RichTextLib OLEObject control. Such name conflicts
can produce errors in your applications.

Note: RichTextLib is a component included with some versions of Visual Basic.

To avoid name conflicts, you should append all references to Crystal Report
Engine Object Library object names with CRPEAuto, the name of the object library
as it appears in Visual Basic. For instance, the following code can be used to create
a Report object:
Dim rpt As CRPEAuto.Report

Set rpt = app.OpenReport(“c:\reports\xtreme.rpt”)

Object names in other object libraries should also be appended with an object library
name. For instance, the DAO Database object could be appended with DAO:

Dim db As DAO.Database
16 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Viewing the Crystal Report Engine Object Library
The Visual Basic Object Browser allows you examine the classes, methods, and
properties exposed by any ActiveX component available to your project. If you have
selected the Crystal Report Engine Object Library using the References dialog box (see
“Adding the Automation Server to your Visual Basic Project” on page 13), then you
can browse through the Object Library using the Visual Basic Object Browser:

1 With your project open in Visual Basic, choose Object Browser from the View
menu. The Object Browser appears.

2 From the Libraries/Projects drop-down list, select the Crystal Report Engine
Object Library. Classes, methods, and properties exposed by the Object Library
will appear in the Object Browser.

3 Select a class in the Classes/Modules list box to view its methods and
properties in the Methods/Properties list box.

Note: While viewing the Crystal Report Engine Object Library in the Visual Basic
Object Browser, you may notice several classes, methods, and properties that are
not documented in the Crystal Reports Technical Reference. There are several
features in the Crystal Report Engine Automation Server that are not available with
Crystal Reports, and are protected by a security feature built into the Object Library.
These features will become available in future Seagate Software products. Contact
Seagate Software’s Sales department for further information.

Crystal Reports also provides the Crystal Report Engine Object Library Browser
Application as a convenient utility for accessing online information about the
Crystal Report Engine Object Library. Simply choose the Xtreme Mountain Bike
option in the Sample Files when installing, or choose an automatic installation (the
files will be installed by default) to install the utility, then browse through the
Object Library using the tree control. Select a class, method, or property for more
information on how to use it.

Handling Preview Window Events
The Report and Window objects in the Crystal Report Engine Object Library
include several Events. By handling these events in your Visual Basic project, you
can customize how your application responds to user actions. For instance, if a
user clicks on a button in the toolbar of the preview window, such as the Zoom
button or the Next Page button, your application can respond to that event.

Note: Events are only available in Visual Basic 5.0 and later. If you are using a
version of Visual Basic earlier than 5.0, you will not be able to make use of the
Events exposed by the Report or Window object.

To handle Events for the Report or Window object, you must declare the instance
of the object as Public and WithEvents. For example:
Public WithEvents repEvents As CRPEAuto.Report

Public WithEvents wndEvents As CRPEAuto.Window
Crystal Reports Technical Reference Guide 17

Crystal Report Engine Automation Server
Once declared, the objects will appear in the Visual Basic Object window. If you
select the object, its Events will be displayed, just as if you were working with any
other Visual Basic object.

Note: The Window object events are only valid when a report is sent to a preview
window using the Preview method.

The following code demonstrates how to set up and use events for both the Report
object and the Window object. Actual event handling code is left for you to fill in.
You are limited only by the restrictions of the Visual Basic language.
Option Explicit

Public WithEvents rpt1 As CRPEAuto.Report

Public vw1 As CRPEAuto.View

Public WithEvents wnd1 As CRPEAuto.Window

Private Sub Command1_Click()

Set vw1 = rpt1.Preview

Set wnd1 = vw1.Parent

End Sub

Private Sub Form_Load()

Set app1 = CreateObject(“Crystal.CRPE.Application”)

Set rpt1 = app1.OpenReport(“c:\crw\rt01.rpt”)

rpt1.EventInfo.ActivatePrintWindowEventEnabled = True

rpt1.EventInfo.ClosePrintWindowEventEnabled = True

rpt1.EventInfo.GroupEventEnabled = True

rpt1.EventInfo.PrintWindowButtonEventEnabled = True

rpt1.EventInfo.ReadingRecordEventEnabled = True

rpt1.EventInfo.StartStopEventEnabled = True

End Sub

Private Sub rpt1_Start(ByVal Destination As _

CRPEAuto.CRPrintingDestination, _

useDefault As Boolean)

' Put event handling code here.

End Sub

Private Sub rpt1_Stop (ByVal Destination As

CRPEAuto.CRPrintingDestination,

ByVal Status As CRPEAuto.CRPrintingProgress)

' Put event handling code here.

End Sub

Private Sub wnd1_ActivatePrintWindow()

 ' Put event handling code here.

End Sub

Private Sub wnd1_ClosePrintWindow (useDefault As Boolean)

 ' Put event handling code here.

End Sub

’ Other events for the Report and Window objects

’ can be seen by using the Visual Basic Object Browser

’ with the Crystal Report Engine Object Library.

’ (a lightning bolt icon appears next to Events in

’ the Object Browser.)

’ Once and instance of a Report object or Window object,

’ is declared, you can add Event handlers to your code by

’ selecting the object in the Visual Basic Object list and

’ then selecting the desired event.
18 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
For complete descriptions of all available Crystal Report Engine Object Library
Events, refer to the Report Object and the Window Object in the Techrefvol2.pdf.

Note: In the previous version of Crystal Reports a report or window object
variable declared WithEvents could only be Set once. A VB error occurred if you
tried to Set the variable to a different value(i.e. access a new report or display a
new Preview window). This problem no longer exists. You can now reset the
values of WithEvent object variables.

Distributing the Automation Server with Visual Basic Applications
When you finish designing your application and decide to distribute it to your
users, you must make sure that the Crystal Report Engine Automation Server is
distributed with it. In addition, you must make sure the automation server gets
registered on your users’ systems. The easiest way to do this is to use the
Application Setup Wizard installed with Visual Basic.

This Wizard leads you through the process of designing a setup application for
your project. In addition, the Setup Wizard detects any ActiveX components
included in your project and leads you through the process of adding code to the
setup application to include the required files and register the components on a
user’s machine.

For more information about files that need to be distributed with Crystal Report
Engine applications, refer to License Manager Help (License.hlp).

Sample Applications
Crystal Reports includes a complete sample application written in Visual Basic 5.0
using the Crystal Report Engine Automation Server. The Xtreme Mountain Bike
Inventory Application is a complete real-world application that provides various
reports to employees at a fictitious company. Report access is restricted based on
user logon information. The application is located in \Program Files\Seagate
Software\Crystal Reports\sample\Xtreme\Inventory and provides the option of
viewing the source code for any Visual Basic form displayed.

In addition, a self-extracting executable located in the \Program Files\Seagate
Software\Crystal Reports\sample\sam32aut (or sam16aut) directory contains
three small sample applications that demonstrate various aspects of the Crystal
Report Engine Automation Server. Simply run the SAM32AUT.EXE application to
install the samples. The three samples are:
� AUBASIC

Demonstrates the basic code required to open a report and print, preview, or
export it using the Crystal Report Engine Automation Server.

� AUBROWSE
Demonstrates how to browse through the areas of a report and access the
objects in each area.
Crystal Reports Technical Reference Guide 19

Grid Controls and the Crystal Report Engine
� AUFMLA
Demonstrates how to get and set record selection formulas, group selection
formulas, and SQL queries stored with a report.

Grid Controls and the Crystal Report Engine
In Crystal Reports, a Crystal ActiveX Control can be bound directly to a Visual
Basic Data Control. Using the Visual Basic Data Control with the Crystal ActiveX
Control offers the following benefits:
� Generating reports in Visual Basic programs is made even easier and does not

require an existing .RPT file.
� A powerful feature of Visual Basic is ad-hoc queries that are run by executing

SQL statements in the RecordSource property of the Data Control. By directly
binding a Crystal Custom Control to a Data Control, users can now create
reports of dynaset data which are the results of such ad-hoc queries.

The following topics are discussed in this section:
� “Bound Report Driver and Bound Report Files” on page 20
� “Crystal ActiveX Control Properties” on page 21
� “Creating a Bound Report using the Crystal ActiveX Control” on page 22
� “Creating a Formatted Bound Report” on page 22
� “Creating a Formatted Bound Report at Runtime” on page 23
� “Sample Application” on page 24

Bound Report Driver and Bound Report Files
When using Crystal Reports to generate reports from database files of a particular
file format (for example, Paradox file format), you need to have the appropriate
report driver (i.e., PDBPDX.DLL) to retrieve data from the databases. Similarly,
when you generate reports by binding to a Visual Basic Data Control, a Bound
Report Driver (PDBBND.DLL) is used to retrieve data from the Data Control.
Make sure PDBBND.DLL is in your \WINDOWS\SYSTEM directory or search
paths, along with other database drivers.
20 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
Crystal ActiveX Control Properties
Several properties are added to the Crystal Custom Control in order to support
bound reports. These new properties are described below.

Custom

This property allows you to create bound .RPT files at Visual Basic design time and
is not available at runtime. After a bound .RPT file is created, programmers can
then use Crystal Reports to customize the report layout or even link the bound data
to other database tables.

DataSource (Data Control)

This property can be read/write at design time and runtime. This property is
ignored if the ReportSource property is 0 (Report files). To generate bound reports,
set this property to the Data Control you want to retrieve data from. The Data
Control must already be on the form before this property can be set.

BoundReportFooter (Boolean)

This property can be read/write both at design-time and runtime. This property is
ignored if the ReportSource property is 0 (Report files). Default is False and the
bound reports generated will not have page numbers printed. If set to True, page
numbers will be printed at the bottom of a page.

BoundReportHeading (string expression)

This property can be read/write both at design time and runtime. This property is
ignored if the ReportSource property is 0 (Report files). It specifies the report title
at the beginning of a bound report. If it is blank, no report title will be printed.

ReportSource (numeric expression)

This property can be read/write both at design time and runtime. The allowed
values are:

0 - Report files

1 - Bound TrueDBGrid Control

3 - All Data Control Fields

The default value is 0 - Report files, and the ReportFileName property must be
assigned to an existing report path name (.RPT). This is equivalent to when the
new bound report features were not available and all reports were generated from
existing .RPT files.
Crystal Reports Technical Reference Guide 21

Grid Controls and the Crystal Report Engine
When set to 1 or 3, the ReportFileName property will be ignored and no .RPT file is
needed. Reports will be created using data retrieved from Data Control. The reports
generated directly from the Data Control are identical to the reports generated from
the respective bound .RPT files created using the (Custom) property described above.

Creating a Bound Report using the Crystal ActiveX Control
1 Add the following controls to your Visual Basic form:

2 On the Data Control:
� Set the DatabaseName property to the name of the database being reported on.
� Set the RecordSource property (this can be a database table or a SQL query

statement).

3 On the Crystal ActiveX Control:
� Set the DataSource property to the Data Control (for example, Data1).
� Set the ReportSource to 3 - All Data Control Fields.

4 On the Command Button, add the following code for the Click event:
Private Sub Command1_Click()

CrystalReport1.Action = 1

End Sub

Run the application, click the command button, and the Crystal ActiveX Control
will retrieve data from the Data Control and create the report. The report will
appear as a simple columnar report. There are no runtime properties to control any
report formatting. However, this can be accomplished at design-time by editing
the report designed by the ActiveX control (a report template) in Crystal Reports.

Creating a Formatted Bound Report
1 Add the Data control, ActiveX control, and a command button to your form.

2 On the Data control, set the DatabaseName property and the RecordSource
property as you did in the previous example.

3 On the ActiveX control:
� Set the DataSource property to the Data Control (i.e., Data1).
� Set the ReportSource property to 3 - All Data Control Fields.
� Open the Custom property and select the Data-Bound Report Tab.
� Click the Save Report As button and enter a name for the report.

4 Open the report template in Crystal Reports and apply any formatting that
you want including spacing between columns, font size, colors, grouping, and
totaling. Save the report template again when finished.
22 Crystal Reports Technical Reference Guide

1 : Visual Basic Solutions
5 In your Visual Basic application, set the following properties for the ActiveX
control:
� Set the ReportSource to 0 - Report File.
� Set the ReportFileName to the .RPT file that you saved (include the

complete path of the file).

6 On the command button, add the following code to the Click event:
Private Sub Command1_Click()

CrystalReport1.Action = 1

End Sub

Now, the application will create the report at runtime with the formatting you
have applied.

Creating a Formatted Bound Report at Runtime
The following steps describe an alternative method of creating formatted bound
reports:

1 Create your Visual Basic application as in the first example above.

2 Set the ActiveX Control to print to a preview window, and run the application.

3 Click the Export button in the preview window, and export the report to a disk
file in .RPT format.

4 Once the report has been exported, you can open it up in Crystal Reports.

5 Perform all formatting changes that you want and save the report.

6 Return to the Visual Basic application and stop it if it is still running.

7 On the ActiveX Control:

8 Set the ReportSource to 0 - Report File.

9 Set the ReportFileName to the .RPT file that you created.

10 Run the Visual Basic application and you will be able to see your bound report
with the formatting changes you've made.

Note:
� When creating formatted reports for use with the bound data control in Visual

Basic, you will not be able to refresh the data from within Crystal Reports since
the data does not exist outside of the Visual Basic application.

� If you plan on using a formatted bound report, you will not be able to modify
anything in the SELECT statement of the data control. The report needs all
these fields and will fail if they are not all there. The formatted report cannot
report on any new fields.
Crystal Reports Technical Reference Guide 23

Grid Controls and the Crystal Report Engine
When passing properties at runtime using bound reports (i.e., SortFields), the
syntax is slightly different. For example, the following syntax would be used for
the Formulas and SortFields properties in a normal report:
CrystalReport1.Formulas(0) = “COMMISSION= {TableName.FIELDNAME}”

CrystalReport1.SortFields(0) = “+{TableName.FIELDNAME}”

However, for a bound report, the following syntax would be used:
CrystalReport1.Formulas(0) = “COMMISSION= {Bound Control.FIELDNAME}”

CrystalReport1.SortFields(0) = “+{Bound Control.FIELDNAME}”

Sample Application
Crystal Reports includes a complete sample application written in Visual Basic 5.0
using the Crystal Report Engine Automation Server and the Microsoft Data Bound
Grid control. The Xtreme Mountain Bike Inventory Application is a complete real-
world application that provides various reports to employees at a fictitious company.
The Microsoft Data Bound Grid control is used for an order-entry page that dynamic
reports are produced from. The application is installed, by default, in the \Program
Files\Seagate Software\Crystal Reports\sample\Xtreme\Invntory directory.
24 Crystal Reports Technical Reference Guide

Crystal Report Engine 2

The Crystal Report Engine is used alone and as a base class
for other Crystal Reports development tools, including the
Crystal ActiveX Control, Crystal Report Engine
Automations Server, and the Crystal Visual Component
Library. In this chapter you will find a general overview of
how the Crystal Report Engine is used in an application, as
well as a detailed section on the Crystal Report Engine API
and it’s most common functionality.
Crystal Reports Technical Reference Guide 25

Introduction to the Crystal Report Engine
Introduction to the Crystal Report Engine
Crystal Reports is a powerful stand-alone report creation application, as well it
provides a report writing module that you can add to your own applications. As a
developer using C, C++, Visual Basic, ObjectVision, Turbo Pascal, Visual dBASE,
Delphi, or any programming language that can access a DLL, you can add
sophisticated report generating and printing capabilities to your applications
without the time-consuming task of writing your own code.

The Crystal Report Engine is a Dynamic Link Library (DLL) that allows your
applications to access the same powerful report printing features that are available
in Crystal Reports. As a licensed user of Crystal Reports, you receive royalty-free
rights to ship the Crystal Report Engine DLL (CRPE.DLL or CRPE32.DLL) and all
of its support files with any application you create.

Note: For more information regarding current runtime file requirements, see the
Crystal Reports Developer Runtime Help (Runtime.hlp).

From your application, you can access the Crystal Report Engine through any of
several Crystal Report Engine development tools:
� “Crystal ActiveX Controls” on page 10 (CRYSTL32.OCX)
� “Crystal Report Engine Automation Server” on page 12 (CPEAUT.DLL or

CPEAUT32.DLL)
� Crystal Visual Component Library in the Techrefvol2.pdf (UCRPE.DCU or

UCRPE32.DCU)
� The Crystal Report Engine Class Library in the Techrefvol2.pdf (PEPLUS.H and

PEPLUS.CPP)
� The Crystal NewEra Class Library in the Techrefvol2.pdf
� “Crystal Report Engine API” on page 31 (CRPE32.DLL)

When your application runs, it links with the Crystal Report Engine to access
report writing functionality. Reporting can be simple, producing only a single
report that is sent to a printer or preview window with no options available to the
user, or it can be complex, allowing the user to change such things as record
selection, sorting, grouping, or export options.

Sample Applications
Crystal Reports comes with a number of sample applications that show you how
to incorporate the capabilities of the Crystal Report Engine. Use these applications
to further your understanding of the Crystal Report Engine and how to use it in
various programming environments.
26 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
SQL and ODBC
The Crystal Report Engine is fully compatible with most popular SQL DBMS
applications, including Sybase SQL Server, Oracle, Gupta SQLBase, and Microsoft
SQL Server. The Crystal Report Engine includes options for logging on to and off
of SQL servers and ODBC data sources and also includes the ability to edit the SQL
statement passed through to an SQL or ODBC database.

Exporting Reports
The Crystal Report Engine enables you to print to a printer or a preview window
with simple function calls. In addition, you can export a file in multiple formats
and to multiple destinations. For example:
� through e-mail to another person or group of people
� directly to disk
� to HTML for updating a web site
� to a Microsoft Exchange folder
� to a Lotus Notes folder
� to an ODBC data source

The report can be exported in any of several word processing, spreadsheet,
database file, or data exchange formats including HTML.

Before using the Crystal Report Engine in your application
Before you add the Crystal Report Engine to your application, you should be
familiar with some key features of the Crystal Report Engine. Review the following
points, and make sure you understand each before attempting to make calls to the
Crystal Report Engine from your application.
� The Crystal Report Engine outputs existing reports. You cannot create report

files using the functionality of the Crystal Report Engine. Reports must be
created using the Crystal Reports application described in the Crystal Reports
User’s Guide. Make sure you understand the report creation process before
trying to print reports with the Crystal Report Engine.

Note: Visual Basic programmers can use the Active Data Driver, along with the
Crystal Report Engine API or the Crystal Report Engine Automation Server to
create reports dynamically at runtime. For more information, refer to “Active
Data” on page 563.
� The Crystal Report Engine provides a convenient add-on to your existing

application development project. With just a few lines of code, you can
produce a powerful report writing and distribution tool that would take
thousands of lines of code and weeks to produce otherwise.
Crystal Reports Technical Reference Guide 27

Introduction to the Crystal Report Engine
� The Crystal Report Engine does not require the use of a fixed user interface.
The Crystal Report Engine is designed to work with your existing
development project and allows you to define the user interface your
customers and users are familiar with and expect from your application.

Using the Crystal Report Engine
Any development project that incorporates the Crystal Report Engine requires
three steps:
� “Step 1: Creating reports” on page 28 (The reports that your users access.)
� “Step 2: Designing the user interface that drives the Crystal Report Engine” on

page 29.
� “Step 3: Adding the Crystal Report Engine to your application” on page 29.

Related topics:
“Using the Crystal Report Engine API in Delphi” on page 30

Step 1: Creating reports

Creating reports to include with your applications is identical to creating reports
for your own use; there are no restrictions. Using the procedures outlined in the
Crystal Reports User’s Guide and Crystal Reports Online Help (crw.chm), create as
many kinds of reports as you want to make available to your users. You can make
the reports as simple or as sophisticated as your needs dictate.

While designing reports, though, keep in mind their ultimate destination. Some
export formats do not support all of the formatting options available in Crystal
Reports. For example, if you will be exporting reports to HTML to automatically
update a web site, HTML may not support all of the fonts available on your
system. This is not a limit of the Crystal Report Engine export functionality, but a
limit of the HTML format itself.

If you are a Visual Basic programmer or you are using any development
environment that supports Automation Servers, you may want to have reports
dynamically designed for you at runtime using the Active data driver. For complete
information on using the Active data driver, see “Active Data” on page 563.

Visual Basic programmers can also take advantage of the Visual Basic data control
or the TrueGrid ActiveX control at runtime to dynamically produce report files.
See “Grid Controls and the Crystal Report Engine” on page 20, for information on
using these controls with the Crystal Report Engine.
28 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Step 2: Designing the user interface that drives the Crystal Report
Engine

The interface you develop to allow users to print reports is limited only by your
needs and your imagination. The kind of user interface you select is unimportant
to the Crystal Report Engine.

Common methods of using the Crystal Report Engine include a single menu
command that produces a single report, a dialog box allowing several options for
printing reports, or a completely separate front-end application that is called by
your application. All are acceptable techniques, and each has its advantages. How
you design your user interface can depend on any or all of the following:
� The purpose of your application.
� The types of reports your application will use.
� The printing options you want to make available with those reports.
� Whether your application will offer only one report or a choice of several reports.

Consider your application and your reporting needs carefully, and design a User
Interface that will use the Crystal Report Engine most efficiently.

Step 3: Adding the Crystal Report Engine to your application

Several different Crystal Report Engine development tools can be used to add the
Crystal Report Engine to your application:
� “Crystal ActiveX Controls” on page 10
� “Crystal Report Engine Automation Server” on page 12
� Crystal Visual Component Library in the Techrefvol2.pdf
� The Crystal Report Engine Class Library in the Techrefvol2.pdf
� The Crystal NewEra Class Library in the Techrefvol2.pdf
� “Crystal Report Engine API” on page 31

Be aware that you cannot use two or more of these tools in the same application.
For example, you cannot create a Visual Basic application that contains the Crystal
ActiveX control and also makes calls to the functions in the Crystal Report Engine
API. You must choose one tool to implement the Crystal Report Engine in your
project and stick with that tool.

When choosing a Crystal Report Engine tool, consider the following:
� What is your development environment?
� What is your programming ability?
� Do you need to implement the entire Crystal Report Engine or just a few

features of it?
Crystal Reports Technical Reference Guide 29

Introduction to the Crystal Report Engine
For example, the Crystal Class Library for NewEra is specifically designed for
Informix NewEra. Therefore, if you are programming in Visual Basic, the Crystal
Class Library for NewEra is not an option. The Crystal Report Engine Class
Library, on the other hand, is based on the Microsoft Foundation Class Library for
C++. To use the Crystal Report Engine Class Library, you must be using a C++
development tool, and you must be using the MFC library.

If you are an experienced programmer, you might consider the Crystal Report
Engine API or the Crystal Report Engine Class Library. Novice programmers, on
the other hand, may want to take advantage of the easy-to-use features of the
Crystal ActiveX control, or the Visual Component Library.

The Crystal Report Engine API consists of a large number of functions exposed
directly from the Crystal Report Engine DLL. These functions provide a wide
range of power and flexibility for adding report writing features to your own
applications.The rest of this chapter discusses the process required to use the
Crystal Report Engine API in your own applications.

Although the examples in the following sections concentrate on the C
programming language, the concepts should be studied by anyone using the API
functions in any language. Additional information specific to Visual Basic
programmers using the API can be found in “Enhancements to the Crystal Report
Print Engine API” on page 2. Additional information for Delphi programmers is
located in “Using the Crystal Report Engine API in Delphi” on page 30. If you wish
to use a Crystal Report Engine development tool other than the Crystal Report
Engine API, refer to the table of contents for this manual, or search for the name of
the programming language or development environment you are using in Crystal
Reports Developer’s Help (CrystalDevHelp.chm).

Using the Crystal Report Engine API in Delphi
All versions of Delphi can make direct calls to the functions in the Crystal Report
Engine API. The Delphi unit file crdelphi.pas includes complete declarations for all
Report Engine API functions and records. When you need to add the Report
Engine API to your own Delphi unit, simply add the Crystal Report Engine API
unit to your project and refer to the unit in your uses clause. For example:
Uses

crpe32;

The implementation section of the Crystal Report Engine API unit contains all of the
Crystal Report Engine API functions defined as external and as part of the CRPE or
CRPE32 DLL.

The “Crystal Report Engine” on page 277, includes Delphi declarations for all
Report Engine API functions and records. In addition, the Crystal Reports Developer’s
Help (CrystalDevHelp.chm) includes Delphi sample code using many of the functions
and records defined in crdelphi.pas. Search for Report Engine Functions - Sample Code
in Delphi in the Crystal Reports Developer’s Help (CrystalDevHelp.chm).
30 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Crystal Report Engine API
The Crystal Report Engine API (REAPI) is the most direct method of adding the
Crystal Report Engine to your application project. The Crystal Report Engine itself
is a Dynamic Link Library (DLL), and, therefore, exports its functionality in the
form of DLL functions. These functions make up the Crystal Report Engine API.

The Crystal Report Engine DLL, CRPE32.DLL (32-bit), was installed in your
\WINDOWS\SYSTEM directory when you installed Crystal Reports. This assures
that the DLL is available to any application on your system that uses the Crystal
Report Engine.

Note: For complete information on distributing Crystal Report Engine and other
runtime DLLs with your application, refer to the Crystal Reports Developer Runtime
Help (Runtime.hlp).

The process for loading a DLL and calling DLL functions is a well documented
aspect of the Windows API. If you are not familiar with working with DLLs, please
refer to Windows API documentation before attempting to use the Crystal Report
Engine API. You may also want to consider one of the other methods described in
this section for adding the Crystal Report Engine to your application.

The rest of this section assumes an understanding of DLLs and how to use them in
a Windows application. It also assumes a basic understanding of the C language.
The examples here are written in C, and do not cover the LoadLibrary,
GetProcAddress, or FreeLibrary calls.

Many Windows development environments support direct calls to DLL functions,
Visual Basic, Visual dBASE, and Delphi, for example. Refer to the documentation for
your development environment for complete instructions on using a DLL. Your
documentation may also cover instructions on how to translate C function calls to
the language you use. Study your documentation, then review the steps described
here for using the Crystal Report Engine in an application via the Crystal REAPI.

Declarations for the Crystal Report Engine API (REAPI)
Crystal Reports provides several source code files that declare the functions in the
Crystal REAPI for several popular development languages. These files were installed
in the Crystal Reports directory (\CRW by default) and are ready to be immediately
added to your project. The following Crystal REAPI declaration files are available:
� CRPE.H declares all Crystal Report Engine API functions for C/C++.
� GLOBAL.BAS and GLOBAL32.BAS declare all Crystal Report Engine API

functions for Visual Basic. For more information on using the Crystal Report
Engine API with Visual Basic, see “Enhancements to the Crystal Report Print
Engine API” on page 2.

� CRPEDB.H declares several Crystal Report Engine functions for Visual
dBASE. Because of limits in the dBASE language, not all Crystal Report Engine
Crystal Reports Technical Reference Guide 31

Crystal Report Engine API
functions are available to dBASE programmers. Refer to the individual
function in Crystal Reports Developer’s Help (CrystalDevHelp.chm) for
information on dBASE availability.

� CRDELPHI.PAS and CRPE32.PAS declare all Crystal Report Engine API
functions for Delphi. For more information on using the Crystal Report Engine
API with Delphi, see “Using the Crystal Report Engine API in Delphi” on
page 30.

Note: Functions can be declared on an individual basis, but unless you will only
be using a few of the Crystal Report Engine functions in your code, it is easiest to
simply copy one of the previously mentioned code files into your project
directory and add it to your project.

Using the Crystal Report Engine API
The Crystal REAPI provides two options for processing and producing reports
from within an application:
� “The Print-Only Link” on page 32
� “The Custom-Print Link” on page 36

The Print-Only Link is the fastest, easiest method for producing a report with the
Crystal REAPI. A Print-Only Link, however, provides a very limited functionality. It
allows a report to be printed on a default printer or previewed in a window on-screen.
It does not allow you to customize a report in any way before printing it, though.

A Custom-Print Link, on the other hand, provides all the report processing power of
Crystal Reports itself. By coding a Custom-Print Link into your application, you can
change record selection, record sorting, group creation, group selecting, group sorting,
exporting to disk files, e-mail, Exchange and Lotus Notes folders, ODBC data sources,
selecting specific printers for printing, logging on to SQL servers and ODBC data
sources, editing formulas, formatting report sections, and much more. A Custom-Print
Link is, however, a more complex process to code than a Print-Only Link.

The first time you use the Crystal REAPI in your application project, you may want
to start by coding a simple Print-Only Link to produce basic reporting functionality.
As your project develops and you become more familiar with the Crystal REAPI,
you can expand the reporting functionality with a Custom-Print Link.

The Print-Only Link
A Print-Only Link is performed using the PEPrintReport function. The PEPrintReport
function provides basic report printing functionality and demonstrates basic
techniques for calling Crystal Report Engine functions from your application.

PEPrintReport enables your application to print a report, to select the output device,
either a default printer or a preview window, and to specify the size and location of the
preview window if the report is printed to a window. This function does not enable
32 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
you to customize the report (select the records to print, set the sort order, etc.) at print
time. You can set those parameters at report design time (using the Crystal Reports
Design Tab), but you cannot change them at print time through a Print-Only Link.

If the report is sent to a preview window, you should also use the PEOpenEngine
and PECloseEngine functions with your Print-Only Link. PEOpenEngine and
PECloseEngine allow you to control how long the preview window remains open.
The window will remain open until the PECloseEngine function is called or the
user clicks Close in the window. If PEOpenEngine and PECloseEngine are not
used, and the report is sent to a preview window, the window will automatically
close as soon as the report finishes processing.

Note: You may also want to get in the habit of using PEOpenEngine and
PECloseEngine in all Print-Only Links, as they are required steps to coding a
Custom-Print Link. If your code includes these functions when you design a
Print-Only Link, advancing the application to use a Custom-Print Link in the
future will be much easier.

PEPrintReport Arguments

PEPrintReport is declared in CRPE.H as follows:
short FAR PASCAL PEPrintReport (

char FAR *reportFilePath,

BOOL toDefaultPrinter,

BOOL toWindow, char FAR *title,

int left, int top,

int width, int height,

DWORD style, HWND parentWindow);

The following table describes each argument:

Parameter Description

reportFilePath The name of the report to be printed. Include the path if the report is not in
the current directory. The report name can be hard-coded and unchangeable
at runtime, or you can pass a string variable or character array as the result
of a user choice.

toDefaultPrinter If toDefaultPrinter is set to TRUE (1), the report is sent to a printer. The
toWindow argument should be set to FALSE.

toWindow If toWindow is set to TRUE (1), the report is sent to a preview window. The
toDefaultPrinter argument should be set to FALSE.

title The title that you want to appear in the window title bar. This argument can
receive a string variable or a character array at runtime.

left The position, in current screen coordinates, at which you want the left edge of
the preview window to appear if the report is being printed to a window.
Current screen coordinate measurements can be set within your application.

top The position, in current screen coordinates, at which you want the top edge of
the preview window to appear if the report is being printed to a window.
Current screen coordinate measurements can be set within your application.
Crystal Reports Technical Reference Guide 33

Crystal Report Engine API
When designing a Print-Only Link using PEPrintReport, keep the following points
in mind:
� If toDefaultPrinter = True, and if you have specified a printer in the report

using the Printer Setup command, PEPrintReport prints to the specified
printer. Otherwise it prints to the Windows default printer. If you wish to
override both the printer specified in the report and the Windows default
printer, you will need to establish a Custom-Print Link and specify the printer
using the PESelectPrinter function.

� If toDefaultPrinter = True, you may enter null values for all of the remaining
parameters except reportFilePath because they apply to printing to a preview
window only. The title parameter requires a null string (i.e., “”), while the rest
of the parameters will accept 0 (zero).

� If parentWindow is null, Crystal Reports creates a top level window. The top
left corner specified is relative to the origin of the screen.

� If parentWindow is the handle of an MDI frame window, Crystal Reports
creates a preview window that is an MDI child window with the top left
corner relative to the origin of the frame window's client area.

� If parentWindow is the handle of some other window, Crystal Reports creates
a preview window that is a child of that window with the top left corner
specified relative to the origin of the parent window's client area.

� You can use the Windows constant CW_USEDEFAULT (-32768) as the value of
left, top, width, and height to indicate a default position for the preview window.

If the preview window is a top-level window and the window style is defined as 0
(i.e., the final two parameters in the PEPrintReport call are 0, 0) or, if the preview
window is an MDI child window and the window style is defined as 0, Crystal
Reports uses the following default style:
(WS_VISIBLE | WS_THICKFRAME | WS_SYSMENU | WS_MAXIMIZEBOX |

WS_MINIMIZEBOX)

That is, the default window is a visible window with a thick frame that can be used
for sizing the window. The window includes a system menu box, and maximize
and minimize buttons.

width The width of your preview window, in current screen coordinates, if the
report is being printed to a window. Current screen coordinate
measurements can be set within your application.

height The height of your preview window, in current screen coordinates, if the
report is being printed to a window. Current screen coordinate
measurements can be set within your application.

style The style setting, as defined in WINDOWS.H. Style settings can be
combined using the bitwise OR operator. These are standard Windows
styles. Refer to Windows API documentation for complete information on
window styles. Use 0 for default style settings.

parentWindow Specifies the window handle for the parent window to be used for this
preview window.

Parameter Description
34 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Example code for a Print-Only Link

The first step in accessing the Crystal Report Engine is to load it into memory. This
can be done just before PEPrintReport is called, when a dialog box that allows
printing opens, or even when your application first starts.

Once the Crystal Report Engine is open, PEPrintReport can be called as a result of
some user action, such as clicking a button on screen, or some internal application
procedure.

Finally, once you are finished with the Crystal Report Engine, close it by calling
PECloseEngine. If you have several print jobs, do not close the Crystal Report
Engine until all print jobs are finished. Opening and closing the Crystal Report
Engine uses processor time and should only be performed when necessary.

The following C code demonstrates a possible message handler for an application
that provides Print-Only Link functionality through a button in a dialog box. Use
this code as an example of how to perform a Print-Only Link.
short result;

switch (message)

{

case WM_INITDIALOG:

if (!PEOpenEngine())

; // Handle error

return TRUE;

case WM_DESTROY:

PECloseEngine();

return TRUE;

case WM_COMMAND:

switch (wParam)

{

case IDC_PRINTBUTTON:

result = PEPrintReport (

“boxoffic.rpt”,

FALSE, TRUE,

“My Report”,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

hwndParent);

if (result != 0)

return FALSE;

return TRUE;

}

break;

}

Crystal Reports Technical Reference Guide 35

Crystal Report Engine API
The Custom-Print Link
A more advanced, and more powerful, method of using the Crystal Report Engine
is through a Custom-Print Link. Establishing a Custom-Print Link gives you a
great deal of control over your reports at runtime. For example, you can:
� set or modify the report sort order,
� set or modify the record selection and/or group selection formulas,
� modify existing report formulas,
� set or modify the database location,
� capture and evaluate Crystal Report Engine errors,
� export a report to a file, e-mail, Exchange or Lotus Notes folder, or ODBC data

source,
� log on to SQL servers and ODBC data sources,
� format report sections,
� and much more.

Note: The Crystal Report Engine allows you to add a selection formula and sort
fields to a report at runtime, even if none existed in the report when it was
designed. Report formulas created in the Crystal Reports Formula Editor,
however, must be added when the report is created in Crystal Reports. A formula
can be edited with the Crystal Report Engine, but cannot be added to an existing
report from the Crystal Report Engine. Design your reports carefully, and keep
this in mind when you create your application.

Coding a Custom-Print Link

There are six required steps to coding a Custom-Print Link in your application.
Each uses a different REAPI function. These steps are:
� “Custom-Print Link Step 1: Open the Crystal Report Engine” on page 37

(PEOpenEngine).
� “Custom-Print Link Step 2: Open a print job” on page 37 (PEOpenPrintJob).
� “Custom-Print Link Step 3: Set the output destination” on page 38

(PEOutputToPrinter, PEOutputToWindow,
or PEExportTo).

� “Custom-Print Link Step 4: Start the print job” on page 39 (PEStartPrintJob).
� “Custom-Print Link Step 5: Close the print job” on page 39 (PEClosePrintJob).
� “Custom-Print Link Step 6: Close the Crystal Report Engine” on page 39

(PECloseEngine).

In addition to these six steps, you can add several optional tasks any time after Step
2, opening the print job, and before Step 4, starting the print job. These optional
tasks include changing selection formulas, editing report formulas, selecting
export options, and sorting report fields.
36 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Some REAPI functions can be called at special times to retrieve information about
the print job or Crystal Report Engine. For example, PEGetVersion retrieves the
current version of the Crystal Report Engine being used and can be called at any
time, even without the Crystal Report Engine being open. Another example,
PEGetJobStatus, can be called after Step 4 to obtain information about the current
status of a job being printed. For more information on all REAPI functions, see
“Crystal Report Engine” on page 277 or search for functions by name in Crystal
Reports Developer’s Help (CrystalDevHelp.chm).

Note: The steps described here apply to a single print job. It is possible to have
more than one print job open at once.

Custom-Print Link Step 1: Open the Crystal Report Engine

Example

PEOpenEngine();

Description

This step starts the Crystal Report Engine and prepares it to accept a print job. The
Crystal Report Engine must be open before a print job can be established. You
should open the Crystal Report Engine before the user has a chance to try to print a
report. For example, if your application uses a dialog box as the user interface to the
Crystal Report Engine, open the Crystal Report Engine immediately after the dialog
box is created at runtime. Your dialog box can allow the user to establish a print job
and make changes to the report while the Crystal Report Engine is already open.

Every time the Crystal Report Engine is opened, it should be closed once your
application is finished accessing it (“Custom-Print Link Step 6: Close the Crystal
Report Engine” on page 39). For example, if you open the Crystal Report Engine
when a dialog box is created, close the Crystal Report Engine when that dialog box
is destroyed.

Custom-Print Link Step 2: Open a print job

Example

job = PEOpenPrintJob(“BOXOFFIC.RPT”);

Description

When you open a print job, the Crystal Report Engine returns a Job Handle for the
print job. This handle is important to identifying the print job in the rest of your code.

To establish a print job, “PEOpenPrintJob” on page 378, requires the path and
name of the report that is to be printed. This argument can be hard-coded into the
function call, as in the example above, or you can prompt the user to choose a
report for printing and pass a variable argument to the function.
Crystal Reports Technical Reference Guide 37

Crystal Report Engine API
To close a print job, refer to “Custom-Print Link Step 5: Close the print job” on
page 39. In most cases, you should open the print job immediately before printing
and close the print job as soon as the job is finished and the preview window is
closed or printing is complete.

Custom-Print Link Step 3: Set the output destination

Example

PEOutputToWindow (job, ReportTitle, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT, 0, NULL);

Description

The Crystal Report Engine must know where to send the final report. The report
can be printed to a printer, displayed in a preview window, exported to a disk file,
exported to another database, or exported to an e-mail address. The example above
sends the report to the preview window.

Although you can choose any of the several destinations for report output, you
must establish a destination for the report to print. You can, however, write code
in your application that allows your users to decide on a destination themselves.

Note: This step does not actually print the report, it only establishes a destination
for the report when printed. The report is actually printed in Step 4 using the
PEStartPrintJob function.

The following functions are available to establish a print destination:
� “PEOutputToWindow” on page 382

Printing a report to a window requires no other print destination code other
than the function itself.

� “PEOutputToPrinter” on page 380
Printing a report to a printer requires no other print destination code other
than the function itself. However, “PESelectPrinter” on page 389, can be used
to select a printer other than the default printer at runtime. The PESelectPrinter
function uses the Windows structure “DEVMODE” on page 533. For more
information on this structure, refer to the Windows SDK.

� “PEExportTo” on page 299
The PEExportTo function works with the “PEExportOptions Structure” on
page 58 and several DLLs that control a report’s export destination and
format. The information required by PEExportTo can be set in your code at
design time or it can work with options in your application to allow a user to
specify export destination and format. If you would like to allow your users to
set the destination and format of a report file, but you do not wish to program
the interface to do this, use the “PEGetExportOptions” on page 306 function to
have the Crystal Report Engine provide dialog boxes that query the user for
export information at runtime.
38 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Custom-Print Link Step 4: Start the print job

Example

PEStartPrintJob(job, TRUE);

Description

This function actually sends the report to the output device indicated in Step 3.
Once “PEStartPrintJob” on page 448, is called, the Crystal Report Engine begins
generating the report. The Crystal Report Engine displays a dialog box that
indicates the status of the report being generated. If the report is sent to the
preview window, the window will appear as soon as PEStartPrintJob is called. The
preview window can be closed by a call to “PECloseWindow” on page 290, by
closing the Crystal Report Engine (as in Step 6), or by the user clicking the
Close button.

As a general rule, you should avoid making any formatting changes to a print job
once you call PEStartPrintJob, especially if the report is being displayed in a
preview window (via PEOutputToWindow). Formatting changes made to a report
while it is still being generated and displayed in the preview window may produce
undesired results, and can cause errors in the Crystal Report Engine.

Custom-Print Link Step 5: Close the print job

Example

PEClosePrintJob(job);

Description

Once the print job has completed, it can be closed using “PEClosePrintJob” on
page 288. If you wish to make more changes to the report and print it again, you
can do so before closing the job. However, once your application is finished with a
report, it should close the print job to free up memory in the user’s system.

Custom-Print Link Step 6: Close the Crystal Report Engine

Example

PECloseEngine();

Description

This function closes the Crystal Report Engine entirely. No other Crystal Report
Engine functions relating to print jobs may be called once the Crystal Report Engine
is closed. Therefore, you should keep the Crystal Report Engine open until it is no
longer needed in your application. For example, if the Crystal Report Engine is
accessed through a dialog box in your application, you should wait to close the
Crystal Report Engine until the dialog box is exited and destroyed by Windows.
Crystal Reports Technical Reference Guide 39

Crystal Report Engine API
A Sample Custom-Print Link

The sample code below has been designed to demonstrate four of the six basic
steps in establishing a Custom-Print Link using the C programming language. This
example is based on the following scenario:
� Using Crystal Reports, you have created a report called ORDER.RPT and

saved it to the C:\CRW directory. This report is a listing of customer orders,
and it is the only report your application will need to print.

� In your application, you have created a Print Report menu command that
opens a dialog box. The dialog box allows the user to select whether the report
is printed to the printer or sent to a preview window. If the report is to be sent
to the preview window, a Boolean variable called ToWindow, declared and
initialized in another section of code not seen here, is given the value of TRUE.
If the report is to just be sent straight to the printer, ToWindow is given the
value FALSE.

� In the Print Report dialog box, there is also a Print button that initializes the
event procedure to generate and print the report. The Event code section below
demonstrates how the Custom-Print Link can be coded in the Print button
event procedure of your application.

� PEOpenEngine is called when the dialog box is created, and PECloseEngine is
called when the dialog box is destroyed. For this reason, these two steps are
not included in the Custom-Print Link that appears below.

The topic titled Event code demonstrates the basic custom-print event procedure.
This code includes If statements that check to see if an error has occurred during
the call to the Crystal Report Engine. When an error occurs, you can easily handle
the error in a separate routine or function. The event code below calls the function
ReportError whenever an error occurs. ReportError is not a Crystal Report Engine
function but is meant simply as an example of how to handle Crystal Report
Engine errors. The code for ReportError appears in the section Error code.

Event code

short hJob; /* print job handle */

BOOL bResult;

hJob = PEOpenPrintJob(“C:\\CRW\\ORDER.RPT”);

if (!hJob)

{

ReportError(hJob);

return;

}

if (ToWindow)

{

bResult = PEOutputToWindow(hJob,

“My Report”, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, 0, NULL);

}

40 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
else

{

bResult = PEOutputToPrinter(hJob, 1);

}

if (!bResult)

{

ReportError(hJob);

PEClosePrintJob(hJob);

return;

}

if (!PEStartPrintJob(hJob, TRUE))

{

ReportError(hJob);

}

PEClosePrintJob(hJob);

return;

Error code

void ReportError(short printJob)

{

short errorCode;

HANDLE textHandle;

short textLength;

char *errorText;

errorCode = PEGetErrorCode(printJob);

PEGetErrorText (printJob,

&textHandle,

&textLength);

errorText = (char*)malloc(textLength);

PEGetHandleString(textHandle,

errorText,

textLength);

MessageBox(hWnd, errorText,

“Print Job Failed”,

MB_OK | MB_ICONEXCLAMATION);

return;

}

Code Evaluation

Event code

The following is an evaluation of the sample event code that appears above.
short hJob; /* print job handle */

BOOL bResult;

This section declares two local variables that are important to the remainder of the
code. The variable hJob will receive the handle to the print job that results from a
PEOpenPrintJob call. This handle is required by most Crystal Report Engine
functions. bResult will be given a TRUE or FALSE value as the result of several
Crystal Reports Technical Reference Guide 41

Crystal Report Engine API
Crystal Report Engine calls. Any time bResult receives a FALSE value, an error has
occurred.
hJob = PEOpenPrintJob(“C:\\CRW\\ORDER.RPT”);

This call opens the new print job according to the path and file name of the report
that is to be printed. In this example, the report name is hard-coded in the Crystal
Report Engine call. A user would have no choice as to which report is printed. This
function could also accept a character array or a pointer to a character array as an
argument, allowing you to give your users the opportunity to choose a specific
report for printing. PEOpenPrintJob returns a handle to the new print job, hJob. This
handle will be used in all of the subsequent Crystal Report Engine calls shown here.
if (!hJob)

{

ReportError(hJob);

return;

}

This if statement verifies whether a valid print job handle was received in the
previous line of code. If PEOpenPrintJob returned a value of 0, the print job is
invalid and an error is reported. For more information on processing Crystal
Report Engine errors, see the Error code section that appears below.
if (ToWindow)

{

bResult = PEOutputToWindow(hJob,

“My Report”, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, 0, NULL);

}

else

{

bResult = PEOutputToPrinter(hJob, 1);

}

ToWindow acts as a Boolean variable that provides information from the user’s
decision as to whether this report will be printed to a preview window or to a
printer. If ToWindow holds a TRUE value, then the user has decided to print the
report to a preview window.

The if else code determines an output destination for the report based on the user’s
earlier decision. The PEOutputToWindow function prepares the Crystal Report
Engine to create a preview window while PEOutputToPrinter directs the Crystal
Report Engine to print the report to the default printer. (The printer used by the
Crystal Report Engine can be changed with the PESelectPrinter function.) The
variable bResult receives a FALSE value if an error occurs in either function call.
if (!bResult)

{

ReportError(hJob);

PEClosePrintJob(hJob);

return;

}

42 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Once the appropriate destination function is called, you must verify its success and
report an error if bResult is FALSE. ReportError is the error handling routine. It is
an internal function designed to process any errors that occur during a print job.
The function is passed the current value of the hJob handle for use in analyzing
errors. Search for Crystal Report Engine Error Codes in Crystal Reports Developer’s
Help (CrystalDevHelp.chm) for information on processing errors.

Note: ReportError is not a Crystal Report Engine function, but specific to the code
appearing here; it is meant only as an example of how to handle Crystal Report
Engine errors.

Since a print job has been opened, you must close it after the error is reported using
PEClosePrintJob. See below for more information on this function. Finally, the if
statement causes a return after the error has been reported, thus ending the print
job session.
if (!PEStartPrintJob(hJob, TRUE))

{

ReportError(hJob);

}

PEStartPrintJob actually sends the print job to the printer or a preview window. If
the report is printed to a window, PEStartPrintJob creates and opens the window
according to the parameters set in the PEOutputToWindow function. If
PEStartPrintJob fails (returns FALSE), an error is reported.
PEClosePrintJob(hJob);

Once the report has printed, this print job can be closed and another one can be
started if needed. If the report has been printed to a preview window,
PEClosePrintJob does not close the window. The preview window is closed when
the Close button is clicked, the PECloseWindow function is called, or the
PECloseEngine function is called.

return;

Now that the print job has finished, the event procedure can return, and the
application can wait for the next user event to occur.

Error code

void ReportError(short printJob)

{

Crystal Report Engine error processing can be most efficiently handled by a separate
internal function, such as the one shown here, that is called during a print job. The
Event code that is evaluated above calls the ReportError function whenever a Crystal
REAPI function returns an error. The code for the ReportError function appears here
as an example of how to access and evaluate Crystal Report Engine errors. The error
number returned by PEGetErrorCode can be used to control how your application
reacts to different types of Crystal Report Engine errors.
Crystal Reports Technical Reference Guide 43

Crystal Report Engine API
Note: The REAPI functions described here, PEGetErrorCode and
PEGetErrorText, are specific to REAPI error handling. For complete descriptions
of these functions, see “Crystal Report Engine” on page 277, or search for the
functions by name in Crystal Reports Developer’s Help (CrystalDevHelp.chm). The
function PEGetHandleString is used to retrieve variable length strings generated
by different REAPI functions.

short errorCode;

HANDLE textHandle;

short textLength;

char *errorText;

Completely processing any Crystal Report Engine error requires at least four
variables like those above. While only errorCode will be needed to retrieve the
Crystal Report Engine error number, the other three variables will all be needed to
retrieve the actual error text.

errorCode = PEGetErrorCode(printJob);

PEGetErrorCode returns a number associated with the error that has occurred. For
a list of these error codes and their meanings, search for Crystal Report Engine Error
Codes in Crystal Reports Developer’s Help (CrystalDevHelp.chm) or see “Error Codes”
on page 545.

PEGetErrorText (printJob,

&textHandle,

&textLength);

errorText = (char*)malloc(textLength);

PEGetHandleString(textHandle,

errorText,

textLength);

The error text must be returned in the form of a handle to a variable length string.
The handle is used, along with the PEGetHandleString function to obtain the
actual error text and store it in a character array. This is a complicated process, and
it should be examined carefully if your code is to work.

MessageBox(hWnd, errorText,

“Print Job Failed”,

MB_OK | MB_ICONEXCLAMATION);

Once the error has been obtained, you can display error information to the user.
This example simply opens a warning message box to alert the user of the problem.
Using the error code and the error text, however, you can control Crystal Report
Engine error messages any way that you find appropriate for your application.

return;

}

Once error processing is finished, you can return to processing the print job. If an
error has occurred during the print job, however, then the print job should be
terminated immediately after the error is processed. Review the evaluation of the
event code above for ideas on how to terminate a print job after an error.
44 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Working with Parameter Values and Ranges
Parameters can contain discrete values, ranges, or both discrete values and ranges
together. The following discussion outlines how Crystal Reports handles
parameter values and ranges.

Before retrieving a parameter current value or range, Call
“PEGetParameterValueInfo” on page 354, to determine what type of value(s) are
stored. “PEParameterValueInfo” on page 488, member hasDiscreteValues will
contain one of the following three constants.

The functions listed below are used to add and retrieve parameter discrete values
and parameter ranges. The sequence of functions that you call in your application
will depend on whether discrete values, ranges, or a combination of both are present.

Use the following guidelines when deciding which sequence of functions to call.
PEParameterValueInfo.hasDiscreteValues = PE_DR_HASRANGE
� The parameter field contains only ranges.
� All values will be treated as ranges.
� Use the PEXXXParameterCurrentRange(s) function calls.
PEParameterValueInfo.hasDiscreteValues = PE_DR_HASDISCRETE
� The parameter field contains only discrete values.
� All values will be treated as discrete values.
� Use the PEXXXParameterCurrentValue(s) function calls.
PEParameterValueInfo.hasDiscreteValues =
PE_DR_HASDISCRETEANDRANGE
� The parameter field contains both discrete values and ranges.
� All values will be treated as ranges.
� Use the PEXXXParameterCurrentRange(s) function calls.

Constant Description

PE_DR_HASRANGE Only ranges are present.

PE_DR_HASDISCRETE Only discrete values are present.

PE_DR_HASDISCRETEANDRANGE Both discrete values and ranges are
present. See guidelines below.

PEXXXParameterCurrentValue(s) PEXXXParameterCurrentRange(s)

“PEGetNParameterCurrentValues”
on page 325

“PEGetNParameterCurrentRanges”
on page 325

“PEGetNthParameterCurrentValue”
on page 337

“PEGetNthParameterCurrentRange”
on page 336

“PEAddParameterCurrentValue” on
page 279

“PEAddParameterCurrentRange” on
page 278
Crystal Reports Technical Reference Guide 45

Working with section codes
� You can also call PEAddParameterCurrentValue to add a discrete value, but
the discrete value will be stored internally as a range and you will need to call
PEGetNParameterCurrentRanges and then PEGetNthParameterCurrentRange
when you want to retrieve it. If you try to retrieve the discrete value using
PEGetNParameterCurrentValues, 0 will be returned.

Working with section codes
A report, by default, contains five areas: Report Header, Page Header, Details,
Report Footer, and Page Footer. Each of those areas can contain one or more
sections. When you add groups, subtotals, or other summaries to your report, the
program adds Group Header and Group Footer areas as needed, and each of those
areas can contain one or more sections as well. Since one report can have a totally
different section configuration from the next, Crystal Reports uses calculated
section codes to identify the sections in each report.

In Crystal Report Engine API functions that affect report sections, the sectionCode
parameter encodes the section type, the group number (if the section is a Group
Header or Group Footer section), and the section number (if there are multiple
sections in an area) together in a single value.

The Crystal Report Engine API also includes macros for encoding section codes
(PE_SECTION_CODE, for use with functions that require a section code) and for
decoding section codes (PE_SECTION_TYPE, PE_GROUP_N, and
PE_SECTION_N, for use with functions that return a section code). The examples
that follow show how the encoding and decoding macros can be used.

Note: You cannot pass the above values directly to a function as section codes.
You must use the encoding macro to create a valid section code based on one of
the above constants.

Encoding
The PE_SECTION_CODE macro allows you to define a section code to pass as a
parameter in Crystal Report Engine functions that require a section code. The
syntax for the macro is:
PE_SECTION_CODE (sectionType, groupNumber, sectionNumber)

The PE_AREA_CODE macro allows you to define a corresponding area code. The
following syntax is used:
PE_AREA_CODE(sectionType,groupN)
46 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
sectionType

This indicates the report area or section type that the section is in. For section type,
use any of the following constants:

groupNumber

Indicates which group the section is in. If the sectionType value indicated is
PE_SECT_GROUP_HEADER or PE_SECT_GROUP_FOOTER, the groupNumber
is a zero (0) based index for the group section. If the sectionType value is not one
of these group section constants, the groupNumber value should always be zero.

sectionNumber

If the report area has been split into more than one section, sectionNumber
indicates which section within the area you are using. This value is a zero (0) based
index. In other words, the first section in an area is 0, the next section is 1, etc.

Note: The macro PE_SECTION_CODE calculates and returns the section code
number; it does not return an error code.

The following example demonstrates how to obtain a section code using the
PE_SECTION_CODE macro. The section code obtained here is for the second
section in the Group Header 1 area:
code = PE_SECTION_CODE(PE_SECT_GROUP_HEADER, 0, 1);

PESetSectionFormat(job, code, &mySectionOptions);

In this case you pass the section type (PE_SECT_GROUP_HEADER), the group
number (since this is the first group, use the zero indexed group number 0) and
section number (since this is the second section in the Group Header, use the zero
indexed section number 1). The program uses the encoding macro and returns a
section code which is then passed in the PESetSectionFormat call.

Section Type Constant Value Description

PE_SECT_REPORT_HEADER 1 Report Header Section

PE_SECT_PAGE_HEADER 2 Page Header Section

PE_SECT_GROUP_HEADER 3 Group Header Section

PE_SECT_DETAIL 4 Detail Section

PE_SECT_GROUP_FOOTER 5 Group Footer Section

PE_SECT_PAGE_FOOTER 7 Page Footer Section

PE_SECT_REPORT_FOOTER 8 Report Footer Section

PE_ALLSECTIONS 0 All Report Sections
Crystal Reports Technical Reference Guide 47

Working with section codes
When using PE_ALLSECTIONS in your macro, code can be written in one of
two ways:
code = PE_SECTION_CODE(PE_ALLSECTIONS, 0, 0);

// the code value returned is 0 - NOT an error code

PESetSectionFormat(job, code, &mySectionOptions);

or, you can eliminate using the macro all together:
PESetSectionFormat(job, PE_ALLSECTIONS, & mySectionOptions)

Note: The maximum number of groups is 25 (possible values of 0 to 24). The
maximum number of sections is 40 (possible values of 0 to 39).

Decoding

Some Crystal Report Engine functions return section codes. These values can be
decoded using one of three macros:
� PE_SECTION_TYPE (sectionCode)
� PE_GROUP_N (sectionCode)
� PE_SECTION_N (sectionCode)

Each macro accepts an encoded section code as a parameter.

In the following example, you determine the number of sections in the report
(using PEGetNSections), obtain the section code for each section (using
PEGetSectionCode), and then decode the section code using the
PE_SECTION_TYPE, PE_GROUP_N, and PE_SECTION_N macros.
numSections = PEGetNSections(job);

for (i = 0;i < numSections;i++)

{

code = PEGetSectionCode(job, loopSectionN);

areaType = PE_SECTION_TYPE(code);

groupN = PE_GROUP_N(code);

sectionN = PE_SECTION_N(code);

// Perform section specific code here

}

Once you’ve identified the area, group, and section you want, you can then set the
section format using code similar to this:
PESetSectionFormat(job, code, &mySectionOptions);

Note: Earlier versions of Crystal Reports used different section code constants.
Those constants have been remapped to the new section code format so reports
created with earlier versions of Crystal Reports can run with applications created
with the current version.
48 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Section Map
The following map shows the pattern of section code assignment:

Report Header

1000 First Section in Report Header Area

1025 Second Section in Report Header Area

1050 Third Section in Report Header Area

1075 Fourth Section in Report Header Area

up to 1975 40th Section in Report Header Area

Page Header

2000 First Section in Page Header Area

2025 Second Section in Page Header Area

2050 Third Section in Page Header Area

2075 Fourth Section in Page Header Area

up to 2975 40th Section in Page Header Area

GH1

3000 First Section in First Group Header Area

3025 Second Section in First Group Header Area

3050 Third Section in First Group Header Area

3075 Fourth Section in First Group Header Area

GH2

3001 First Section in Second Group Header Area

3026 Second Section in Second Group Header Area

3051 Third Section in Second Group Header Area

3076 Fourth Section in Second Group Header Area

Details

4000 First Section in Details Area

4025 Second Section in Details Area

4050 Third Section in Details Area

4075 Fourth Section in Details Area

GF1

5000 First Section in First Group Footer Area

5025 Second Section in First Group Footer Area

5050 Third Section in First Group Footer Area

5075 Fourth Section in First Group Footer Area
Crystal Reports Technical Reference Guide 49

Working with section codes
Section Codes in Visual Basic

The following functions provide Visual Basic equivalents.

Create a section code:

This representation allows up to 25 groups and 40 sections of a given type,
although Crystal Reports itself has no such limitations.
Function PE_SECTION_CODE(sectionType As Integer, groupN As Integer,

sectionN As Integer) As Integer

 PE_SECTION_CODE = (((sectionType) * 1000) + ((groupN) Mod 25) +

(((sectionN) Mod 40) * 25))

End Function

Create an area code:

Function PE_AREA_CODE(sectionType As Integer, groupN As Integer) As

Integer

 PE_AREA_CODE = PE_SECTION_CODE(sectionType, groupN, 0)

End Function

Decode a group number from a section code:

Function PE_GROUP_N(sectionCode As Integer) As Integer

 PE_GROUP_N = ((sectionCode) Mod 25)

End Function

GF2

5001 First Section in Second Group Footer Area

5026 Second Section in Second Group Footer Area

5051 Third Section in Second Group Footer Area

5076 Fourth Section in Second Group Footer Area

Page Footer

7000 First Section in Page Footer Area

7025 Second Section in Page Footer Area

7050 Third Section in Page Footer Area

7075 Fourth Section in Page Footer Area

Report Footer

8000 First Section in Report Footer Area

8025 Second Section in Report Footer Area

8050 Third Section in Report Footer Area

8075 Fourth Section in Report Footer Area
50 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Decode a section number from a section code:

Function PE_SECTION_N(sectionCode) As Integer

 PE_SECTION_N = (((sectionCode \ 25) Mod 40))

End Function

Decode a section type from a section code:

Function PE_SECTION_TYPE(sectionCode As Integer) As Integer

 PE_SECTION_TYPE = ((sectionCode) \ 1000)

End Function

Crystal Report Engine API variable length strings
Several REAPI functions provide information in the form of a variable length string
value or character array. When your program calls an REAPI function that produces
a variable-length string, the Crystal Report Engine saves the string, creates a string
handle which refers to the string, and returns that handle along with a value
indicating the length of the string. To retrieve the contents of the string, you must call
“PEGetHandleString” on page 318. This approach allows you to allocate a buffer of
the exact size needed to hold the string before obtaining the actual string.

If your development language cannot allocate a buffer at runtime, you should
declare a reasonably large buffer. Field names and error messages will generally
be less than 100 bytes, but formulas may be 1000 bytes or longer. You can control
how much data is copied to the buffer when you call PEGetHandleString.

Here is the procedure to follow when obtaining a variable length string:

1 Call-up the function which produces the string. This returns the string handle
and length. The length includes all characters in the string plus a terminating
null byte.

2 If necessary, allocate the string buffer.

3 Call-up PEGetHandleString to copy the string from the handle into the buffer.

Note: PEGetHandleString frees the memory occupied by the string handle, so
you can only call this function once for a given handle.

Note: For experienced Windows programmers: text and name handles are Global
Memory Handles for memory segments on the global heap. If you prefer, you can
access these segments using the Windows GlobalLock, GlobalUnlock, and
GlobalFree functions. Contents of name and text handles are null terminated
ASCII strings. You must free the text handle with GlobalFree when you are done
with it (PEGetHandleString does this for you, if you use it).
Crystal Reports Technical Reference Guide 51

Crystal Report Engine API variable length strings
Sample Code
Use the following C code as an example of how to call a function that returns a
variable length string. The code uses the “var reportAlertInfo : PEReportAlertInfo)
: boolean stdcall;” on page 343, function which obtains the name of a field being
used to sort the report and the direction of the sort. There are several other
functions that return variable length strings, all of which are handled in a similar
fashion.

Examine this code carefully and try to incorporate it into your own application
without modifying the basic procedure. Only experienced programmers should
try making changes to this technique since small mistakes here can cause major
errors in your application. If you expect to use several REAPI functions that return
variable length strings, you may want to set this code up in a separate function to
avoid repetition and errors.
HANDLE nameHandle;

short nameLength;

short direction;

char *fieldName;

PEGetNthSortField (printJob, sortFieldN,

&nameHandle, &nameLength,

&direction);

/* allocate fieldName buffer */

fieldName = (char*)malloc(nameLength);

PEGetHandleString (nameHandle,

fieldName,

nameLength);

/*

** fieldName now contains name

** of field and nameHandle is no

** longer valid.

*/

Note: If you retrieve a string handle but do not retrieve the string itself (i.e., you
do not use PEGetHandleString), you should free up the string memory by calling
GlobalFree (nameHandle).
52 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Code Evaluation
HANDLE nameHandle;

short nameLength;

short direction;

char *fieldName;

Any time you evaluate a function that returns a variable length string, you will
need at least three variables:
� a handle to the string,
� a short integer to hold the length of the string, and
� a character array or pointer to a character array.

The direction variable in this example will hold the sort direction and is specific to
“PEGetNthSQLExpression” on page 345.

It is important to note that although the PEGetNthSortField function is defined in
the Crystal Report Engine as accepting a pointer to a handle (HANDLE*) and a
pointer to a short (short*), nameHandle and nameLength are not defined as
pointer variables. Instead, they are defined simply as a HANDLE and a short
integer, then passed to PEGetNthSortField with the & operator. This technique
automatically initializes the variables with the address of the variable itself. Since
the PEGetNthSortField function requires the address in memory to place the
information, this is the most convenient method to define and pass the variables.
PEGetNthSortField (printJob, sortFieldN,

&nameHandle, &nameLength,

&direction);

The PEGetNthSortField function places a handle to the sort field name in the
nameHandle location and the length of the field name (all characters in the name
plus a terminating null byte) in the nameLength location. These values will be used
to extract the actual field name.
/*allocate fieldName buffer*/

fieldName = (char*)malloc(nameLength);

Now that you know the actual length of the field name you are trying to obtain,
you can allocate exactly the right amount of memory to store that name. The malloc
function does this.

Note: Malloc is defined in the C runtime library stdlib.h.
PEGetHandleString (nameHandle,

fieldName,

nameLength);
Crystal Reports Technical Reference Guide 53

Crystal Report Engine API variable length strings
“PEGetHandleString” on page 318, uses the string handle to retrieve the field
name and store it in fieldName. At the same time, nameHandle is invalidated. Now,
the text can be used like any other character string.

Note: This code is meant as a basis for your own code. Although these elements
shown here are necessary for extracting a variable length string from certain
Crystal Report Engine functions, experienced programmers may wish to expand
the code to trap errors or handle the string text differently.

The following is a list of the Crystal REAPI functions that return variable length
strings:
� “PEGetAreaFormatFormula” on page 302
� “PEGetErrorText” on page 305
� “PEGetFormula” on page 307
� “PEGetGroupOptions” on page 316
� “PEGetGroupSelectionFormula” on page 317
� “PEGetNthFormula” on page 334
� “PEGetNthGroupSortField” on page 335
� “PEGetNthParameterField” on page 340
� “var reportAlertInfo : PEReportAlertInfo) : boolean stdcall;” on page 343
� “PEGetReportTitle” on page 358
� “PEGetSectionFormatFormula” on page 361
� “PEGetSelectedPrinter” on page 363
� “PEGetSelectionFormula” on page 365
� “PEGetSQLQuery” on page 366

Crystal Report Engine API structures
Several REAPI functions require a structure or user-defined variable type to be
passed as one or more arguments. Some of these functions require that you assign
values to all members of the structure before calling the function so that the
information can be used to make various settings in the Crystal Report Engine.
Other functions require only the size of the structure be assigned to the StructSize
member. These functions fill in the rest of the structure members for you,
providing you with valuable information about a print job.

Note: The term structure is used here to mean both C structures and other user-
defined types or records in languages such as Visual Basic and Delphi. If you are
unfamiliar with this type of data, refer to the documentation for the programming
language you are using.

Each structure used by REAPI is defined and explained in Crystal Reports
Developer’s Help (CrystalDevHelp.chm) with a link to the function that uses it.
Functions that use structures also have hypertext links to the structure definitions.
54 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Some of the structures, “PEMouseClickEventInfo” on page 481, for example, are
complex, requiring other structures be passed as member values. Not all
programming languages support this feature. If you are using a programming
language that does not allow the use of a structure variable as a member variable
defined inside other structures, declare the member variable as another data type,
such as an integer or a variant data type, and assign it a value of 0 (zero) at runtime.
The Crystal Report Engine will automatically provide default values or will
request information from the user.

Note: Structure variables cannot be created using Visual dBASE. Crystal Report
Engine functions requiring structures as parameters are not available to dBASE.

Working with subreports
Your application can have much of the same control over subreports that it has
over primary reports. The only exceptions are:
� you cannot open or close a print job while a subreport is open, and
� you can only work with report sections that are actually in the subreport.

For example, subreports do not have page header sections like primary reports do,
so you cannot do anything with a subreport that requires a page header section.

Most Crystal Report Engine functions require a print job handle as a parameter.
When you supply the handle to a primary report, the functions act on the primary
report. When you supply the handle to a subreport, the functions act on the
subreport. Getting the handle requires a number of steps.

Opening the primary report

You must first open the primary report using the “PEOpenPrintJob” on page 378
function. When you do this, the program returns a handle to the primary report.

Retrieving an interim subreport handle

You must then identify the subreport you want to open, using the
“PEGetNSubreportsInSection” on page 331, and “PEGetNthSubreportInSection”
on page 346, functions to do this. When you run the PEGetNthSubreportInSection
function, the Crystal Report Engine returns an interim, double-word handle to the
subreport you specified.

Retrieving the subreport name

Once you have the handle, use the “PEGetSubreportInfo” on page 367 function to
retrieve the name of the subreport. When you run this function, the double-word
handle is passed as the subreportHandle argument. The program retrieves the
subreport name as the name member of the “PESubreportInfo” on page 507)
structure.
Crystal Reports Technical Reference Guide 55

Crystal Report Engine API variable length strings
Opening the subreport and retrieving the job handle

Now that you have the name of the subreport (the name you assigned the
subreport when you created it in Crystal Reports), use the “PEOpenSubreport” on
page 379 function to open the subreport. When using this function, you pass the
name (or pointer to the name, depending on your development tool) as the
subreportName argument. The program then opens the specified subreport and
returns a job handle.

Running other Crystal Report Engine functions

Once you have the job handle, you can run any of the other Crystal Report Engine
functions with the subreport, passing the subreport job handle as the printJob
argument.

Changing report formats
When sending reports to a preview window using “PEOutputToWindow” on
page 382, you should always avoid making any formatting changes to a print job
once you call “PEStartPrintJob” on page 448. If the first page of a report has been
displayed in the preview window, and you make formatting changes to the print job,
subsequent pages of the report, if requested, may appear formatted differently than
the first page. Depending on the changes made, trying to change report formatting
after calling PEStartPrintJob can even cause errors in the Crystal Report Engine.

To avoid such formatting problems, you should get in the habit of formatting the
report before starting the print job with PEStartPrintJob. Adding a routine to
monitor job status using “PEGetJobStatus” on page 319, can also help avoid
conflicts. If you need to display the same report with different formatting options,
create two separate print jobs, format each separately, and start each separately.

Exporting reports
Using Crystal Reports, you can give your applications the ability to export reports
in a number of word processor and spreadsheet formats, and in a variety of
popular data interchange formats as well.

The program includes two export functions, “PEExportTo” on page 299, and
“PEGetExportOptions” on page 306. PEExportTo can be used by itself or in
conjunction with PEGetExportOptions.
56 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
� Use PEExportTo by itself if you want your application to export reports in a
fixed format to a fixed destination. Use this alternative, for example, if you
want to preset the format and destination for a report and have the application
export the report according to your specifications in response to user input.

� Use PEExportTo in conjunction with PEGetExportOptions to export reports in
the format and destination your user selects from the Export dialog box at
Print time.

PEGetExportOptions can only be used in conjunction with PEExportTo.

PEExportTo overview
The “PEExportTo” on page 299 function uses a structure, “PEExportOptions” on
page 458, as part of its argument list. This structure passes format and destination
data to the function.

When using the PEExportTo function by itself, you hard code the format and
destination data into the structure. Then, when you issue a call to
“PEStartPrintJob” on page 448, the program exports the report using the format
and destination you specified in the code.
� Most of the format and destination data that you need to enter can be taken

from the table in the PEExportTo topic.
� To hard code an export file name or e-mail header information, you will have

to pass a second structure as an argument to the PEExportOptions structure.
This second structure is defined in the *.h file that corresponds with the
destination DLL you have selected.

When using the PEExportTo function in conjunction with the
PEGetExportOptions function, you run the PEGetExportOptions function first to:
� retrieve the format and destination data that the user specifies in the Export

dialog box, and
� pass that data to the PEExportOptions structure (again, part of the PEExportTo

argument list).

Then, when you issue a call to “PEEnableEvent” on page 297, the program exports
the report using the format and destination specified by the user.
Crystal Reports Technical Reference Guide 57

Crystal Report Engine API variable length strings
PEExportOptions Structure
struct PEExportOptions

{

WORD StructSize;

// the size of the structure. Initialize to sizeof PEExportOptions

char formatDLLName [PE_DLL_NAME_LEN];

// Each export format is defined in a DLL. This is the name of the

// DLL for the format you select. From table in PEExportTo topic.

// Requires a null-terminated string. Does not need to include

// drive, path or extension. For example, uxfsepv is an example of

// a valid formatDLLName.

DWORD formatType;

// Some DLLs are used for more than one format. Enter the

// appropriate value from the table under PEExportTo.

void FAR *formatOptions;

// Some formats offer additional options (see table in the

// PEExportTo topic). You can set this element to 0. Then, If the

// DLLs require more information, they will prompt the user

// for it. To hard code this information, see the note immediately

// following this structure.

char destinationDLLName [PE_DLL_NAME_LEN];

// Each export destination is defined in a DLL. This is the name of

// the DLL for the destination you select. From table in PEExportTo

// topic. Requires a null-terminated string. Does not need to

// include drive, path or extension. For example, uxddisk is an

// example of a valid destination DLLName.

DWORD destinationType;

// At the present time, each DLL implements only one destination.

// You must specify a type here, nonetheless, because the DLL may

// implement more than one destination someday. See the table under

// PEExportTo for values to enter here.

void FAR *destinationOptions;

// Some destinations offer additional options (see table in the

// PEExportTo topic). You can set this element to 0. Then, If the

// DLLs require more information, they will prompt the user for

// it. To hard code this information, see the note immediately

// following this structure.

WORD nFormatOptionsBytes;

// Set by 'PEGetExportOptions', ignored by 'PEExportTo'. Both

// functions use the same structure. PEGetExportOptions uses this

// information in communicating with the application. The

// application needs to know how many options bytes are being

// returned because it may need to copy the options. PEExportTo

// expects a filled in structure and does not need the byte

// information because it is not going to copy the options. It uses

// only a subset of the structure that does not include byte

 information.

WORD nDestinationOptionsBytes;

// Set by 'PEGetExportOptions', ignored by 'PEExportTo'. See

// comments for nFormatOptionsBytes above.

};
58 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
Note: You may choose to hard code the data for formatOptions and
destinationOptions. You can set the formatOptions and destinationOptions
elements to 0 as indicated. If the DLLs require more information than this,
however, they will prompt the user to include more information. To hard code
this information, you must define and fill in a structure of the appropriate kind.
See the header file for the specified DLL for examples. Once the structure is
defined, set the formatOptions or destinationOptions element to the address of
the structure. Once PEExportTo returns or finishes, deallocate the formatOptions
and destinationOptions structures. You should also deallocate the
PEExportOptions structure once PEExportTo returns.

Considerations when using the export functions
The export functions are complex function calls. To avoid errors when exporting
report files from your application, keep the following things in mind:
� In order to use “PEGetExportOptions” on page 306 and “PEExportOptions” on

page 458, you must be using the version of the Crystal Report Engine
(CRPE32.DLL) that came with the Professional Edition of Crystal Reports. If you
have an earlier version of CRPE32.DLL installed on your machine and its earlier
in the path, the program may find it first and not find the export functions. This
can happen particularly if you are upgrading to the Professional Edition of
Crystal Reports from the version of Crystal Reports that was shipped with
Visual Basic Professional Edition. Visual Basic included an earlier version of
CRPE32.DLL. Search your disk and delete or rename earlier versions of
CRPE32.DLL, or make appropriate adjustments to your path statement.

� Make sure all format DLLs and destination DLLs are located in the same
directory as CRPE32.DLL. Once Windows finds CRPE32.DLL, it will expect all
of the DLL files to be in the same directory. Format DLLs are all UXF*.DLL
files and Destination DLLs are all UXD*.DLL files. As a general rule, it is best
to keep all of these files in the \CRW directory or the directory into which you
installed Crystal Reports. Also, make certain that the PATH statement in your
AUTOEXEC.BAT file includes \CRW.

� The UXF*.H and UXD*.H header files are only necessary when compiling your
application. These files should be copied to the same directory as your
application's source files.

Handling preview window events
Using the Crystal Report Engine API, you can create a Windows CALLBACK
function to handle events that occur in a preview window. For instance, if a user
clicks on a button in the toolbar of the preview window, such as the Zoom button
or the Next Page button, Windows registers an event for the preview window.
Crystal Reports Technical Reference Guide 59

Handling preview window events
Using the Event functions in the Crystal REAPI, you can add instructions to your
own applications to perform specific actions according to events that occur in a
preview window. The sample code below demonstrates how to handle preview
window events by creating a CALLBACK function for the preview window, then
initializing the preview window with that CALLBACK function in your Crystal
Report Engine code. The code can handle toolbar button events, Group Tree
events, and even drill-down events.

The Crystal Report Engine API Event functions are only valid when a print job is
sent to a preview window using PEOutputToWindow.
#define PE_ERR_INVALIDPARAMETERRANGEINFO 672

#include “crpe.h”

#include “Windows.h”

// The EventCallback function is defined as a standard

// Windows CALLBACK procedure. Return TRUE to allow the

// Crystal Report Engine to provide default behavior.

// Return FALSE to prevent default behavior from being carried out.

// The comment TODO indicates where you need to add event

// handling code specific to your application.

#if defined (WIN32)

BOOL CALLBACK EventCallback (short eventID,

void *param, void *userData)

#else

BOOL CALLBACK __export EventCallback (short eventID,

void *param, void *userData)

#endif

{

switch(eventID)

{

case PE_CLOSE_PRINT_WINDOW_EVENT:

case PE_PRINT_BUTTON_CLICKED_EVENT:

case PE_EXPORT_BUTTON_CLICKED_EVENT:

case PE_FIRST_PAGE_BUTTON_CLICKED_EVENT:

case PE_PREVIOUS_PAGE_BUTTON_CLICKED_EVENT:

case PE_NEXT_PAGE_BUTTON_CLICKED_EVENT:

case PE_LAST_PAGE_BUTTON_CLICKED_EVENT:

case PE_CANCEL_BUTTON_CLICKED_EVENT:

case PE_ACTIVATE_PRINT_WINDOW_EVENT:

case PE_DEACTIVATE_PRINT_WINDOW_EVENT:

case PE_PRINT_SETUP_BUTTON_CLICKED_EVENT:

case PE_REFRESH_BUTTON_CLICKED_EVENT:

{

PEGeneralPrintWindowEventInfo * eventInfo =

(PEGeneralPrintWindowEventInfo *) param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_GENERAL_PRINT_WINDOW_EVENT_INFO);

// TODO

}

break;

case PE_ZOOM_LEVEL_CHANGING_EVENT:

{

PEZoomLevelChangingEventInfo * eventInfo =
60 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
(PEZoomLevelChangingEventInfo *) param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_ZOOM_LEVEL_CHANGING_EVENT_INFO);

// TODO

}

break;

case PE_GROUP_TREE_BUTTON_CLICKED_EVENT:

{

PEGroupTreeButtonClickedEventInfo * eventInfo =

(PEGroupTreeButtonClickedEventInfo *)param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

 PE_SIZEOF_GROUP_TREE_BUTTON_CLICKED_EVENT_INFO);

// TODO

}

break;

case PE_CLOSE_BUTTON_CLICKED_EVENT:

{

PECloseButtonClickedEventInfo *eventInfo =

(PECloseButtonClickedEventInfo *)param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_CLOSE_BUTTON_CLICKED_EVENT_INFO);

// TODO

}

break;

case PE_SEARCH_BUTTON_CLICKED_EVENT:

{

PESearchButtonClickedEventInfo *eventInfo =

(PESearchButtonClickedEventInfo *)param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_SEARCH_BUTTON_CLICKED_EVENT_INFO);

// TODO

}

break;

case PE_SHOW_GROUP_EVENT:

{

PEShowGroupEventInfo * eventInfo =

(PEShowGroupEventInfo *)param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_SHOW_GROUP_EVENT_INFO);

// TODO

}

break;

case PE_DRILL_ON_GROUP_EVENT:

{

PEDrillOnGroupEventInfo * eventInfo =

(PEDrillOnGroupEventInfo *) param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_DRILL_ON_GROUP_EVENT_INFO);

// TODO

}

break;
Crystal Reports Technical Reference Guide 61

Handling preview window events
case PE_DRILL_ON_DETAIL_EVENT:

{

PEDrillOnDetailEventInfo * eventInfo =

(PEDrillOnDetailEventInfo *) param;

ASSERT(eventInfo != 0 && eventInfo->StructSize ==

PE_SIZEOF_DRILL_ON_DETAIL_EVENT_INFO);

// TODO

}

break;

case PE_READING_RECORDS_EVENT:

{

PEReadingRecordsEventInfo * readingRecordsInfo =

(PEReadingRecordsEventInfo *) param;

ASSERT(readingRecordsInfo != 0 &&

readingRecordsInfo->StructSize ==

PE_SIZEOF_READING_RECORDS_EVENT_INFO);

// TODO

}

break;

case PE_START_EVENT:

{

PEStartEventInfo * startEventInfo =

(PEStartEventInfo *) param;

ASSERT(startEventInfo != 0 &&

startEventInfo->StructSize ==

PE_SIZEOF_START_EVENT_INFO);

// TODO

}

break;

case PE_STOP_EVENT:

{

PEStopEventInfo * stopEventInfo =

(PEStopEventInfo *) param;

ASSERT(stopEventInfo != 0 &&

stopEventInfo->StructSize ==

PE_SIZEOF_STOP_EVENT_INFO);

// TODO

}

break;

default:

break;

}

 return TRUE;

}

// call this function after open a print job

// before call PEStartPrintJob

BOOL initializeEvent(short printJob)

{

// initialize window options

// do not have to set window options to get events,

// however, some of the events are fired only when

// certain window options are on.
62 Crystal Reports Technical Reference Guide

2 : Crystal Report Engine
PEWindowOptions windowOptions;

windowOptions.StructSize = PE_SIZEOF_WINDOW_OPTIONS;

PEGetWindowOptions(printJob, &windowOptions);

windowOptions.hasGroupTree = TRUE;

windowOptions.hasSearchButton = TRUE;

windowOptions.canDrillDown = TRUE;

if(!PESetWindowOptions(printJob, &windowOptions))

return FALSE;

// enable event.

// by default, events are disabled.

PEEnableEventInfo eventInfo;

eventInfo.StructSize = sizeof(PEEnableEventInfo);

eventInfo.activatePrintWindowEvent = PE_UNCHANGED;

eventInfo.closePrintWindowEvent = TRUE;

eventInfo.startStopEvent = TRUE;

eventInfo.printWindowButtonEvent = PE_UNCHANGED;

eventInfo.drillEvent = TRUE;

eventInfo.readingRecordEvent = TRUE;

if(!PEEnableEvent(printJob, &eventInfo))

return FALSE;

// set tracking cursor, gives the user feedback

// when the cursor is in the detail area

// (for a drill-down on detail event)

// use the default cursor behavior in group area.

PETrackCursorInfo cursorInfo;

cursorInfo.StructSize = sizeof(PETrackCursorInfo);

cursorInfo.groupAreaCursor = PE_UNCHANGED;

cursorInfo.groupAreaFieldCursor = PE_UNCHANGED;

cursorInfo.detailAreaCursor = PE_TC_CROSS_CURSOR;

cursorInfo.detailAreaFieldCursor = PE_TC_IBEAM_CURSOR;

cursorInfo.graphCursor = PE_UNCHANGED;

if(!PESetTrackCursorInfo(printJob, &cursorInfo))

return FALSE;

// set call back function

if (!PESetEventCallback(printJob, lEventCallback, 0))

return FALSE;

return TRUE;

}

Crystal Reports Technical Reference Guide 63

Distributing Crystal Report Engine applications
Distributing Crystal Report Engine applications
Crystal Reports comes with a royalty-free runtime license for any application that
uses the Crystal Report Engine through any of the methods described in this
chapter. When distributing a Crystal Report Engine application, you must also
distribute several runtime files required by the Crystal Report Engine. These files
are listed in the Crystal Reports Developer Runtime Help (Runtime.hlp). Be sure to
carefully examine this Help file and distribute the appropriate runtime files with
your application. All runtime files are included under the runtime license
agreement unless otherwise stated.

Additional sources of information
In addition to the information provided in this chapter, you will find a wide-
variety of developer topics in Crystal Reports Developer’s Help (CrystalDevHelp.chm).
Many of these topics contain sample code in C, Visual dBASE, Delphi, and Visual
Basic that you can copy directly into your application. For a list of all developer
topics, see Crystal Reports Developer’s Help (CrystalDevHelp.chm).

If you are working with the Crystal Report Engine API in Visual Basic, refer to
“Enhancements to the Crystal Report Print Engine API” on page 2, for information
specific to Visual Basic. Delphi programmers can find information specific to using
the Crystal Report Engine API with Delphi under Crystal Visual Component Library
in the Techrefvol2.pdf.
64 Crystal Reports Technical Reference Guide

Report Designer Component
Object Model 3

The Report Designer Component is the ultimate development
tool for your reporting needs. In this chapter you will find a
detailed description of the Report Designer Component
Object Model and its properties, methods and events.
Crystal Reports User’s Guide 65

Overview of the Report Designer Object Model
Overview of the Report Designer Object Model
66 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Unification of the RDC object model
Craxddrt.dll (Crystal Reports 8.5 ActiveX Designer Design and Runtime Library) is
a new unified object model that combines the runtime capabilities of the Craxdrt.dll
(Crystal Reports 8.5 ActiveX Designer Run Time Library) with the design time
capabilities of the Craxddt.dll (Crystal Reports 8.5 ActiveX Designer Design Time
Library). Craxddrt.dll will replace Craxddt.dll for versions 8.5 and up. Both the
Craxddrt.dll and the Craxdrt.dll contain all the objects and associated methods,
properties, and events needed for creating, opening, exporting, saving, and printing
a report at run time. In addition, Craxddrt.dll is either used with the RDC ActiveX
Designer when designing reports at design time, or used with the Embeddable
Designer when designing reports at run time. See “Embeddable Crystal Reports
Designer Control Object Model” on page 453 for more information.

Note: The RDC ActiveX Designer is only available in Microsoft Visual Basic.

Prior to version 8.5, the Craxdrt.dll would be distributed with an application. Now
the developer has a choice of two automation servers to distribute. Craxdrt.dll is
backwards-compatible with previous versions and contains all the new features
introduced in this version. Use the Craxdrt.dll for any client-side application that
does not contain the Embeddable Designer, or use it for any server-side
application. Craxddrt.dll is apartment-model threaded, but is not thread safe, and
can only be used in a client-side application. Although the Craxddrt.dll is a fully
functional automation server for the RDC, and can work in any client-side
application, it will increase the install size. Therefore, it is recommended that you
only use Craxddrt.dll with the Embeddable Crystal Reports Designer Control.

Object Naming Conflicts
If your project includes other libraries that contain objects named identical to those
found in the Crystal Report Engine Object Library, you will encounter conflicts
unless you reference the objects using a prefix. For example, if you have included
the DAO Library with the Crystal Report Engine Object Library in your project,
both libraries include a Database Object. In order to avoid conflicts, you must
prefix the objects as follows:

CRAXDRT.Database

for the Crystal Report Engine Object Library, or

DAO.Database

for the DAO Library.
Crystal Reports User’s Guide 67

Objects and Collections
Objects and Collections
The following Objects and Collections, listed alphabetically, are discussed in this
section. Properties, Methods and Events are listed under the appropriate Object or
Collection.

Note: Some of the new report creation calls are not included in the free runtime
license included with Crystal Reports. For a list of calls that require additional
licensing, please see the Royalty help file (Royalty Required Runtime.hlp).

Application Object
An instance of the Application object can be created using the Visual Basic New
keyword or the CreateObject function and the Prog Id
CrystalRuntime.Application.[8]. For example:
� Using the New keyword
Dim app as New CRAXDRT.Application

Set app = New CRAXDRT.Application

Or,
’ Automatically creates a new instance of the object when it is first

’ referenced in the code, so it doesn’t have to be set.

Dim app as New Application

� Using the CreateObject function
’ If the version number of the application is not specified, CreateObject

will ’ create an application running against the new version of

craxdrt.dll

Dim app As Application

Set app = CreateObject(“CrystalRuntime.Application”)

Or,
’ Specify the version number to require version 8 of the dll.

Dim app As Application

Set app = CreateObject(“CrystalRuntime.Application.8”)

Application Object Methods
The following methods are discussed in this section:

“CanClose Method (Application Object)” on page 69

“GetVersion Method (Application Object)” on page 69

“LogOffServer Method (Application Object)” on page 70

“LogOnServer Method (Application Object)” on page 71
68 Crystal Reports User’s Guide

3 Report Designer Component Object Model
“LogOnServerEx Method (Application Object)” on page 71

“NewReport Method (Application Object)” on page 72

“OpenReport Method (Application Object)” on page 72

“SetMatchLogOnInfo Method (Application Object)” on page 73

“SetMorePrintEngineErrorMessages Method (Application Object)” on page 73

CanClose Method (Application Object)

The CanClose method indicates whether or not the “Application Object” on
page 68 can be destroyed. This method will return FALSE as long as there are valid
Report objects in existence and at least one Report Object is in the printing-in-
progress state. The Application object can only be destroyed if no instances of the
“Report Object” on page 150 are in the printing-in-progress state. If you obtain a
Report object directly from the Report Designer Component added to your project
at design time, then CanClose will always return False until you destroy that object
(usually by setting it equal to Nothing).

Syntax

Function CanClose () As Boolean

Returns

� TRUE if the Engine can be closed.
� FALSE if the Engine is busy.

GetVersion Method (Application Object)

The GetVersion method returns an integer that, when converted to hex, represents
the version number of the dll.

Syntax

Function GetVersion () As Integer

Returns

� Returns an integer that represents the version number of the dll when
converted to hexidecimal.

Sample

‘Display the version number in a text box.

Text1.text = Hex(CRXApplication.GetVersion)
Crystal Reports User’s Guide 69

Application Object
LogOffServer Method (Application Object)

The LogOffServer method logs off an SQL server or other data sources such as
ODBC or OleDB provider. Use this method when you have logged on to the data
source using “LogOnServer Method (Application Object)” on page 71. This
method is only valid if you have purchased Crystal Reports 6.0 or later.

Syntax

Sub LogOffServer (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword])

Parameters

Remarks

� For parameters pServerName, pDatabaseName, and pUserId, pass an empty
string ("") to preserve the existing setting or pass a non-empty string (for
example, "Server A") to override a value that is already set in the report.

� If you try to log off a server that is still in use (i.e., there is an object variable
still in focus that holds reference to a report that requires being logged on to
the server to access data) you will be unable to log off. This will apply to every
object that comes from the “Report Object” on page 150, as they all hold
reference to the report through their respective Report properties.

� If you assign the Report object to the ReportSource property of the “CRViewer
Object (CRVIEWERLib)” on page 247, in the Crystal Reports Report Viewer,
enabling the report to be displayed through the Report Viewer, you cannot call
LogOffServer for the report until you assign a new report to the Report Viewer
or close the CRViewer object.

Parameter Description

pDLLName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example “PDSODBC.DLL”. Note that
the DLLName must be enclosed in quotes. DLL names have the following
naming convention: PDB*.DLL for standard (non-SQL) databases,
PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. (For
ODBC, use the data source name.) This value is case-sensitive. See Remarks
below.

[pDatabaseName] Specifies the name for the database used to create the report. See Remarks
below.

[pUserID] Specifies the User ID number necessary to log on to the server. See Remarks
below.

[pPassword] Specifies the password necessary to log on to the server.
70 Crystal Reports User’s Guide

3 Report Designer Component Object Model
LogOnServer Method (Application Object)

The LogOnServer method logs on to an SQL server or other data sources such as
ODBC. Once logged on using this method, you will remain logged on until you call
“LogOffServer Method (Application Object)” on page 70, or until the “Application
Object” on page 68, is destroyed and craxdrt.dll is unloaded. This method is only
valid if you have purchased Crystal Reports 6.0 or later.

Syntax

Sub LogOnServer (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword])

Parameters

*When you pass an empty string (““) for this parameter, the program uses the
value that’s already set in the report. If you want to override a value that’s already
set in the report, use a non-empty string (i.e., “Server A”).

Remarks

For parameters pServerName, pDatabaseName, and pUserId, pass an empty
string ("") to preserve the existing setting or pass a non-empty string (for example,
"Server A") to override a value that is already set in the report.

LogOnServerEx Method (Application Object)

The LogOnServer method logs on to an SQL server or other data sources such as
ODBC. Using LogOnServerEx, you can pass server type or connection
information. Once logged on using this method, you will remain logged on until
you call “LogOffServer Method (Application Object)” on page 70, or until the
“Application Object” on page 68, is destroyed and craxdrt.dll is unloaded. This
method is only valid if you have purchased Crystal Reports 6.0 or later.

Parameter Description

pDLLName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example “PDSODBC.DLL”. Note that
the dllName must be enclosed in quotes. DLL names have the following
naming convention: PDB*.DLL for standard (non-SQL) databases,
PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. (For
ODBC, use the data source name.) This value is case-sensitive. See Remarks
below.

[pDatabaseName] Specifies the name for the database used to create the report. See Remarks
below.

[pUserID] Specifies the User ID number necessary to log on to the server. See Remarks
below.

[pPassword] Specifies the password necessary to log on to the server.
Crystal Reports User’s Guide 71

Application Object
Syntax

Sub LogOnServerEx (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword],

[pServerType], [pConnectionString])

Parameters

NewReport Method (Application Object)

The NewReport method creates a new empty Report Object.

Syntax

Function NewReport () As Report

Returns

� Returns a new empty Report Object.

OpenReport Method (Application Object)

The OpenReport method opens an existing report file, creating an instance of the
Report object. Through the “Report Object” on page 150, you can change
formatting, formulas, selection formulas, and sort fields for the report, then print,
preview, or export the report.

Syntax

Function OpenReport (pFileName As String, [OpenMethod]) As Report

Parameter Description

pDLLName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example “PDSODBC.DLL”. Note
that the dllName must be enclosed in quotes. DLL names have the
following naming convention: PDB*.DLL for standard (non-SQL)
databases, PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. (For
ODBC, use the data source name.) This value is case-sensitive. See
Remarks below.

[pDatabaseName] Specifies the name for the database used to create the report. See
Remarks below.

[pUserID] Specifies the User ID number necessary to log on to the server. See
Remarks below.

[pPassword] Specifies the password necessary to log on to the server.

[pServerType] Specifies the database Server Type.

[pConnectionString] Specifies the connection string.
72 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Returns

� Returns an instance of the “Report Object” on page 150, if the report was
successfully opened.

� Returns 0 if the report file does not exist or if an error occurs.

SetMatchLogOnInfo Method (Application Object)

The SetMatchLogOnInfo Method sets global match log on info option, matching
the log on password.

Syntax

Sub SetMatchLogOnInfo (bl As Boolean)

Parameter

SetMorePrintEngineErrorMessages Method (Application Object)

Use the SetMorePrintEngineErrorMessages method to set the global more print
engine error messages option.

Syntax

Sub SetMorePrintEngineErrorMessages (bl As Boolean)

Parameter

Parameter Description

pFileName Specifies a string value indicating the file name and path of the report that you
want to open.

OpenMethod Specifies whether you want to open the report exclusively. If you do not
provide this parameter the report is opened exclusively and cannot open it a
second time.

Parameter Description

bl Specifies whether the option is selected (TRUE).

Parameter Description

bl Specifies whether the option is selected (TRUE)
Crystal Reports User’s Guide 73

Area Object
Area Object
The Area Object represents an area in a report. An area is a group of like sections in
the report (i.e., Details A - Da, Details B - Db, etc.) that all share the same
characteristics. Each section within the area can be formatted differently. This object
allows you to retrieve information and set options for a specified area in your report.

Area Object Properties

Property Description Read/Write Restriction in event
handler

CopiesToPrint Integer. Gets or sets the number of
copies of each item in the Details
section of the report. For example,
by default, each line of the Details
section only prints once. By setting
this to 3, each line of the Details
section would print 3 times.

Read/Write Can be written only
when formatting idle.

DetailHeight Long. Gets the mailing label report
deatil area height, in twips.

Read only None

DetailWidth Long. Gets multiple column report
detail area width, in twips.

Read only None

DiscardOther
Groups

Boolean. Gets or sets the discard
other groups option.

Read/Write

Enable
Hierarchical
GroupSorting

Boolean. Gets or sets group
hierarchically flag.

Read/Write Fromatting idle.

GroupCondition “CRGroupCondition” on page 216.
Gets or sets the group condition.

Read/Write Can be written only
when formatting idle.

GroupCondition
Field

Object. Gets or sets the group
condition field.

Read/Write Can be written only
when formatting idle.

GroupIndent Long. Gets or sets group indent, in
twips.

Read/Write Fromatting idle.

GroupNumber Integer. If the area is a group area,
this returns the group number.
Otherwise, exception is thrown.

Read only None

HideFor
DrillDown

Boolean. Gets or sets hide for drill
down option.

Read/Write Can be written only
when formatting idle.

HorizontalGap Long. Gets the horizontal gaps
going across page in a multiple
column report.

Read only None

InstanceIDField “FieldDefinition Object” on
page 121. Gets the instance ID field

Read only Fromatting idle.
74 Crystal Reports User’s Guide

3 Report Designer Component Object Model
KeepGroup
Together

Boolean. Gets or sets the keep group
together option.

Read/Write Can be written only
when formatting idle.

KeepTogether Boolean. Gets or sets the keep area
together option.

Read/Write Can be written only
when formatting idle.

Kind “CRAreaKind” on page 207. Gets
which kind of area (for example,
Details, Report Header, Page Footer,
etc.).

Read only None

Name String. Gets or sets the area name. Read/Write Can be written only
when formatting idle.

NewPageAfter Boolean. Gets or sets the new page
after options.

Read/Write Can be written only
when formatting idle.

NewPageBefore Boolean. Gets or sets the new page
before option.

Read/Write Can be written only
when formatting idle.

NumberOfTop
OrBottomN
Groups

Integer. Gets or sets the number of
top or bottom groups.

Read/Write Formatting idle.

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read Only None

ParentIDField “FieldDefinition Object” on
page 121. Gets the parent ID field.

Read only Formatting idle.

PrintAtBottom
OfPage

Boolean. Gets or sets the print at
bottom of page option.

Read/Write Can be written only
when formatting idle.

RepeatGroup
Header

Boolean. Gets or sets the repeating
group header option.

Read/Write Can be written only
when formatting idle.

ResetPage
NumberAfter

Boolean. Gets or sets the reset page
number after option.

Read/Write Can be written only
when formatting idle.

Sections “Sections Collection” on page 185.
Gets a Collection of all the sections
in the area.

Read Only None

SortDirection “CRSortDirection” on page 228.
Gets or sets the group sort direction.

Read/Write Can be written only
when formatting idle.

Suppress Boolean. Gets or sets the area
visibility.

Read/Write Can be written only
when formatting idle.

TopOrBottom
NGroupSort
Order

“CRTopOrBottomNGroupSortOrde
r” on page 230. Gets or sets the top
or bottom N group sort order.

Read/Write Formatting idle.

TopOrBottom
NSortField

“SummaryFieldDefinition Object”
on page 198. Gets or sets the top or
bottom n sort field.

Read/Write Formatting idle.

Property Description Read/Write Restriction in event
handler
Crystal Reports User’s Guide 75

Area Object
Area Object Methods
The following methods are discussed in this section:

“SetInstanceIDField Method (Area Object)” on page 76

“SetParentIDField (Area Object)” on page 76

SetInstanceIDField Method (Area Object)

Use SetInstanceIDField method to set an instance ID field.

Syntax

Sub SetInstanceIDField (InstanceIDField)

Parameter

SetParentIDField (Area Object)

Use SetParentIDField method to set the parent ID field.

Syntax

Sub SetParentIDField (ParentIDField)

Parameter

Parameter Description

InstanceIDField Specifies the instance ID field that you want to set.

Parameter Description

ParentIDField Specifies the parent ID field that you want to set.
76 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Areas Collection
The Areas Collection contains the area objects for every area in the report. Access
a specific “Area Object” on page 74, in the collection using the Item property.

Areas Collection Properties

Remarks

Instead of using the Item property as shown, you can reference an area directly (for
example, Areas(“RH”) or Areas(1)).

BlobFieldObject Object
The BlobFieldObject Object allows you to get and set information for bitmap
database fields in a report.

BlobFieldObject Object Properties

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of areas in the collection. Read only None

Item
(index)

“Area Object” on page 74. Gets an item from the
Collection. Item has an index parameter that can be
either a string reference to the area (for example,
“RH”, “PH”, “GHn”, “D”, “GFn”, “PF”, or “RF”)
or a numeric, 1-based index (for example, Item (1)
for the Report Header area). The items in the
collection are indexed in the order they are listed
for each section/area.

Read only None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read only None

Property Description Read/Write Restriction in event handler

BackColor OLE_COLOR. Gets or sets
the object background color.

Read/Write Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets
the object border color.

Read/Write Can be written only when
formatting idle or active.

BottomCropping Long. Gets or sets bottom
cropping size, in twips.

Read/Write Can be written only when
formatting idle.

BottomLineStyle “CRLineStyle” on page 218.
Gets or sets the bottom line
style.

Read/Write Can be written only when
formatting idle or active.
Crystal Reports User’s Guide 77

BlobFieldObject Object
CloseAtPageBreak Boolean. Gets or sets the
close border on page break.

Read/Write Can be written only when
formatting idle or active.

Field “DatabaseFieldDefinition
Object” on page 92. Gets the
database field definition
object containing information
about the BLOB field.

Read only None

HasDropShadow Boolean. Gets or sets the
border drop shadow option.

Read/Write Can be written only when
formatting idle or active.

Height Long. Gets or sets the object
height, in twips.

Read/Write Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the
keep object together option.

Read/Write Can be written only when
formatting idle or active.

Kind “CRObjectKind” on
page 221. Gets
CRObjectKind which
specifies the kind of object
(for example, box, cross-tab,
field, etc.).

Read only None

Left Long. Gets or sets the object
upper left position, in twips.

Read/Write Can be written only when
formatting idle or active.

LeftCropping Long. Gets or sets the left
cropping size, in twips.

Read/Write Can be written only when
formatting idle.

LeftLineStyle “CRLineStyle” on page 218.
Gets or sets the left line style.

Read/Write Can be written only when
formatting idle or active.

Name String. Gets or sets the object
name.

Read/Write Can be written only when
formatting idle.

Parent “Section Object” on
page 174. Gets reference to
the parent object.

Read only None

RightCropping Long. Gets or sets the right
cropping size, in twips.

Read/Write Can be written only when
formatting idle.

RightLineStyle “CRLineStyle” on page 218.
Gets or sets the right line
style.

Read/Write Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets the
object visibility.

Read/Write Can be written only when
formatting idle or active.

Top Long. Gets or sets the object
upper top position, in twips.

Read/Write Can be written only when
formatting idle or active.

TopCropping Long. Gets or sets the top
cropping size, in twips.

Read/Write Can be written only when
formatting idle.

TopLineStyle “CRLineStyle” on page 218.
Gets or sets the top line style.

Read/Write Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in event handler
78 Crystal Reports User’s Guide

3 Report Designer Component Object Model
BoxObject Object
The Box Object represents a box that has been drawn on the report. This object
allows you to get information about boxes in a report.

BoxObject Object Properties

Width Long. Gets or sets the object
width, in twips.

Read/Write Can be written only when
formatting idle or active.

XScaling Double. Gets or sets the
width scaling factor. For
example, 1 means 100%, 2
means 200%, 0.5 means 50%
etc. The scaling factor may
range from 0.01 to 100.

Read/Write Can be written only when
formatting idle.

YScaling Double. Gets or sets the
height scaling factor. For
example, 1 means 100%, 2
means 200%, 0.5 means 50%
etc. The scaling factor may
range from 0.01 to 100.

Read/Write Can be written only when
formatting idle.

Property Description Read/Write Restriction in event handler

Property Description Read/Write Restriction in event handler

Bottom Long. Gets or sets the
object lower bottom
position, in twips.

Read/Write Can be written only when
formatting idle.

BottomRightSection “Section Object” on
page 174. Gets the bottom
right section.

Read only Can be written only when
formatting idle.

CloseAtPageBreak Boolean. Gets or sets the
close border on page break
option.

Read/Write Can be written only when
formatting idle.

CornerEllipseHeight Long. Gets or sets the
corner elipse height, in
twips.

Read/Write

CornerEllipseWidth Long. Gets or sets the
corner elipse width, in
twips.

Read/Write

ExtendToBottomOf
Section

Boolean. Gets or sets the
extend to bottom of
section option.

Read/Write Can be written only when
formatting idle.

FillColor OLE_COLOR. Gets or sets
the fill color.

Read/Write Can be written only when
formatting idle.
Crystal Reports User’s Guide 79

CrossTabGroup Object
CrossTabGroup Object
The CrossTabGroup Object contains information related to CrossTabGroups in a
report.

CrossTabGroup Properties

HasDropShadow Boolean. Gets or sets the
border drop shadow
option..

Read/Write Can be written only when
formatting idle.

Kind “CRObjectKind” on
page 221. Gets which kind
of object (for example, box,
cross-tab, field, etc.).

Read only None

Left Long. Gets or sets the upper
left position, in twips.

Read/Write Can be written only when
formatting idle or active.

LineColor OLE_COLOR. Gets or sets
the line color.

Read/Write Can be written only when
formatting idle.

LineStyle “CRLineStyle” on
page 218. Gets or sets the
line style.

Read/Write Can be written only when
formatting idle.

LineThickness Long. Gets or sets the line
thickness, in twips.

Read/Write Can be written only when
formatting idle.

Name String. Gets or sets the
object name.

Read/Write Can be written only when
formatting idle.

Parent “Section Object” on
page 174. Gets reference to
the parent object.

Read only None

Right Long. Gets or sets the
object lower right position,
in twips.

Read/Write Can be written only when
formatting idle.

Suppress Boolean. Gets or sets the
object visibility.

Read/Write Can be written only when
formatting idle or active.

Top Long. Gets or sets the
object upper top position,
in twips.

Read/Write Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in event handler

Property Description Read/Write Restriction in event handler

BackColor OLE_COLOR. Gets or sets the
crosstab group background
color.

Read/Write Idle
80 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CrossTabGroups Collection
The CrossTabGroups Collection contains CrossTabGroup Objects associated with
a report.

CrossTabGroups Collection Properties

CrossTabGroups Collection Methods
The following methods are discussed in this section:

“Add Method (CrossTabGroups Collection)” on page 82

“Delete Method (CrossTabGroups Collection)” on page 82

Condition “CRGroupCondition” on
page 216. Gets or sets the
crosstab group condition.

Read/Write Idle

EnableSuppress
Label

Boolean. Gets or sets the
crosstab group enable
suppress label option.

Read/Write Idle

EnableSuppress
Subtotal

Boolean. Gets or sets the
crosstab group enable
suppress subtotal option.

Read/Write Idle

Field “FieldDefinition Object” on
page 121. Gets or sets the
crosstab group’s field.

Read/Write Idle

Parent “CrossTabObject Object” on
page 82. Gets reference to the
crosstab group parent object.

Read only None

SortDirection “CRSortDirection” on
page 228. Gets or sets the
crosstab group sort direction.

Read/Write Idle

Property Description Read/Write Restriction in event handler

Property Description Read/Write Restriction in event handler

Count Long. Gets the CrossTabGroup
count.

Read only None

Item
(index As Long)

“CrossTabGroup Object” on
page 80. Gets an item from the
Collection.

Read only None

Parent “CrossTabObject Object” on
page 82. Gets reference to the
parent object.

Read only None
Crystal Reports User’s Guide 81

CrossTabObject Object
Add Method (CrossTabGroups Collection)

Use the Add method to add a field as a CrossTabGroup to the CrossTabGroups
Collection.

Syntax

Function Add (Field) As CrossTabGroup

Parameter

Returns

Returns a CrossTabGroup Object member of the Collection.

Delete Method (CrossTabGroups Collection)

Use Delete method to remove a CrossTabGroup Object from the Collection.

Syntax

Sub Delete (index As Long)

Parameter

CrossTabObject Object
The CrossTabObject Object allows you to get and set information for cross-tab
objects in a report.

CrossTabObject Object Properties

Parameter Description

Field Specifies the field that you want to add as a CrossTabGroup to the Collection.

Parameter Description

index Specifies the index of the CrossTabGroup Object that you want to delete from
the Collection.

Property Description Read/Write Restriction in event handler

BackColor OLE_COLOR. Gets or sets
the object background
color.

Read/Write Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets
the object border color.

Read/Write Can be written only when
formatting idle or active.
82 Crystal Reports User’s Guide

3 Report Designer Component Object Model
BottomLineStyle “CRLineStyle” on
page 218. Gets or sets the
bottom line style.

Read/Write Can be written only when
formatting idle or active.

CloseAtPageBreak Boolean. Gets or sets the
close border on page break
option.

Read/Write Can be written only when
formatting idle or active.

ColumnGrandTotal
Color

OLE_COLOR. Gets or sets
the column grand total
color.

Read/Write Idle

ColumnGroups “CrossTabGroups
Collection” on page 81.
Gets the column groups
Collection.

Read only None

EnableKeep
ColumnsTogether

Boolean. Gets or sets the
enable keep columns
together option.

Read/Write Idle

EnableRepeatRow
Labels

Boolean. Gets or sets the
enable repeat row labels
option.

Read/Write Idle

EnableShowCell
Margins

Boolean. Gets or sets the
enable show cell margins
option.

Read/Write Idle

EnableShowGrid Boolean. Gets or sets the
enable show grid option.

Read/Write Idle

EnableSuppress
ColumnGrand
Totals

Boolean. Gets or sets the
enable suppress column
grand totals option.

Read/Write Idle

EnableSuppress
EmptyColumns

Boolean. Gets or sets the
enable suppress empty
columns option.

Read/Write Idle

EnableSuppress
EmptyRows

Boolean. Gets or sets the
enable suppress empty
rows option.

Read/Write Idle

EnableSuppress
RowGrandTotals

Boolean. Gets or sets the
enable suppress row grand
totals option.

Read/Write Idle

HasDropShadow Boolean. Gets or sets the
border drop shadow
option.

Read/Write Can be written only when
formatting idle or active.

Height Long. Gets the object
height, in twips.

Read only Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the
keep object together option.

Read/Write Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in event handler
Crystal Reports User’s Guide 83

CrossTabObject Object
Kind “CRObjectKind” on
page 221. Gets which kind
of object (for example, box,
cross-tab,
field, etc.).

Read only None

Left Long. Gets or sets the
upper left position, in
twips.

Read/Write Can be written only when
formatting idle or active.

LeftLineStyle “CRLineStyle” on
page 218. Gets or sets the
left line style.

Read/Write Can be written only when
formatting idle or active.

Name String. Gets or sets the
object name.

Read/Write Can be written only when
formatting idle.

Parent “Section Object” on
page 174. Gets reference to
the parent object.

Read only None

RightLineStyle “CRLineStyle” on
page 218. Gets or sets the
right line style.

Read/Write Can be written only when
formatting idle or active.

RowGrandTotal
Color

OLE_COLOR. Gets or sets
the row grand total color.

Read/Write Idle

RowGroups “CrossTabGroups
Collection” on page 81.
Gets the row groups
Collection.

Read Only None

SummaryFields “ObjectSummaryFieldDefi
nitions Collection” on
page 125. Gets the
summary fields.

Read Only None

Suppress Boolean. Gets or sets the
object visibility option.

Read/Write Can be written only when
formatting idle or active.

Top Long. Gets or sets the object
upper top position, in
twips.

Read/Write Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on
page 218. Gets or sets top
line style.

Read/Write Can be written only when
formatting idle or active.

Width Long. Gets the object
width, in twips.

Read Only Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in event handler
84 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Database Object
The Database Object provides properties to get information about the database
accessed by a report. See “Overview of the Report Designer Object Model” on
page 66.

Database Object Properties

Database Object Methods
The following methods are discussed in this section:

“AddADOCommand Method (Database Object)” on page 85

“AddOLEDBSource Method (Database Object)” on page 86

“ConvertDatabaseDriver Method (Database Object)” on page 86“LogOffServer
Method (Database Object)” on page 88

“LogOnServer Method (Database Object)” on page 89

“LogOnServerEx Method (Application Object)” on page 71

“SetDataSource Method (Database Object)” on page 90

“Verify Method (Database Object)” on page 91

AddADOCommand Method (Database Object)

Use AddADOCommand method to add a database table to your report through an
ADO connection and command.

Property Description Read/Write Restriction in
event handler

Links “TableLinks Collection” on page 202.
Gets database link collection.

Read only None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

Tables “DatabaseTables Collection” on page 98.
Gets the DatabaseTables Collection which
specifies the database objects used in the
report (for example, an Access report may
contain a query or a SQL Server report
may be based on a stored procedure - if
so, they will be returned as part of this
collection along with the database table
used in the report).

Read only None
Crystal Reports User’s Guide 85

Database Object
Syntax

Sub AddADOCommand (pConnection, pCommand)

Parameters

AddOLEDBSource Method (Database Object)

Use AddOLEDBSource method to add a database table to your report through an
OLE DB provider.

Syntax

Sub AddOLEDBSource (pConnectionString As String, pTableName As String)

Parameters

ConvertDatabaseDriver Method (Database Object)

Use ConvertDatabaseDriver to convert the database driver DLL used by the
report.

Syntax

Sub ConvertDatabaseDriver (pDLLName As String, blDoImmediateConvert as

Boolean)

Parameters

Parameter Description

pConnection Specifies the ADO connection that you want to use.

pCommand Specifies the ADO command that you want to use.

Parameter Description

pConnectionString Specifies the connection string for the OLE DB provider.

pTableName Specifies the OLE DB database table that you want to add to your report.

Parameter Description

pDllName Specifies the new DLL for the database driver.

blDoImmediateConvert Specifies when the database driver will be converted. If True, the
database driver is converted when the report is previewed, or the
when the database is verified. If False, the database driver is
converted when the report is refreshed in the preview window.
86 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Remarks

� Set blDoImmediate to False when you want the user to be prompted for the
data source information. This applies to reports that are previewed and
refreshed in the Crystal Report Viewer, and to reports that are exported or
saved to a Crystal Report format (.rpt), and previewed and refreshed in the
Crystal Reports Designer. When the report is previewed, a dialog box for the
new data source appears. For example, converting to ODBC (P2sodbc.dll)
opens the Set Data Source dialog box, while converting to OLEDB
(P2soledb.dll) opens the Data Link Properties dialog box.

� Set blDoImmediateConvert to True when you want to set the data source at
runtime. Additional code must be added to set the logon information for the
data source, and to verify the database. One exception is converting to OLEDB
(P2soledb.dll). Since there is no method to set the provider at runtime the Data
Links dialog box will always prompt for the data source. In this case only the
code to convert the databse driver is required.

� Once the database is converted, and the data source is set, either through code,
or through a dialog box, three additional prompts may appear:
� Logon to the data source

This dialog box allows you to log on to the correct data source. If the data
source is not secured, you can click OK without entering any logon
information.

� Verify the database
This is a message warning the user that the database file has changed and
the report is being updated.

� Map the fields.
This dialog box allows you to map the fields that have changed with the
new data source. For more information on mapping fields see "Re-mapping
altered database fields" in the Crystal Reports Online Help (Crw.chm).

Sample

The following code demonstrates how to convert the database driver to ODBC
(P2sodbc.dll) using the ConverDataBaseDriver method. The ODBC data source is
pointing to a Microsoft Access database.

'Instantiate the report object.

Set m_Report = New CrystalReport1

' Convert the database driver to ODBC.

m_Report.Database.ConvertDatabaseDriver "p2sodbc.dll", True

' Set the logon information for the ODBC data source.

' If the logon information is not set an error will be produced when the

' report is previewed or exported.

m_Report.Database.Tables(1).SetLogOnInfo "Xtreme Sample Database", "",

"", ""
Crystal Reports User’s Guide 87

Database Object
' Verify the database.

' If the database is not verified before exporting an error will be

produced.

' If the database is not verified before previewing the report, the user

may be

' prompted when the report is refreshed in the Crystal Report Viewer.

m_Report.Database.Verify

LogOffServer Method (Database Object)

The LogOffServer method logs off an SQL server, ODBC or other data source. Use
this method when you have logged on to the data source using LogOnServer. This
method can be invoked only in formatting Idle mode.

Syntax

Sub LogOffServer (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword])

Parameters

Remarks

� When you pass an empty string ("") for pServerName, pDatabaseName, or
pUserID, the program uses the value that's already set in the report. If you
want to override a value that's already set in the report, use a non-empty string
(for example, "Server A").

� If you try to log off a server that is still in use (that is, there is an object variable
still in focus that holds reference to a report that requires being logged on to
the server to access data) you will be unable to log off. This will apply to every
object that comes from the “Report Object” on page 150, as they all hold
reference to the report through their respective Report properties.

Parameter Description

pDllName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example "PDSODBC.DLL". Note that
the dllName must be enclosed in quotes. DLL names have the following
naming convention: PDB*.DLL for standard (non-SQL) databases,
PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. For ODBC,
use the data source name. This value is case-sensitive. See Remarks below.

[pDatabaseName] Specifies the name for the database used to create the report. See Remarks
below.

[pUserID] Specifies the User ID number necessary to log on to the server. See Remarks
below.

[pPassword] Specifies the password necessary to log on to the server.
88 Crystal Reports User’s Guide

3 Report Designer Component Object Model
� If you assign the Report object to the ReportSource property of the “CRViewer
Object (CRVIEWERLib)” on page 247, in the Crystal Reports Report Viewer,
enabling the report to be displayed through the Report Viewer, you cannot call
LogOffServer for the report until you assign a new report to the Report Viewer
or close the CRViewer object.

LogOnServer Method (Database Object)

The LogOnServer method logs on to an SQL server, ODBC or other data source.
Once logged on using this method, you will remain logged on until you call
LogOffServer or until the Application Object is destroyed and craxdrt.dll is
unloaded. This method can be invoked only in formatting Idle mode.

Syntax

Sub LogOnServer (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword])

Parameters

Remarks

When you pass an empty string ("") for this parameter, the program uses the value
that's already set in the report. If you want to override a value that's already set in
the report, use a non-empty string (for example, "Server A").

LogOnServerEx Method (Database Object)

The LogOnServerEx method logs on to an SQL server, ODBC or other data source.
Using this method, you can pass ServerType and ConnectionString info. Once
logged on using this method, you will remain logged on until you call
LogOffServer or until the Application Object is destroyed and craxdrt.dll is
unloaded. This method can be invoked only in formatting Idle mode.

Parameter Description

pDllName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example "PDSODBC.DLL". Note that
the dllName must be enclosed in quotes. DLL names have the following
naming convention: PDB*.DLL for standard (non-SQL) databases,
PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. For
ODBC, use the data source name. This value is case-sensitive. See Remarks
below.

[pDatabaseName] Specifies the name for the database used to create the report. See Remarks
below.

[pUserID] Specifies the User ID number necessary to log on to the server. See Remarks
below.

[pPassword] Specifies the password necessary to log on to the server.
Crystal Reports User’s Guide 89

Database Object
Syntax

Sub LogOnServerEx (pDllName As String, pServerName As String,

[pDatabaseName], [pUserID], [pPassword],

[pServerType], [pConnectionString])

Parameters

Remarks

When you pass an empty string ("") for this parameter, the program uses the value
that's already set in the report. If you want to override a value that's already set in
the report, use a non-empty string (for example, "Server A").

SetDataSource Method (Database Object)

The SetDataSource method is used to provide information about a data source to
the database driver associated with this Database object at runtime. For instance,
if a report has been designed using the Crystal Active Data Driver this method can
be used to provide an active data source for the report, such as a DAO, ADO, or
RDO Recordset or a CDO Rowset. In this case, the object passed to the second
parameter of this method replaces, at runtime, the field definition file used to
create the report. This method can be invoked only in formatting Idle mode. When
using a secure connection such as SQL Server, some additional code is required
(see Remarks below).

Syntax

Sub SetDataSource (data, [dataTag], [tableNumber])

Parameter Description

pDllName Specifies the name of the DLL for the server or password protected non-
SQL table you want to log on to, for example "PDSODBC.DLL". Note that
the dllName must be enclosed in quotes. DLL names have the following
naming convention: PDB*.DLL for standard (non-SQL) databases,
PDS*.DLL for SQL/ODBC databases.

pServerName Specifies the log on name for the server used to create the report. For
ODBC, use the data source name. This value is case-sensitive. See
Remarks below.

[pDatabaseName] Specifies the name for the database used to create the report. See
Remarks below.

[pUserID] Specifies the User ID number necessary to log on to the server. See
Remarks below.

[pPassword] Specifies the password necessary to log on to the server.

[pServerType] Specifies the database Server Type.

[pConnectionString] Specifies the connection string.
90 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Remarks

� When the data source uses a secure connection, such as SQL Server, additional
information must be passed in the "form load" event before the call to view the
report. For example,

DataEnvironment1.Command1

Report.Database.SetDataSource (DataEnvironment1.rsCommand1)

� SetDataSource method is used to set a datasource at runtime. If the report is
initially created and then saved, and then later run using either the RDC or
CRW, the runtime datasource (DAO, ADO, or RDO Recordset) cannot be
recreated. The user will not be able to run or preview the report.

Verify Method (Database Object)

The Verify method verifies that the location of the database is still valid and checks
to see if any changes have been made to table design, etc. If there are any changes
to the database, the Verify method will update the report automatically to reflect
these changes. See Remarks below. This method can be invoked only in formatting
Idle mode.

Syntax

Sub Verify ()

Remarks

Prior to calling Verify, you can use the “CheckDifferences Method (DatabaseTable
Object)” on page 94 to determine what kind of differences, if any, exist between the
report table and the physical table. pDifferences parameter of CheckDifferences
method will pass back one or more bitwise (XOR’d) “CRTableDifferences” on
page 229 enums indicating the information that you want to retrieve.

Parameter Description

data Variant data passed to the database driver. For example, with Active data,
this must be a Recordset object if you are using DAO, ADO, or the Visual
Basic data control. This must be a Rowset object if you are using CDO.

[dataTag] A value indicating the type of data being passed to the DatabaseTable object
in the Data parameter. Currently, the only possible value is 3. This value must
be used for all Active data sources including DAO, ADO, RDO, CDO, and the
Visual Basic data control.

[tableNumber] Specifies the index number of the table to be set. Default value = 1.
Crystal Reports User’s Guide 91

DatabaseFieldDefinition Object
DatabaseFieldDefinition Object
The DatabaseFieldDefinition Object represents a database field used in the report.
This object provides properties for getting information on database fields in the
report.

DatabaseFieldDefinition Object Properties

Property Definition Read/Write Restriction in
event handler

DatabaseFieldName String. Specifies the name of
the field in the database (for
example, Product ID).

Read only None

Kind “CRFieldKind” on page 212.
Gets which kind of field (for
example, database, summary,
formula, etc.).

Read only None

Name String. Gets the unique
Crystal formula form name of
the field within the report as
{table.FIELD} (for example,
{product.PRODUCT ID}).

Read only None

NextValue Variant. Gets the field next
value.

Read only Can be read only when
top-level Report object
is formatting active.

NumberOfBytes Integer. Gets the number of
bytes required to store the
field data in memory.

Read only None

Parent “Report Object” on page 150.
Gets reference to the parent
object.

Read only None

PreviousValue Variant. Gets the field
previous value.

Read only Can be read only when
top-level Report object
is formatting active.

TableAliasName String. Gets the alias for the
table containing the field.

Read only Can be written only
when formatting idle.

Value Variant. Gets the field current
value.

Read only Can be read only when
top-level Report object
is formatting active.

ValueType “CRFieldValueType” on
page 212. Gets which type of
value is found in the field.

Read only None
92 Crystal Reports User’s Guide

3 Report Designer Component Object Model
DatabaseFieldDefinitions Collection
The DatabaseFieldDefinitions Collection is a collection of database field definition
objects. One object exists in the collection for every database field accessed by the
report. Access a specific “DatabaseFieldDefinition Object” on page 92 in the
collection using the Item property.

DatabaseFieldDefinitions Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a database directly
(for example, DatabaseFieldDefintion(1)).

DatabaseTable Object
The DatabaseTable Object refers to a database table accessed by the report.

DatabaseTable Object Properties

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of
“DatabaseFieldDefinition Object” on page 92, in
the collection.

Read only None

Item (index
As Long)

“DatabaseFieldDefinition Object” on page 92.
Item has an index parameter that is a numeric, 1-
based index for the object that you want to
retrieve (for example, Item (1) for the first
database field in the collection). The items in the
collection are indexed in the order they appear in
the database table.

Read only None

Parent “DatabaseTable Object” on page 93. Reference to
the parent object.

Read only None

Property Description Read/Write Restriction in
event handler

ConnectBuffer
String

String. Gets the table connect buffer
string.

Read only None

DatabaseType “CRDatabaseType” on page 209. Gets
the database table type

Read only

DescriptiveName String. Gets the table descriptive name. Read only None

DllName String. Gets the table driver DLL name. Read only None
Crystal Reports User’s Guide 93

DatabaseTable Object
DatabaseTable Object Methods
The following methods are discussed in this section:

“CheckDifferences Method (DatabaseTable Object)” on page 94

“SetDataSource Method (DatabaseTable Object)” on page 95

“SetLogOnInfo Method (DatabaseTable Object)” on page 96

“SetSessionInfo Method (DatabaseTable Object)” on page 96

“SetTableLocation Method (DatabaseTable Object)” on page 97

“TestConnectivity Method (DatabaseTable Object)” on page 97

CheckDifferences Method (DatabaseTable Object)

Use CheckDifferences method to determine what kind(s) of differences were
found between the report table and the physical table.

Syntax

Sub CheckDifferences (pDifferences As Long, [reserved])

Fields “DatabaseFieldDefinitions Collection”
on page 93. Gets the collection of
database fields in the table.

Read only None

Location String. Gets or sets the location of the
database table.

Read/
Write

Can be written
only when
formatting idle.

LogOnDatabase
Name

String. Gets the logon database name. Read only None

LogOnServerName String. Gets the logon server name. Read only None

LogOnUserID String. Gets the logon user ID. Read only None

Name String. Gets or sets the alias name for the
database table used in the report.

Read/
Write

Can be written
only when
formatting idle.

Parent “Database Object” on page 85.
Reference to the parent object.

Read only None

SessionUserID String. Gets the session user ID. Read only None

SubLocation String. Gets the table sublocation. Read only None

Property Description Read/Write Restriction in
event handler
94 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

SetDataSource Method (DatabaseTable Object)

The SetDataSource method is used to provide information about a data source to
the database driver associated with this DatabaseTable object at runtime. For
instance, if a report has been designed using the Crystal Active Data Driver this
method can be used to provide an active data source for the report, such as a DAO,
ADO, or RDO Recordset or a CDO Rowset. In this case, the object passed to the
second parameter of this method replaces, at runtime, the field definition file used
to create the report. This method can be invoked only in formatting Idle mode.
When using a secure connection such as SQL Server, some additional code is
required (see Remarks below).

Syntax

Sub SetDataSource (data, [dataTag])

Parameters

Remarks

� When the data source uses a secure connection, such as SQL Server, additional
information must be passed in the "form load" event before the call to view the
report. For example,
DataEnvironment1.Command1

Report.DatabaseTable.SetDataSource (DataEnvironment1.rsCommand1)

� SetDataSource method is used to set a datasource at runtime. If the report is
initially created and then saved, and then later run using either the RDC or
CRW, the runtime datasource (DAO, ADO, or RDO Recordset) cannot be
recreated. The user will not be able to run or preview the report.

Parameter Description

pDifferences “CRTableDifferences” on page 229. Bitwise constants specify the table
difference(s) (XOR’d), if any.

[reserved] Reserved. Do not use.

Parameter Description

data Variant data passed to the database driver. For example, with Active data,
this must be a Recordset object if you are using DAO, ADO, or the Visual
Basic data control. This must be a Rowset object if you are using CDO.

[dataTag] A value indicating the type of data being passed to the DatabaseTable object
in the Data parameter. Currently, the only possible value is 3. This value
must be used for all Active data sources including DAO, ADO, RDO, CDO,
and the Visual Basic data control.
Crystal Reports User’s Guide 95

DatabaseTable Object
SetLogOnInfo Method (DatabaseTable Object)

The SetLogOnInfo method logs on to the data source so table data can be accessed.

Syntax

Sub SetLogOnInfo (pServerName As String,

[pDatabaseName], [pUserID], [pPassword])

Parameters

SetSessionInfo Method (DatabaseTable Object)

The SetSessionInfo method allows the user to log on to a secured Access session.

Syntax

Sub SetSessionInfo (pSessionUserID As String, pSessionPassword As String)

Parameters

Remarks

In Microsoft Access 95 and later, an Access database can have session security (also
known as user-level security), database-level security, or both. If the Access
database contains only session security, simply pass the session password to the
SessionPassword parameter. If the Access database contains database-level
security, use a linefeed character, Chr(10), followed by the database-level
password. For example:

object.SetSessionInfo “userID”, Chr(10) & “dbpassword”

If the Access database contains both session security and database-level security,
use the session password followed by the linefeed character and the database
password.

Parameter Description

pServerName Specifies the name of the server or ODBC data source where the database
is located (that is, CRSS).

[pDatabaseName] Specifies the name of the database.

[pUserID] Specifies a valid user name for logging on to the data source.

[pPassword] Specifies a valid password for logging on to the data source.

Parameter Description

pSessionUserID Specifies the Access userID used to log on to an Access session.

pSessionPassword Specifies the session password for Access secured session.
96 Crystal Reports User’s Guide

3 Report Designer Component Object Model
object.SetSessionInfo “userID”, _

“sesspswd” & Chr(10) & “dbpassword”

Alternately, database-level security can also be handled by assigning the database-
level password to the Password parameter of the “SetLogOnInfo Method
(DatabaseTable Object)” on page 96.

SetTableLocation Method (DatabaseTable Object)

The SetTableLocation method is used to set the DatabaseTable location,
sublocation, and connect buffer string.

Syntax

Sub SetTableLocation (pLocation As String, pSubLocation As String,

pConnectBufferSting As String)

Parameters

Remarks

For example:

object.SetTableLocation "xtreme.mdb", "Customer", ""

TestConnectivity Method (DatabaseTable Object)

The TestConnectivity method tests to see if the database can be logged on to with
the current information and if the database table can be accessed by the report.

Syntax

Function TestConnectivity () As Boolean

Returns

� TRUE if the database session, log on, and location information is all correct.
� FALSE if the connection fails or an error occurs.

Parameter Description

pLocation Specifies the location of the database table (file path and name.ext).

pSubLocation Specifies the sublocation of the database table.

pConnectBufferSting Specifies the connection buffer string.
Crystal Reports User’s Guide 97

DatabaseTables Collection
DatabaseTables Collection
The DatabaseTables Collection is a collection of DatabaseTable objects. A
DatabaseTable object exists for every database object (for example, table, query,
stored procedure, etc.) accessed by the report. Access a specific DatabaseTable
Object in the collection using the Item property.

DatabaseTables Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a table directly (for
example, DatabaseTable(1)).

DatabaseTables Collection Methods
The following methods are discussed in this section:

“Add Method (DatabaseTables Collection)” on page 98

“Delete Method (DatabaseTables Collection)” on page 99

Add Method (DatabaseTables Collection)

The Add method is used to add a database table to the report.

Syntax

Sub Add (pLocation As String, [pSubLocation], [pConnectInfo],

[tableType], [pDllName], [pServerName], [pServerType],

[pDatabaseName], [pUserID], [pPassword])

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of database objects in the
collection.

Read only None

Item (index
As Long)

“DatabaseTable Object” on page 93. Item has an
index parameter that is a numeric, 1-based index
(for example, Item (1)). The items in the collection
are indexed in the order in which they were added
to the report.

Read only None

Parent “Database Object” on page 85. Reference to the
parent object.

Read only None
98 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Remarks

� DatabaseTables.Add method is very generic and can be used to add tables to a
report from all kinds of data sources (for example, PC Table, SQL Server,
ODBC, OLE DB provider, ADO, RDO, DAO Recordset).

� For example:

object.Add "xtreme.mdb", "Customer"

Delete Method (DatabaseTables Collection)

Use Delete method to remove a database table from the Collection.

Syntax

Sub Delete (index As Long)

Parameter

Parameter Description

pLocation Specifies the location of the database table that you want to add to the
report.

[pSubLocation] Specifies the sublocation of the database table that you want to add to the
report.

[pConnectInfo] Specifies the connection string.

[tableType] Specifies the type of database table that you want to add to the report.

[pDllName] Specifies the DLL name for the database containing the table that you want
to add.

[pServerName] Specifies the database Server Name.

[pServerType] Specifies the database Server Type.

[pDatabaseName] Specifies the database (file path and name.ext) containing the table that you
want to add.

[pUserID] Specifies the User’s ID.

[pPassword] Specifies the User’s Password.

Parameter Description

index Specifies the 1-based index number in the Collection of the database table that
you want to delete.
Crystal Reports User’s Guide 99

ExportOptions Object
ExportOptions Object
The ExportOptions object provides properties and methods for retrieving
information and setting options for exporting your report (that is, export format,
destination, etc.). An ExportOptions Object is obtained from the ExportOptions
property of the “Report Object” on page 150.

ExportOptions Object Properties

Property Description Read/Write Restriction in
event handler

ApplicationFile
Name

String. Gets or sets the destination
application file name.

Read/Write Set before
exporting
report to an
application
destination.

CharFieldDelimiter String. Gets or sets the character used to
separate fields in character separated
text formats. This character delimits
every field in the file.

Read/Write None

CharStringDelimiter String. Gets or sets the character used to
separate strings in character separated
text formats. This character delimits
only string fields (numeric, date fields,
etc., have no delimiter).

Read/Write None

DestinationDLL
Name

String. Gets the Internal Name property
of the DLL used to export the report to a
certain destination. The destination is
set in the DestinationType property.

Read only None

DestinationType “CRExportDestinationType” on
page 210. Gets or sets the export
destination type.

Read/Write None

DiskFileName String. Gets or sets the file name if the
report is exported to a disk.
When exporting to HTML use
HTMLFileName. When exporting to
XML use XMLFileName.

Read/Write None

ExcelAreaGroup
Number

Integer. Gets or sets the base area group
number if the area type is group area
when exporting to Excel.

Read/Write None

ExcelAreaType “CRAreaKind” on page 207. Gets or sets
the base area type if not using constant
column width when exporting to Excel.

Read/Write None

ExcelConstant
ColumnWidth

Double. Gets or sets the column width
when exporting to Excel.

Read/Write None
100 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ExcelTabHas
ColumnHeadings

Boolean. Gets or sets exporting to Excel
has column headings option.

Read/Write None

ExcelUseConstant
ColumnWidth

Boolean. Gets or sets export to Excel to
use constant column width.

Read/Write None

ExcelUseTabular
Format

Boolean. Gets or sets exporting to Excel
to use tabular format.

Read/Write None

ExcelUseWorksheet
Functions

Boolean. Gets or sets export to Excel to
use worksheet functions to represent
subtotal fields in the report.

Read/Write None

Exchange
DestinationType

“CRExchangeDestinationType” on
page 210. Gets or sets the Exchange
destination type for reports exported to
Exchange folders.

Read/Write None

ExchangeFolderPath String. Gets or sets the path of the
Exchange folder for reports exported to
Exchange (for example,
“MyFolders@Inbox”).

Read/Write None

ExchangePassword String. Sets Exchange password. Write only None

ExchangeProfile String. Gets or sets a user profile for
accessing an Exchange folder for reports
exported to Exchange.

Read/Write None

ExchangePathHas
ColumnHeadings

Boolean. Gets or sets the column
heading option when exporting to
Exchange.

Read/Write None

FormatDLLName String. Gets the Internal Name property
of the DLL used to export the report to a
certain format type. The export format
type is set in the FormatType property.

Read only None

FormatType “CRExportFormatType” on page 211.
Gets or sets the format type for the
exported report (for example, text,
Excel, etc.).

Read/Write None

HTMLEnable
SeperatedPages

Boolean. Gets or sets the option to create
seperated pages when exporting to
HTML format.

Read/Write None

HTMLFileName String. Gets or sets the HTML file name
for reports exported to HTML format.

Read/Write None

HTMLHasPage
Navigator

Boolean. Gets or sets the option to
display a page navigator on each page
of a report exported to HTML format.

Read/Write None

LotusDomino
Comments

String. Gets or sets the destination Lotus
Domino comments.

Read/Write None

LotusDomino
DatabaseName

String. Gets or sets the destination Lotus
Domino database name.

Read/Write None

Property Description Read/Write Restriction in
event handler
Crystal Reports User’s Guide 101

ExportOptions Object
LotusNotesForm
Name

String. Gets or sets the destination Lotus
Domino form name.

Read/Write None

MailBccList String. Gets or sets a Blind Carbon Copy
(BCC) list for reports e-mailed to a VIM
e-mail account.

Read/Write None

MailCcList String. Gets or sets a Carbon Copy (CC)
list for reports e-mailed.

Read/Write None

MailMessage String. Gets or sets the e-mail message
included with e-mailed reports.

Read/Write None

MailSubject String. Gets or sets the e-mail subject
heading for reports being e-mailed.

Read/Write None

MailToList String. Gets or sets the To list for reports
being e-mailed.

Read/Write None

NumberOfLines
PerPage

Integer. Gets or sets the number of lines
to appear per page option for reports
exported to a paginated text format.

Read/Write None

ODBC
DataSourceName

String. Gets or sets the ODBC data
source for reports exported to ODBC.

Read/Write None

ODBCDataSource
Password

String. Sets the ODBC data source
password.

Write only None

ODBCDataSource
UserID

String. Gets or sets the user name used
to access an ODBC data source for
reports exported to ODBC.

Read/Write None

ODBCExportTable
Name

String. Gets or sets the database table in
the ODBC data source that the report
file exported to ODBC will be appended
to. You can also create a new table using
this property.

Read/Write None

PDFExportAllPages Boolean. Gets or sets wether or not to
export all pages of the report to Portable
Document Format(PDF).
PDFExportAllPages must be set to false
when setting PDFFirstPageNumber and
PDFLastPageNumber.

Read/Write None

PDFFirstPage
Number

Long. Gets or sets the start page, of a
page export range, when exporting to
PDF. PDFExportAllPages must be set to
False or this value is ignored.

Read/Write None

PDFLastPage
Number

Long. Gets or sets the end page, of a
page export range, when exporting to
PDF. PDFExportAllPages must be set to
False or this value is ignored.

Read/Write None

Parent “Report Object” on page 150. Reference
to the parent object.

Read only None

Property Description Read/Write Restriction in
event handler
102 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Remarks

For backwards compatibility the FormatDllName and DestinationDllName
properties return the Internal Name property of the associated DLL. The Internal
Name property of the DLL is found in the DLLs Properties Dialog box under the
Version tab. For a list of export DLLs see “Export Destination” and “Export
Format” in the Runtime help (Runtime.hlp).

RTFExportAllPages Boolean. Gets or sets wether or not to
export all pages of the report to Rich
Text Format(RTF). RTFExportAllPages
must be set to false when setting
RTFFirstPageNumber and
RTFLastPageNumber.

Read/Write None

RTFFirstPage
Number

Long. Gets or sets the start page, of a
page export range, when exporting to
RTF. RTFExportAllPages must be set to
False or this value is ignored.

Read/Write None

RTFFLastPage
Number

Long. Gets or sets the end page, of a
page export range, when exporting to
RTF. RTFExportAllPages must be set to
False or this value is ignored.

Read/Write None

UseReportDate
Format

Boolean. Gets or sets whether the date
format used in the report should also be
used in the exported report. Can be
used for Data Interchange Format (DIF),
Record Style Format, and comma, tab,
or character separated format.

Read/Write None

UseReportNumber
Format

Boolean. Gets or sets whether the
number format used in the report
should also be used in the exported
report. Can be used for Data
Interchange Format (DIF), Record Style
Format, and comma, tab, or character
separated format.

Read/Write None

XMLAllowMultiple
Files

Boolean. Gets or sets allow multiple
files, when exporting to XML. When set
to True the Schema file for the report
will be exported along with the XML
file. The Schema file will be either an
XML schema (.xsd) or a Document Type
Definition (.dtd), depending on the
options selected in the XML Forma
dilaog box. For more information see
“Customizing XML report definitions”
in the Crystal Reports Users Guide.

Read/Write None

XMLFileName String. Gets or sets the file name if the
report is exported to a disk.

Read/Write None

Property Description Read/Write Restriction in
event handler
Crystal Reports User’s Guide 103

FieldDefinitions Collection
ExportOptions Object Methods
The following methods are discussed in this section:

“PromptForExportOptions Method (ExportOptions Object)” on page 104

“Reset Method (ExportOptions Object)” on page 104

PromptForExportOptions Method (ExportOptions Object)

The PromptForExportOptions method prompts the user for export information
using default Crystal Report Engine dialog boxes.

Syntax

Sub PromptForExportOptions ()

Reset Method (ExportOptions Object)

The Reset method clears all ExportOptions properties.

Syntax

Sub Reset ()

FieldDefinitions Collection
The FieldDefinitions Collection contains the various types of XXXFieldDefinition
Objects (for example, DatabaseFieldDefinition, FormulaFieldDefinition,
SummaryFieldDefinition). For the current release, developers can access the
FieldDefinitions Collection only through the ConditionFields Property of
GraphObject.

FieldDefinitions Collection Properties

Property Description Read/Write Restriction in
event handler

Count Long. Gets the collection count. Read only None

Item (index As Long) “FieldDefinition Object” on
page 121. Gets the collection item.

Read only None

Parent IReportObject. Reference to the
parent object (ReportObject).

Read only None
104 Crystal Reports User’s Guide

3 Report Designer Component Object Model
FieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (FieldDefinitions Collection)” on page 105

“Delete Method (FieldDefinitions Collection)” on page 105

Add Method (FieldDefinitions Collection)

Use Add method to add the specified Field to the FieldDefinitions Collection.

Syntax

Sub Add (Field)

Parameter

Delete Method (FieldDefinitions Collection)

Use Delete method to remove the specified Field from the FieldDefinitions
Collection

Syntax

Sub Delete(Field)

Parameter

Parameter Description

Field Specifies the Field that you want to add to the Collection.

Parameter Description

Field Specifies the Field that you want to delete from the Collection.
Crystal Reports User’s Guide 105

FieldMappingData Object
FieldMappingData Object
The FieldMappingData Object provides information related to FieldMapping
Events. This Object can be accessed through the Report Object FieldMapping Event.

FieldMappingData Object Properties

FieldObject Object
The FieldObject Object represents a field found in a report (for example, special
field, database field, parameter field, etc.). This object provides properties for
retrieving information for a field in your report. A FieldObject Object is obtained
from the Item property of the “ReportObjects Collection” on page 168, (for
example, ReportObjects.Item(Index), where the index can be the 1-based index
number of the item or an Object name).

Property Description Read/Write Restriction in
event handler

FieldName String. Gets or sets the field name. Read/Write None

MappingToField
Index

Integer. Gets or sets the index of the
mapping to field index in the field list of
the new database.

Read/Write None

TableName String. Gets or sets field’s table name. Read/Write None

ValueType “CRFieldValueType” on page 212. Gets
or sets the value type that is in the field.

Read/Write None

Property Description Read/
Write

Restriction in event
handler

AmPmType “CRAMPMType” on page 207.
Gets or sets the AM/PM type
option.

Read/
Write

Can be written only when
formatting idle or active.

AmString String. Gets or sets the AM
string.

Read/
Write

Can be written only when
formatting idle or active.

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/
Write

Can be written only when
formatting idle or active.

BooleanOutput
Type

“CRBooleanOutputType” on
page 208. Gets or sets the
Boolean output type.

Read/
Write

Can be written only when
formatting idle or active.
106 Crystal Reports User’s Guide

3 Report Designer Component Object Model
BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/
Write

Can be written only when
formatting idle or active.

BottomLineStyle “CRLineStyle” on page 218. Gets
or sets bottom line style.

Read/
Write

Can be written only when
formatting idle or active.

CanGrow Boolean. Gets or sets can the
grow option.

Read/
Write

Can be written only when
formatting idle or active.

CharacterSpacing Long. Gets or sets the character
spacing.

Read/
Write

Can be written only when
formatting idle.

CloseAtPageBreak Boolean. Gets or sets the close
border on page break option.

Read/
Write

Can be written only when
formatting idle or active.

CurrencyPosition
Type

“CRCurrencyPositionType” on
page 208. Gets or sets the
currency position type.

Read/
Write

Can be written only when
formatting idle or active.

CurrencySymbol String. Gets or sets the currency
symbol.

Read/
Write

Can be written only when
formatting idle or active.

CurrencySymbol
Type

“CRCurrencySymbolType” on
page 208. Gets or sets the
currency symbol type.

Read/
Write

Can be written only when
formatting idle or active.

DateCalendarType “CRDateCalendarType” on
page 209. Gets or sets the date
calendar type.

Read/
Write

Can be written only when
formatting idle.

DateEraType “CRDateEraType” on page 209.
Gets or sets the date era type.

Read/
Write

Can be written only when
formatting idle.

DateFirstSeparator String. Gets or sets the date first
separator.

Read/
Write

Can be written only when
formatting idle or active.

DateOrder “CRDateOrder” on page 209.
Gets or sets the date order.

Read/
Write

Can be written only when
formatting idle or active.

DatePrefixSeparator String. Gets or sets the date
prefix separator.

Read/
Write

Can be written only when
formatting idle or active.

DateSecond
Separator

String. Gets or sets the date
second separator.

Read/
Write

Can be written only when
formatting idle or active.

DateSuffixSeparator String. Gets or sets the date
suffix separator

Read/
Write

Can be written only when
formatting idle or active.

DateWindows
DefaultType

“CRDateWindowsDefaultType”
on page 209. Gets or sets the date
windows default type.

Read/
Write

Can be written only when
formatting idle.

DayType “CRDayType” on page 210. Gets
or sets the day type.

Read/
Write

Can be written only when
formatting idle or active.

DecimalPlaces Integer. Gets or sets the number
decimal places.

Read/
Write

Can be written only when
formatting idle or active.

DecimalSymbol String. Gets or sets the decimal
symbol.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in event
handler
Crystal Reports User’s Guide 107

FieldObject Object
DisplayReverseSign Boolean. Gets or sets the reverse
sign option.

Read/
Write

Can be written only when
formatting idle or active.

EnableTight
Horizontal

Boolean. Gets or sets the tight
horizontal option.

Read/
Write

Can be written only when
formatting idle or active.

Field Object. Gets the field definition
object (for example, Database
FieldDefinition Object,
Parameter
FieldDefinition Object, etc.).

Read
only

None

FirstLineIndent Long. Gets or sets the first line
indent.

Read/
Write

Can be written only when
formatting idle.

Font IFontDisp. Gets or sets the
standard OLE font.

Read/
Write

Can be written only when
formatting idle or active.

HasDropShadow Boolean. Gets or sets the border
drop shadow option.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets or sets object height,
in twips.

Read/
Write

Can be written only when
formatting idle or active.

HorAlignment “CRAlignment” on page 207.
Gets or sets the horizontal
alignment.

Read/
Write

Can be written only when
formatting idle or active.

HourMinute
Separator

String. Gets or sets the hour
minute separator.

Read/
Write

Can be written only when
formatting idle or active.

HourType “CRHourType” on page 216.
Gets or sets the hour type.

Read/
Write

Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the keep
object together option.

Read/
Write

Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221.
Gets which kind of object (for
example, box, cross-tab, field,
etc.).

Read
only

None

LeadingDayPosition “CRLeadingDayPosition” on
page 217. Gets or sets the leading
day position option.

Read/
Write

Can be written only when
formatting idle.

LeadingDay
Separator

String. Gets or sets the leading
day separator.

Read/
Write

Can be written only when
formatting idle or active.

LeadingDayType “CRLeadingDayType” on
page 217. Gets or sets the leading
day type.

Read/
Write

Can be written only when
formatting idle or active.

Left Long. Gets or sets the object
upper left position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

LeftIndent Long. Gets or sets the left indent,
in twips.

Read/
Write

Can be written only when
formatting idle.

Property Description Read/
Write

Restriction in event
handler
108 Crystal Reports User’s Guide

3 Report Designer Component Object Model
LeftLineStyle “CRLineStyle” on page 218. Gets
or sets the left line style.

Read/
Write

Can be written only when
formatting idle or active.

LineSpacing Double. Gets the line spacing. Read
Only

None

LineSpacingType “CRLineSpacingType” on
page 218. Gets the line spacing
type.

Read
Only

None

MaxNumberOf
Lines

Integer. Gets or sets the
maximum number of line for a
string memo field.

Read/
Write

Can be written only when
formatting idle or active.

MinuteSecond
Separator

String. Gets or sets minute
second separator.

Read/
Write

Can be written only when
formatting idle or active.

MinuteType “CRMinuteType” on page 219.
Gets or sets the minute type.

Read/
Write

Can be written only when
formatting idle or active.

MonthType “CRMonthType” on page 220.
Gets or sets month type.

Read/
Write

Can be written only when
formatting idle or active.

Name String. Gets or sets the object
name.

Read/
Write

Can be written only when
formatting idle or active.

NegativeType “CRNegativeType” on page 220.
Gets or sets number negative
type.

Read/
Write

Can be written only when
formatting idle or active.

NextValue Variant. Gets the field next value. Read
only

Can be written only when
formatting idle or active.

Parent “Section Object” on page 174.
Reference to the parent object.

Read
only

Can be written only when
formatting idle or active.

PmString String. Gets or sets the PM string. Read/
Write

Can be written only when
formatting idle or active.

PreviousValue Variant. Gets the field previous
value.

Read
only

Can be written only when
formatting idle or active.

RightIndent Long. Gets or sets the right
indent, in twips.

Read/
Write

Can be written only when
formatting idle.

RightLineStyle “CRLineStyle” on page 218. Gets
or sets the right line style.

Read/
Write

Can be written only when
formatting idle or active.

RoundingType “CRRoundingType” on
page 226. Gets or sets the
number rounding type.

Read/
Write

Can be written only when
formatting idle or active.

SecondType “CRSecondType” on page 227.
Gets or sets the seconds type.

Read/
Write

Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets the object
visibility.

Read/
Write

Can be written only when
formatting idle or active.

SuppressIf
Duplicated

Boolean. Gets or sets the
suppress if duplicate option.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in event
handler
Crystal Reports User’s Guide 109

FieldObject Object
SuppressIfZero Boolean. Gets or sets the
suppress if zero option.

Read/
Write

Can be written only when
formatting idle or active.

TextColor OLE_COLOR. Gets or sets the
object text color.

Read/
Write

Can be written only when
formatting idle or active.

TextFormat “CRTextFormat” on page 230.
Gets or sets the text format
option for string memo fields.

Read/
Write

Can be written only when
formatting idle.

TextRotationAngle “CRRotationAngle” on page 226.
Gets or sets the text rotation
angle.

Read/
Write

Can be written only when
formatting idle.

Thousands
Separators

Boolean. Gets or sets the enable
thousands separators option.

Read/
Write

Can be written only when
formatting idle or active.

ThousandSymbol String. Gets or sets the thousand
separator symbol.

Read/
Write

Can be written only when
formatting idle or active.

TimeBase “CRTimeBase” on page 230. Gets
or sets the time base.

Read/
Write

Can be written only when
formatting idle or active.

Top Long. Gets or sets the object
upper top position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218. Gets
or sets the top line style.

Read/
Write

Can be written only when
formatting idle or active.

UseLeadingZero Boolean. Gets or sets the number
uses leading zero option.

Read/
Write

Can be written only when
formatting idle or active.

UseOneSymbol
PerPage

Boolean. Gets or sets the use one
symbol per page option.

Read/
Write

Can be written only when
formatting idle or active.

UseSystem
Defaults

Boolean. Gets or sets the use
system defaults formatting
option.

Read/
Write

Can be written only when
formatting idle or active.

Value Variant. Gets the field current
value.

Read
Only

Can be written only when
formatting idle or active.

Width Long. Gets or sets the object
width, in twips.

Read/
Write

Can be written only when
formatting idle or active.

YearType “CRYearType” on page 231. Gets
or sets the year type.

Read/
Write

Can be written only when
formatting idle or active.

ZeroValueString String. Gets or sets the zero value
string for number field format.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in event
handler
110 Crystal Reports User’s Guide

3 Report Designer Component Object Model
FieldObject Object Methods
The following methods are discussed in this section:

“SetLineSpacing Method (FieldObject Object)” on page 111

“SetUnboundFieldSource Method (FieldObject Object)” on page 111

SetLineSpacing Method (FieldObject Object)

Use SetLineSpacing method to get and set the line spacing and line spacing type.

Syntax

Sub SetLineSpacing (LineSpacing As Double,

LineSpacingType As CRLineSpacingType)

Parameters

SetUnboundFieldSource Method (FieldObject Object)

Use SetUnbound FieldSource Method to bind a DataSource to an unbound field.

Syntax

Sub SetUnboundFieldSource (pUnboundFieldSource As String)

Parameter

Remarks

For example:

object.SetUnboundFieldSource("{Customer.CustomerID}")

Parameter Description

LineSpacing Specifies the line spacing.

LineSpacingType Specifies the line spacing type. Use one of “CRLineSpacingType” on
page 218.

Parameter Description

pUnboundField
Source

BSTR specifies the datasouce, Crystal formula format. See Remarks
below.
Crystal Reports User’s Guide 111

FormattingInfo Object
FormattingInfo Object
The FormattingInfo object contains information about the section currently being
formatted.

FormattingInfo Object Properties

FormulaFieldDefinition Object
The FormulaFieldDefinition Object provides properties and methods for
retrieving information and setting options for any named formula field in a report.

FormulaFieldDefinition Object Properties

Property Description Read/Write Restriction in
event handler

IsEndOfGroup Boolean. Gets whether the current
formatting section is the end of a group.

Read only None

IsRepeatedGroup
Header

Boolean. Gets whether the current
formatting section is a repeated group
header.

Read only None

IsStartOfGroup Boolean. Gets whether the current
formatting section is the start of a group.

Read only None

Property Description Read/
Write

Restriction in
event handler

FormulaField
Name

String. Gets the formula field name as it
appears in the RDC Dataview Panel.

Read only None

Kind “CRFieldKind” on page 212. Gets what
kind of field (for example, database,
summary, formula, etc.).

Read only None

Name String. Gets the unique name of the
formula field in Crystal formula format
as it would be referenced in the report
(for example, {@ExampleFormula}).

Read only None

NextValue Variant. Gets the field next value. Read only Can be read only
when top-level
Report object is
formatting active.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read only None
112 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Remarks

Crystal Reports 8.0 supports formulas in Crystal Reports syntax and Visual Basic
syntax. When setting text to a formula, the syntax is determined by the
FormulaSyntax property of the parent “Report Object” on page 150. The default
syntax is Crystal Report syntax (crCrystalSyntaxFormula).

FormulaFieldDefinition Object Methods
The following methods are discussed in this section:

“Check Method (FormulaFieldDefinition Object)” on page 113

Check Method (FormulaFieldDefinition Object)
The Check method checks formula for errors (syntax errors).

Syntax

Sub Check (pBool As Boolean, ppErrorString As String)

Parameters

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

PreviousValue Variant. Gets the field previous value. Read only Can be read only
when top-level
Report object is
formatting active.

Text String. Gets or sets the text of the
formula. The formula text is changed
immediately in the report. If you
generate a report with an invalid
formula, you may receive an exception
error. Syntax can be Crystal Refort or
Visual Basic. See Remarks below.

Read/
Write

Can be written
only when
formatting idle.

Value Variant. Gets the field current value. Read only Can be read only
when top-level
Report object is
formatting active.

ValueType “CRFieldValueType” on page 212. Gets
which type of value is found in the field.

Read only None

Property Description Read/
Write

Restriction in
event handler

Parameter Description

pBool Boolean value indicating the condition of the formula string. Will be set to TRUE
if the formula is valid and FALSE if the formula contains one or more errors.

ppErrorString Specifies the error message string if the formula contains an error.
Crystal Reports User’s Guide 113

FormulaFieldDefinition Object
FormulaFieldDefinitions Collection
The FormulaFieldDefinitions Collection is a collection of named formulas in the
report. Access a specific “FormulaFieldDefinition Object” on page 112, in the
collection using the Item property.

FormulaFieldDefinitions Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a formula field
directly (for example, FormulaFieldDefinitions(1)).

FormulaFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (FormulaFieldDefinitions Collection)” on page 114

“Delete Method (FormulaFieldDefinitions Collection)” on page 115

Add Method (FormulaFieldDefinitions Collection)

Use Add method to add the specified formula field to the FormulaFieldDefinitions
Collection.

Syntax

Function Add (formulaName As String,

Text As String) As FormulaFieldDefinition

Parameters

Property Description Read/
Write

Restriction in
event handler

Count Long. Gets the number of formula field
definitions in the collection.

Read only None

Item (index
As Long)

“FormulaFieldDefinitions Collection” on
page 114. Gets collection item. See Remarks
below.

Read only None

Parent “Report Object” on page 150. Gets reference to
the parent object.

Read only None

Parameter Description

formulaName Specifies the formula field that you want to add to the Collection.

Text Specifies the text of the formula field that you want to add.
114 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Returns

Returns a FormulaFieldDefinition member of the Collection.

Delete Method (FormulaFieldDefinitions Collection)

Use Delete method to remove the specified formula field from the
FormulaFieldDefinitions Collection

Syntax

Sub Delete (index)

Parameter

GraphObject Object
The GraphObject Object represents a graph/chart found in a report. This object
provides properties for retrieving information and setting options for a graph in your
report (that is, graph data type - group, detail or graph display type - bar, pie, etc.).

GraphObject Object Properties

Parameter Description

index Specifies the formula field that you want to delete from the Collection.

Property Description Read/
Write

Restriction in
event handler

AutoRange
Data2Axis

Boolean. Gets or sets the auto range option
for data2 axis. See Remarks below.

Read/
Write

Can be written only when
formatting idle.

AutoRange
DataAxis

Boolean. Gets or sets the auto range option
for data axis. See Remarks below.

Read/
Write

Can be written only when
formatting idle.

BackColor OLE_COLOR. Gets or sets the object
background color.

Read/
Write

Can be written only when
formatting idle or active.

BarSize “CRBarSize” on page 207. Gets or sets the
bar size.

Read/
Write

Can be written only when
formatting idle.

BorderColor OLE_COLOR. Gets or sets the object
border color.

Read/
Write

Can be written only when
formatting idle or active.

BottomLine
Style

“CRLineStyle” on page 218. Gets or sets
the bottom line style.

Read/
Write

Can be written only when
formatting idle or active.

CloseAt
PageBreak

Boolean. Gets or sets the close border on
page break option.

Read/
Write

Can be written only when
formatting idle or active.

Condition
Fields

“FieldDefinitions Collection” on page 104.
Gets the condition fields Collection.

Read
only

None
Crystal Reports User’s Guide 115

GraphObject Object
CrossTab
Object

“CrossTabObject Object” on page 82. Gets
the crosstab object if this is a CrossTab
chart.

Read
only

None

Data2Axis
Division
Method

“CRDivisionMethod” on page 210. Gets or
sets the data2 axis division method.

Read/
Write

Can be written only when
formatting idle.

Data2Axis
Division
Number

Long. Gets or sets the data2 axis division
number.

Read/
Write

Can be written only when
formatting idle.

Data2Axis
Gridline

“CRGridlineType” on page 215. Gets or
sets the data2 axis grid line type.

Read/
Write

Can be written only when
formatting idle.

Data2Axis
Number
Format

“CRNumberFormat” on page 220. Gets or
sets the data2 axis number format.

Read/
Write

Can be written only when
formatting idle.

DataAxis
Division
Method

“CRDivisionMethod” on page 210. Gets or
sets the data axis division method.

Read/
Write

Can be written only when
formatting idle.

DataAxis
Division
Number

Long. Gets or sets the data axis division
number.

Read/
Write

Can be written only when
formatting idle.

DataAxis
Gridline

“CRGridlineType” on page 215. Gets or
sets the data axis grid line type.

Read/
Write

Can be written only when
formatting idle.

DataAxis
Number
Format

“CRNumberFormat” on page 220. Gets or
sets the data axis number format.

Read/
Write

Can be written only when
formatting idle.

DataLabel
Font

IFontDisp. Gets or sets standard OLE font
for chart data labels.

Read/
Write

Can be written only when
formatting idle.

DataPoint “CRGraphDataPoint” on page 213. Gets or
sets the graph data points on risers.

Read/
Write

Can be written only when
formatting idle.

DataTitle
Font

IFontDisp. Gets or sets standard OLE font
for chart data title.

Read/
Write

Can be written only when
formatting idle.

DataType “CRGraphDataType” on page 213.
Returns which type of data used in the
graph.

Read
only

None

DataValue
Number
Format

“CRNumberFormat” on page 220. Gets or
sets the data value number format.

Read/
Write

Can be written only when
formatting idle.

EnableAuto
Scale
DataAxis

Boolean. Gets or sets the data axis auto-
scale option.

Read/
Write

Can be written only when
formatting idle.

EnableAuto
Scale
Data2Axis

Boolean. Gets or sets the data2 axis auto-
scale option.

Read/
Write

Can be written only when
formatting idle.

Property Description Read/
Write

Restriction in
event handler
116 Crystal Reports User’s Guide

3 Report Designer Component Object Model
EnableFor
EachRecord

Boolean. Gets or sets the enable for each
record option.

Read/
Write

Can be written only when
formatting idle.

EnableShow
Legend

Boolean. Gets or sets the show legend
option.

Read/
Write

Can be written only when
formatting idle.

Enable
Summarize
Values

Boolean. Gets or sets the enable
summarize values option.

Read/
Write

Can be written only when
formatting idle.

FootNote String. Gets or sets the footnote. Read/
Write

Can be written only when
formatting idle.

Footnote
Font

IFontDisp. Gets or sets standard OLE font
for chart footnote.

Read/
Write

Can be written only when
formatting idle.

GraphColor crgraphcolor. Gets or sets the graph color. Read/
Write

Can be written only when
formatting idle.

Graph
Direction

“CRGraphDirection” on page 214. Gets or
sets the graph direction.

Read/
Write

Can be written only when
formatting idle.

GraphType “CRGraphType” on page 214. Gets or sets
the graph type.

Read/
Write

Can be written only when
formatting idle.

GroupAxis
Gridline

“CRGridlineType” on page 215. Gets or
sets the group axis grid line type.

Read/
Write

Can be written only when
formatting idle.

GroupLabel
Font

IFontDisp. Gets or sets standard OLE font
for chart group labels.

Read/
Write

Can be written only when
formatting idle.

GroupsTitle String. Gets or sets the groups title. Read/
Write

Can be written only when
formatting idle.

GroupTitle
Font

IFontDisp. Gets or sets standard OLE font
for chart group title.

Read/
Write

Can be written only when
formatting idle.

HasDropSh
adow

Boolean. Gets or sets the border drop
shadow option.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets or sets the object height, in
twips.

Read/
Write

Can be written only when
formatting idle or active.

IsFootnote
ByDefault

Boolean. Gets or sets footnote default flag. Read/
Write

Can be written only when
formatting idle or active.

IsGroups
TitleBy
Default

Boolean. Gets or set groups title default
flag.

Read/
Write

Can be written only when
formatting idle or active.

IsSeriesTitle
ByDefault

Boolean. Gets or sets series title default
flag.

Read/
Write

Can be written only when
formatting idle or active.

IsSubTitle
ByDefault

Boolean. Get or sets subtitle default flag. Read/
Write

Can be written only when
formatting idle or active.

IsTitleBy
Default

Boolean. Gets or sets title default flag. Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in
event handler
Crystal Reports User’s Guide 117

GraphObject Object
Keep
Together

Boolean. Gets or sets keep object together
option.

Read/
Write

Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221. Gets which
kind of object (for example, box, cross-tab,
etc.).

Read
only

None

Left Long. Gets or sets the object upper left
position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

LeftLine
Style

“CRLineStyle” on page 218. Gets or sets
the left line style.

Read/
Write

Can be written only when
formatting idle or active.

LegendFont IFontDisp. Gets or sets standard OLE font
for legend.

Read/
Write

Can be written only when
formatting idle.

Legend
Layout

“CRPieLegendLayout” on page 224. Gets
or sets the legend layout for a pie chart.

Read/
Write

Can be written only when
formatting idle.

Legend
Position

“CRLegendPosition” on page 218. Gets or
sets the legend position.

Read/
Write

Can be written only when
formatting idle.

Marker
Shape

“CRMarkerShape” on page 219. Gets or
sets the marker shape.

Read/
Write

Can be written only when
formatting idle.

MarkerSize “CRMarkerSize” on page 219. Gets or sets
the marker size.

Read/
Write

Can be written only when
formatting idle.

MaxData2
AxisValue

Double. Gets or sets data2-axis max value.
See Remarks below.

Read/
Write

Can be written only when
formatting idle.

MaxData
AxisValue

Double. Gets or sets data-axis max value.
See Remarks below.

Read/
Write

Can be written only when
formatting idle.

MinData2
AxisValue

Double. Gets or sets data2-axis min value.
See Remarks below.

Read/
Write

Can be written only when
formatting idle.

MinData
AxisValue

Double. Gets or sets data-axis min value.
See Remarks below.

Read/
Write

Can be written only when
formatting idle.

Name String. Gets or sets the object name. Read/
Write

Can be written only when
formatting idle.

Parent “Section Object” on page 174. Gets
reference to the parent object.

Read
only

None

PieSize “CRPieSize” on page 224. Gets or sets the
size for pie charts.

Read/
Write

Can be written only when
formatting idle.

RightLine
Style

“CRLineStyle” on page 218. Gets or sets
the right line style.

Read/
Write

Can be written only when
formatting idle or active.

SeriesAxis
Gridline

“CRGridlineType” on page 215. Gets or
sets the series axis grid line type.

Read/
Write

Can be written only when
formatting idle.

SeriesLabel
Font

IFontDisp. Gets or sets standard OLE font
for chart series labels.

Read/
Write

Can be written only when
formatting idle.

SeriesTitle String. Gets or sets the series title. Read/
Write

Can be written only when
formatting idle.

Property Description Read/
Write

Restriction in
event handler
118 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Remarks

Properties Max/MinData/SeriesAxisValue will be ignored if the corresponding
AutoRangeData/SeriesAxis property is set to TRUE. If the Max/
MinDataDataAxis/Series properties are set at runtime, then the corresponding
AutoRangeData/SeriesAxis must be set to FALSE.

SeriesTitle
Font

IFontDisp. Gets or sets standard OLE font
for chart series title.

Read/
Write

Can be written only when
formatting idle.

SliceDetach
ment

“CRSliceDetachment” on page 227. Gets
or sets the slice detachment.

Read/
Write

Can be written only when
formatting idle.

SubTitle String. Gets or sets subtitle. Read/
Write

Can be written only when
formatting idle.

SubTitle
Font

IFontDisp. Gets or sets standard OLE font
for chart subtitle.

Read/
Write

Can be written only when
formatting idle.

Summary
Fields

“SummaryFieldDefinitions Collection” on
page 200. Gets the summary fields
Collection.

Read
only

None

Suppress Boolean. Gets or sets the object visibility. Read/
Write

Can be written only when
formatting idle or active.

Title String. Gets or sets the title. Read/
Write

Can be written only when
formatting idle.

TitleFont IFontDisp. Gets or sets standard OLE font
for chart title.

Read/
Write

Can be written only when
formatting idle.

Top Long. Gets or sets the object upper top
position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

TopLine
Style

“CRLineStyle” on page 218. Gets or sets
the top line style.

Read/
Write

Can be written only when
formatting idle or active.

Viewing
Angle

“CRViewingAngle” on page 231. Gets or
sets the viewing angle.

Read/
Write

Can be written only when
formatting idle.

Width Long. Gets or sets the object width, in
twips.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in
event handler

This property must be set to FALSE... ...or this property will be ignored

AutoRangeData2Axis MaxData2AxisValue

AutoRangeDataAxis MaxDataAxisValue

AutoRangeData2Axis MinData2AxisValue

AutoRangeDataAxis MinDataAxisValue
Crystal Reports User’s Guide 119

GroupNameFieldDefinition Object
GroupNameFieldDefinition Object
The GroupNameFieldDefinition Object provides properties and methods for
retrieving information on a group name field found in a report (for example,
number of group, value type, etc.). A GroupNameFieldDefinition Object can be
obtained from the Field property of the “FieldObject Object” on page 106 when the
specified field is a group name field or from a “GroupNameFieldDefinitions
Collection” on page 121 retrieved from the GroupNameFields property of the
“Report Object” on page 150.

GroupNameFieldDefinition Object Properties

Property Description Read/
Write

Restriction in
event handler

GroupNameField
Name

String. Gets the group name field name. Read
only

None

GroupNumber Integer. If the area is a group, this gets
the group number. Otherwise, exception
is thrown.

Read
only

None

Kind “CRFieldKind” on page 212. Gets which
kind of field (for example, database,
summary, formula, etc.).

Read
only

None

Name String. Gets the field definition unique
formula name in Crystal Report formula
syntax.

Read
only

None

NextValue Variant. Gets the field next value. Read
only

Can be read only when
top-level Report object
is formatting active.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read
only

None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read
only

None

PreviousValue Variant. Gets the field previous value. Read
only

Can be read only when
top-level Report object
is formatting active.

Value Variant. Gets the field current value. Read
only

Can be read only when
top-level Report object
is formatting active.

ValueType “CRFieldValueType” on page 212. Gets
which type of value is found in the field.

Read
only

None
120 Crystal Reports User’s Guide

3 Report Designer Component Object Model
GroupNameFieldDefinitions Collection
The GroupNameFieldDefinitions Collection is a collection of named groups in the
report. Access a specific “GroupNameFieldDefinition Object” on page 120 in the
collection using the Item property.

GroupNameFieldDefinitions Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a group name field
directly (for example, GroupNameFieldDefinitions(1)).

FieldDefinition Object
The IFieldDefinition Object provides generic properties for the various types of
field definition objects.

FieldDefinition Object Properties

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of group name field
definitions in the Collection.

Read only None

Item (index
As Long)

“GroupNameFieldDefinition Object” on
page 120. Gets the specified object from the
Collection. Item has an index parameter that is
the 1-based index number of the Object in the
Collection. The items in the collection are indexed
in the order they were added to the report.

Read only None

Parent “Report Object” on page 150. Gets reference to
the parent object.

Read only None

Property Description Read/
Write

Restriction in
event handler

Kind “CRFieldKind” on page 212. Gets field
definition kind.

Read only None

Name String. Gets field definition unique formula
name.

Read only None

NextValue Variant. Gets the field next value. Read only None

NumberOfBytes Integer. Gets field number of bytes. Read only None

Parent “Report Object” on page 150. Gets reference to
the parent object.

Read only None

PreviousValue Variant. Gets the field previous value. Read only None
Crystal Reports User’s Guide 121

IReportObject
IReportObject
The IReportObject Object provides generic properties for the various types of
report objects.

ReportObject Properties

UseCount Long. Gets the field use count. Read only None

Value Variant. Gets the field current value. Read only None

ValueType “CRFieldValueType” on page 212. Gets the
field value type.

Read only None

Property Description Read/
Write

Restriction in
event handler

Property Description Read/
Write

Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/
Write

Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/
Write

Can be written only when
formatting idle or active.

BottomLineStyle “CRLineStyle” on page 218. Gets or
sets bottom line style.

Read/
Write

Can be written only when
formatting idle or active.

CloseAtPageBreak Boolean. Gets or sets the close
border on page break option.

Read/
Write

Can be written only when
formatting idle or active.

EnableTight
Horizontal

Boolean. Gets or sets the enable
tight horizontal option.

Read/
Write

Can be written only when
formatting idle or active.

HasDropShadow Boolean. Gets or sets the border
drop shadow option.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets or sets object height, in
twips.

Read/
Write

Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the keep object
together option.

Read/
Write

Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221. Gets
which kind of object (for example,
box, cross-tab, field, etc.).

Read
only

None

Left Long. Gets or sets the object upper
left position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

LeftLineStyle “CRLineStyle” on page 218. Gets or
sets the left line style.

Read/
Write

Can be written only when
formatting idle or active.

Name String. Gets or sets the object name. Read/
Write

Can be written only when
formatting idle or active.
122 Crystal Reports User’s Guide

3 Report Designer Component Object Model
LineObject Object
The LineObject Object represents a line drawn on a report. This object provides
properties for getting information for lines on a report.

LineObject Object Properties

Parent “Section Object” on page 174.
Reference to the parent object.

Read
only

Can be written only when
formatting idle or active.

RightLineStyle “CRLineStyle” on page 218. Gets or
sets the right line style.

Read/
Write

Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets the object
visibility.

Read/
Write

Can be written only when
formatting idle or active.

Top Long. Gets or sets the object upper
top position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218. Gets or
sets the top line style.

Read/
Write

Can be written only when
formatting idle or active.

Width Long. Gets or sets the object width,
in twips.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in
event handler

Property Description Read/Write Restriction in
event handler

Bottom Long. Gets or sets the line lower
bottom position, in twips.

Read/
Write

Can be written only
when formatting idle.

EndSection “Section Object” on page 174.
Gets the end section.

Read only None

ExtendToBottom
OfSection

Boolean. Gets or sets the extend
to bottom of section option.

Read/
Write

Can be written only
when formatting idle.

Kind “CRObjectKind” on page 221.
Gets which kind of object (for
example, box, cross-tab, field,
etc.).

Read only None

Left Long. Gets or sets the object
upper left position, in twips.

Read/
Write

Can be written only
when formatting idle.

LineColor OLE_COLOR. Gets or sets the
line color.

Read/
Write

Can be written only
when formatting idle.

LineStyle “CRLineStyle” on page 218. Gets
or sets the line style. See Remarks
below.

Read/
Write

Can be written only
when formatting idle.
Crystal Reports User’s Guide 123

MapObject Object
Remarks

For property LineStyle, crLSDoubleLine and crLSNoLine are not valid.

MapObject Object
The MapObject Object represents a geographic map object in a report. This object
provides properties for getting information for Map objects in a report.

MapObject Object Properties

LineThickness Long. Gets or sets the line
thickness, in twips.

Read/
Write

Can be written only
when formatting idle.

Name String. Gets or sets object name. Read/
Write

Can be written only
when formatting idle.

Parent “Section Object” on page 174.
Gets reference to the parent
object.

Read only None

Right Long. Gets or sets the line lower
right position, in twips.

Read/
Write

Can be written only
when formatting idle.

Suppress Boolean. Gets or sets the object
visibility.

Read/
Write

Can be written only
when formatting idle.

Top Long. Gets or sets the object
upper top position, in twips.

Read/
Write

Can be written only
when formatting idle.

Property Description Read/Write Restriction in
event handler

Property Description Read/
Write

Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/
Write

Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/
Write

Can be written only when
formatting idle or active.

BottomLine
Style

“CRLineStyle” on page 218. Gets or
sets the bottom line style.

Read/
Write

Can be written only when
formatting idle or active.

CloseAtPage
Break

Boolean. Gets or sets the close
border on page break option.

Read/
Write

Can be written only when
formatting idle or active.

HasDrop
Shadow

Boolean. Gets or sets the border
drop shadow option.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets or sets the object height,
in twips.

Read/
Write

Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the keep
object together option.

Read/
Write

Can be written only when
formatting idle or active.
124 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ObjectSummaryFieldDefinitions Collection
ObjectSummaryFieldDefinitions is a Collection of “SummaryFieldDefinition
Object” on page 198 Objects.

ObjectSummaryFieldDefinitions Collection Properties

Kind “CRObjectKind” on page 221. Gets
which kind of object (for example,
box, cross-tab, field, etc.).

Read only None

Left Long. Gets or sets the object upper
left position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

LeftLineStyle “CRLineStyle” on page 218. Gets or
sets the left line style.

Read/
Write

Can be written only when
formatting idle or active.

Name String. Gets or sets the object name. Read/
Write

Can be written only when
formatting idle.

Parent “Section Object” on page 174. Gets
reference to the parent object.

Read only None

RightLineStyle “CRLineStyle” on page 218. Gets or
sets the right line style.

Read/
Write

Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets the object
visibility.

Read/
Write

Can be written only when
formatting idle or active.

Top Long. Gets or sets the object upper
top position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218. Gets or
sets the top line style.

Read/
Write

Can be written only when
formatting idle or active.

Width Long. Gets or sets the object width,
in twips.

Read/
Write

Can be written only when
formatting idle or active.

Property Description Read/
Write

Restriction in
event handler

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of object summary field
definitions in the Collection.

Read only None

Item (index
As Long)

“SummaryFieldDefinition Object” on page 198.
Gets the specified object from the Collection. Item
has an index parameter that is the 1-based index
number of the Object in the Collection. The items
in the collection are indexed in the order they were
added to the report.

Read only None

Parent “IReportObject” on page 122. Gets reference to the
parent object.

Read only None
Crystal Reports User’s Guide 125

ObjectSummaryFieldDefinitions Collection
ObjectSummaryFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (ObjectSummaryFieldDefinitions Collection)” on page 126

“Delete Method (ObjectSummaryFieldDefinitions Collection)” on page 126

Add Method (ObjectSummaryFieldDefinitions Collection)

Use Add method to add the specified object summary field to the
ObjectSummaryFieldDefinitions Collection.

Syntax

Sub Add (summaryField)

Parameter

Delete Method (ObjectSummaryFieldDefinitions Collection)

Use Delete method to remove the specified object summary field from the
ObjectSummaryFieldDefinitions Collection.

Syntax

Sub Delete (index As Long)

Parameter

Parameter Description

summaryField Specifies the object summary field that you want to add to the Collection.

Parameter Description

index Specifies the object summary field that you want to delete from the Collection.
126 Crystal Reports User’s Guide

3 Report Designer Component Object Model
OlapGridObject Object
The OlapGridObject Object represents an Olap Object in a report.

OlapGridObject Object Properties

Property Description Read/
Write

Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/
Write

Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/
Write

Can be written only when
formatting idle or active.

BottomLineStyle “CRLineStyle” on page 218. Gets or
sets the bottom line style.

Read/
Write

Can be written only when
formatting idle or active.

CloseAtPageBreak Boolean. Gets or sets the close
border on page break option.

Read/
Write

Can be written only when
formatting idle or active.

HasDropShadow Boolean. Gets or sets the border
drop shadow option.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets the object height, in
twips.

Read
only

Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the keep
object together option.

Read/
Write

Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221. Gets
report object kind.

Read
only

None

Left Long. Gets or sets the object upper
left position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

LeftLineStyle “CRLineStyle” on page 218. Gets or
sets the left line style.

Read/
Write

Can be written only when
formatting idle or active.

Name String. Gets or sets the object name. Read/
Write

Can be written only when
formatting idle or active.

Parent “Section Object” on page 174. Gets
reference to the parent object.

Read
only

None

RightLineStyle “CRLineStyle” on page 218. Gets or
sets the right line style.

Read/
Write

Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets the object
visibility.

Read/
Write

Can be written only when
formatting idle or active.

Top Long. Gets or sets the object upper
top position, in twips.

Read/
Write

Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218. Gets or
sets the top line style.

Read/
Write

Can be written only when
formatting idle or active.

Width Long. Gets the object width, in
twips.

Read
only

Can be written only when
formatting idle or active.
Crystal Reports User’s Guide 127

OleObject Object
OleObject Object
The OleObject Object represents an OLE object in a report. This object provides
properties for getting information for OLE objects in a report.

OleObject Object Properties

Property Description Read/
Write

Restriction in event
handler

BackColor OLE_COLOR. Gets or sets the object
background color.

Read/
Write

Can be written only
when formatting idle or
active.

BorderColor OLE_COLOR. Gets or sets the object
border color.

Read/
Write

Can be written only
when formatting idle or
active.

Bottom
Cropping

Long. Gets or sets the bottom cropping
size, in twips.

Read/
Write

Can be written only
when formatting idle.

BottomLine
Style

“CRLineStyle” on page 218. Gets or sets
the bottom line style.

Read/
Write

Can be written only
when formatting idle or
active.

CloseAtPage
Break

Boolean. Gets or sets the close border on
page break option.

Read/
Write

Can be written only
when formatting idle or
active.

Formatted
Picture

IPictureDisp. Gets or sets the specified
picture during formatting.

Read/
Write

Can be read or written
only when top-level
Report object is
formatting active.

HasDrop
Shadow

Boolean. Gets or sets the border drop
shadow option.

Read/
Write

Can be written only
when formatting idle or
active.

Height Long. Gets or sets the object height, in
twips.

Read/
Write

Can be written only
when formatting idle or
active.

KeepTogether Boolean. Gets or sets the keep object
together option.

Read/
Write

Can be written only
when formatting idle or
active.

Kind “CRObjectKind” on page 221. Gets
which kind of object (for example, box,
cross-tab, field, etc.).

Read
only

None

Left Long. Gets or sets the object upper left
position, in twips.

Read/
Write

Can be written only
when formatting idle or
active.

LeftCropping Long. Gets or sets the left cropping size,
in twips.

Read/
Write

Can be written only
when formatting idle.
128 Crystal Reports User’s Guide

3 Report Designer Component Object Model
OleObject Object Methods
The following methods are discussed in this section:

“SetOleLocation Method (OleObject Object)” on page 129

SetOleLocation Method (OleObject Object)
Use SetOleLocation method to specify the location of an OLE Object.

LeftLineStyle “CRLineStyle” on page 218. Gets or sets
the left line style.

Read/
Write

Can be written only
when formatting idle or
active.

Name String. Gets or sets the object name. Read/
Write

Can be written only
when formatting idle.

Parent “Section Object” on page 174. Gets
reference to the parent object.

Read
only

None

RightCropping Long. Gets or sets the right cropping size,
in twips.

Read/
Write

Can be written only
when formatting idle.

RightLineStyle “CRLineStyle” on page 218. Gets or sets
the right line style.

Read/
Write

Can be written only
when formatting idle or
active.

Suppress Boolean. Gets or sets the object visibility. Read/
Write

Can be written only
when formatting idle or
active.

Top Long. Gets or sets the object upper top
position, in twips.

Read/
Write

Can be written only
when formatting idle or
active.

TopCropping Long. Gets or sets the top cropping size,
in twips.

Read/
Write

Can be written only
when formatting idle.

TopLineStyle “CRLineStyle” on page 218. Gets or sets
the top line style.

Read/
Write

Can be written only
when formatting idle or
active.

Width Long. Gets or sets the object width, in
twips.

Read/
Write

Can be written only
when formatting idle or
active.

XScaling Double. Gets or sets the width scaling
factor. For example, 1 means 100%, 2
means 200%, 0.5 means 50% etc. The
scaling factor may range from 0.01 to 100.

Read/
Write

Can be written only
when formatting idle.

YScaling Double. Gets or sets height scaling factor.
For example, 1 means 100%, 2 means
200%, 0.5 means 50% etc. The scaling
factor may range from 0.01 to 100.

Read/
Write

Can be written only
when formatting idle.

Property Description Read/
Write

Restriction in event
handler
Crystal Reports User’s Guide 129

Page Object
Syntax

Sub SetOleLocation (pLocation As String)

Parameter

Remarks

SetOleLocation must be called from the Format Event of the Section object, and
only when formatting active. For more more information see “Format Event
(Section Object)” on page 183.

Page Object
The Page Object is part of the Page Engine. Use the Page Engine when designing
web sites using Active Server Pages, the Crystal Report Engine Automation Server,
and the Crystal Design-Time ActiveX Control. Unless you are experienced with
the Crystal Report Engine Object Library, you should allow the Crystal Design-
Time ActiveX Control to generate VBScript code in your Active Server Pages that
controls the Page Engine objects.

The Page Engine generates pages of a report on the web server and sends the pages
to client web browsers as they are requested. For example, when a user first requests
a report, only the first page is sent to the web browser. If the user pages forward or
backward in the report, or requests a specific page, only that page is sent. This limits
the resources required by the web server and reduces download time for the client
browser. A Page Object is a single generated page that is sent to the browser.

Page Object Properties

Parameter Description

pLocation Specifies the location of the OLE Object.

Property Description Read/Write Restriction in
event handler

IsLastPage Boolean. Gets whether the page
generated is the last page of the report.

Read only None

IsMissing
TotalPageCount

Boolean. Gets whether the page misses
the total page count.

Read only None

PageNumber Long. Gets the page number. Read only None

Parent “PageGenerator Object” on page 135.
Gets reference to the parent object.

Read only None
130 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Page Object Methods
The following methods are discussed in this section:

“RenderEPF Method (Page Object)” on page 131

“RenderHTML Method (Page Object)” on page 131

RenderEPF Method (Page Object)

The RenderEPF method returns a variant that contains EPF data for the report
page. This method can be invoked only when in formatting idle mode.

Syntax

Function RenderEPF (resultType As CRRenderResultType)

Parameter

Returns

Returns the EPF stream.

Remarks

Currently only arrays are supported.

RenderHTML Method (Page Object)

The RenderHTML method returns a variant that contains HTML data for the
report page. This method can be invoked only when in formatting idle mode.

Syntax

Function RenderHTML (includeDrillDownLinks As Boolean,

pageStyle As CRHTMLPageStyle, toolbarStyle As CRHTMLToolbarStyle,

baseURL As String, resultType As CRRenderResultType)

Parameters

Parameter Description

ResultType “CRRenderResultType” on page 225. Specifies whether the page will be
rendered using strings or arrays. See Remarks below.

Parameter Description

includeDrillDown
Links

Indicates whether or not the HTML page will include hyperlinks for
drilling-down on summary data.

pageStyle “CRHTMLPageStyle” on page 217. Specifies the style of the HTML page
to be rendered.
Crystal Reports User’s Guide 131

PageEngine Object
Returns

Returns the HTML stream.

Remarks

Currently only arrays are supported.

PageEngine Object
Use the PageEngine object when designing web sites using Active Server Pages, the
Crystal Report Engine Automation Server, and the Crystal Design-Time ActiveX
Control. Unless you are experienced with the Crystal Report Engine Object Library,
you should allow the Crystal Design-Time ActiveX Control to generate VBScript
code in your Active Server Pages that controls the Page Engine objects.

The Page Engine generates pages of a report on the web server and sends the pages
to client web browsers as they are requested. For example, when a user first
requests a report, only the first page is sent to the web browser. If the user pages
forward or backward in the report, or requests a specific page, only that page is
sent. This limits the resources required by the web server and reduces download
time for the client browser.

PageEngine Object Properties

toolbarStyle “CRHTMLToolbarStyle” on page 217. Bitwise constant specifies the style
of the toolbar to be used. Constants can be XOR’d.

baseURL The URL used to access the report when it is first generated.

resultType “CRRenderResultType” on page 225. Specifies whether the page will be
rendered using strings or arrays. See Remarks below.

Parameter Description

Property Description Read/
Write

Restriction in
event handler

ImageOptions “CRImageType” on page 217. Gets or sets
the image type for EPF format.

Read/
Write

Can be written only
when formatting idle.

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read
only

None

PlaceHolder
Options

“CRPlaceHolderType” on page 224. Gets
or sets the EPF place holder options.

Read/
Write

Can be written only
when formatting idle.

ValueFormat
Options

“CRValueFormatType” on page 231. Gets
or sets the EPF value format options.

Read/
Write

Can be written only
when formatting idle.
132 Crystal Reports User’s Guide

3 Report Designer Component Object Model
PageEngine Object Methods
The following methods are discussed in this section:

“CreatePageGenerator Method (PageEngine Object)” on page 133

“RenderTotallerETF Method (PageEngine Object)” on page 133

“RenderTotallerHTML Method (PageEngine Object)” on page 134

CreatePageGenerator Method (PageEngine Object)

The CreatePageGenerator method returns a “PageGenerator Object” on page 135,
allowing you to get pages from the view of the report, specified by the GroupPath
parameter. This method can be invoked only when in formatting idle mode.

Syntax

Function CreatePageGenerator (GroupPath, [DrillDownLevel]) As PageGenerator

Parameter

Returns

Returns a “PageGenerator Object” on page 135.

RenderTotallerETF Method (PageEngine Object)

The RenderTotallerETF method returns a variant that contains ETF data for the
Group Tree. This method can be invoked only when in formatting idle mode.

Syntax

Function RenderTotallerETF (rootGroupPath, startingChildNumber As Long,

pastRootLevels As Integer, maxNodeCount,

resultType As CRRenderResultType)

Parameter Description

GroupPath Specifies an integer array that represents the group path. An empty array
would represent the entire report, an array (0, 1) would represent a drill
down on the second group member within the first group member where
0 = first group in Group #1 and 1 = second group in Group #2.

[DrillDownLevel] Reserved. Do not use.
Crystal Reports User’s Guide 133

PageEngine Object
Parameters

Returns

Returns the Totaller ETF stream.

Remarks

Currently only arrays are supported.

RenderTotallerHTML Method (PageEngine Object)
The RenderTotallerHTML method returns a variant that contains HTML data for
the Group Tree. This method can be invoked only when in formatting idle mode.

Syntax

Function RenderTotallerHTML (rootGroupPath, startingChildNumber As Long,

pastRootLevels As Integer, maxNodeCount, openGroupPath,

includeDrillDownLinks As Boolean, baseURL As String,

resultType As CRRenderResultType)

Parameters

Parameter Description

rootGroupPath Specifies an integer array that represents the group path. An empty
array would represent the entire report, an array (0, 1) would represent a
drill down on the second group member within the first group member
where 0 = first group in Group #1 and 1 = second group in Group #2.

startingChildNumber The start child number to display.

pastRootLevels Past root levels.

maxNodeCount The maximum number of nodes for each group level in the Group Tree.

resultType “CRRenderResultType” on page 225. Specifies whether the page will be
rendered using strings or arrays. See Remarks below.

Parameter Description

rootGroupPath Specifies the base URL string.

startingChildNumber The start child number to display.

pastRootLevels A value indicating the number of past root levels.

maxNodeCount The maximum number of nodes to display for each group level in
the Group Tree.

openGroupPath An array of groups to be opened in the report.

includeDrillDownLinks Indicates whether or not drill down hyperlinks are generated for
summary values in the report.

baseURL The URL used to access the report when it is first generated.

resultType “CRRenderResultType” on page 225. Specifies whether the page
will be rendered using strings or arrays. See Remarks below.
134 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Returns

Returns the HTML stream.

Remarks

Currently only arrays are supported.

PageGenerator Object
The PageGenerator Object is part of the Page Engine. Use the Page Engine when
designing web sites using Active Server Pages, the Crystal Report Engine
Automation Server, and the Crystal Design-Time ActiveX Control. Unless you are
experienced with the Crystal Report Engine Object Library, you should allow the
Crystal Design-Time ActiveX Control to generate VBScript code in your Active
Server Pages that controls the Page Engine objects.

The Page Engine generates pages of a report on the web server and sends the pages
to client web browsers as they are requested. For example, when a user first requests
a report, only the first page is sent to the web browser. If the user pages forward or
backward in the report, or requests a specific page, only that page is sent. This limits
the resources required by the web server and reduces download time for the client
browser. A PageGenerator object generates “Page Object” on page 130, as they are
requested and allows options for manipulating the report as a whole.

PageGenerator Object Properties

Property Description Read/
Write

Restriction in
event handler

ContainingGroup
Name

String. Gets containing group name for
out of place subreport view.

Read only None

ContainingGroup
Path

Variant. Gets containing group path for
out of place subreport view.

Read only None

ContainingPage
Number

Long. Gets containing page number for
out of place subreport view.

Read only None

DrillDownLevel Ignore. This property is currently
reserved.

Read only None

GroupName String. Gets the group name for drill
down on graph view.

Read only None

GroupPath Variant. Gets the GroupPath parameter
set by “CreatePageGenerator Method
(PageEngine Object)” on page 133.

Read only None

Pages “Pages Collection” on page 141. Gets the
collection of pages for a specified view.

Read only None
Crystal Reports User’s Guide 135

PageGenerator Object
PageGenerator Object Methods
The following methods are discussed in this section:

“CreateSubreportPageGenerator Method (PageGenerator Object)” on page 136.

“DrillOnGraph Method (PageGenerator Object)” on page 137.

“DrillOnMap Method (PageGenerator Object)” on page 137.

“DrillOnSubreport Method (PageGenerator Object)” on page 138.

“Export Method (PageGenerator Object)” on page 138.

“FindText Method (PageGenerator Object)” on page 138.

“GetPageNumberForGroup Method (PageGenerator Object)” on page 139.

“RenderTotallerETF Method (PageGenerator Object)” on page 139.

“RenderTotallerHTML Method (PageGenerator Object)” on page 140.

CreateSubreportPageGenerator Method (PageGenerator Object)

Use CreateSubreportPageGenerator method to create a page generator that
contains the subreport view context.

Syntax

Function CreateSubreportPageGenerator (GroupPath, [DrillDownLevel]

) As PageGenerator

Parameters

Parent “PageEngine Object” on page 132. Gets
reference to the parent object.

Read only None

ReportName String. Gets the report name for drill
down on out of place subreport view.

Read only None

xOffset Long. Gets the object x-offset. Read only None

yOffset Long. Gets the object y-offset. Read only None

Property Description Read/
Write

Restriction in
event handler

Parameter Description

GroupPath Specifies an integer array that represents the group path. An empty array
would represent the entire report, an array (0, 1) would represent a drill
down on the second group member within the first group memberwhere
0 = first group in Group #1 and 1 = second group in Group #2.

[DrillDownLevel] Reserved. Do not use.
136 Crystal Reports User’s Guide

3 Report Designer Component Object Model
DrillOnGraph Method (PageGenerator Object)

The DrillOnGraph method creates a new “PageGenerator Object” on page 135 that
results from drilling down on the specified point in a graph on the given page. This
method can be invoked only when in formatting idle mode.

Syntax

Function DrillOnGraph (PageNumber As Long, xOffset As Long, yOffset As

Long

) As PageGenerator

Parameters

Returns

Returns a “PageGenerator Object” on page 135.

DrillOnMap Method (PageGenerator Object)

The DrillOnMap method creates a new“PageGenerator Object” on page 135, that
results from drilling down on the specified point in a map on the given page. This
method can be invoked only when in formatting idle mode.

Syntax

Function DrillOnMap (PageNumber As Long, xOffset As Long, yOffset As Long

) As PageGenerator

Parameters

Returns

Returns a “PageGenerator Object” on page 135.

Parameter Description

PageNumber Specifies the page number.

xOffset Specifies the X coordinate on page, in twips, where the drill down occurred.

yYOffset Specifies the Y coordinate on page, in twips, where the drill down occurred.

Parameter Description

PageNumber Specifies the page number.

xOffset Specifies the X coordinate on page, in twips, where the drill down occurred.

yOffset Specifies the Y coordinate on page, in twips, where the drill down occurred.
Crystal Reports User’s Guide 137

PageGenerator Object
DrillOnSubreport Method (PageGenerator Object)

The DrillOnSubreport method creates a new “PageGenerator Object” on page 135,
that results from drilling down on the specified point in a real-time subreport on
the given page. This method can be invoked only when in formatting idle mode.

Syntax

Function DrillOnSubreport (PageNumber As Long, xOffset As Long,

yOffset As Long) As PageGenerator

Parameters

Returns

Returns a “PageGenerator Object” on page 135.

Export Method (PageGenerator Object)

Use Export method to obtain an export stream.

Syntax

Function Export (resultType As CRRenderResultType)

Parameter

Returns

Returns the export data stream.

FindText Method (PageGenerator Object)

Use FindText method to search for a text string in the specified direction starting
on the specified page in the current drill down view.

Syntax

Function FindText (Text As String, direction As CRSearchDirection,

pPageNumber) As Boolean

Parameter Description

PageNumber Specifies the page number.

xOffset Specifies the X coordinate on page, in twips, where the drill down occurred.

yOffset Specifies the Y coordinate on page, in twips, where the drill down occurred.

Parameter Description

resultType “CRRenderResultType” on page 225. Sepcifies the result type.
138 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Returns

� TRUE if the specified text string is found.
� FALSE if the specified text string is not found.

GetPageNumberForGroup Method (PageGenerator Object)

The GetPageNumberForGroup method returns the page number on which the
specified group starts. This method can be invoked only when in formatting idle
mode.

Syntax

Function GetPageNumberForGroup (GroupPath) As Long

Parameters

Returns

Returns the page number on which the specified group starts.

RenderTotallerETF Method (PageGenerator Object)

The RenderTotallerETF method returns a variant that contains ETF data for the
Group Tree. This method can be invoked only when in formatting idle mode.

Syntax

Function RenderTotallerETF (rootGroupPath, startingChildNumber As Long,

pastRootLevels As Integer, maxNodeCount,

resultType As CRRenderResultType)

Parameter Description

Text Specifies the text string that you want to search for.

direction “CRSearchDirection” on page 227. Specifies the direction that you want to
search.

pPageNumber Specifies the page on which you want to start the search.

Parameter Description

GroupPath Specifies an integer array that represents the group path. An empty array
would represent the entire report, an array (0, 1) would represent a drill down
on the second group member within the first group memberwhere 0 = first
group in Group #1 and 1 = second group in Group #2.
Crystal Reports User’s Guide 139

PageGenerator Object
Parameters

Returns

Returns the Totaller ETF stream.

Remarks

Currently only arrays are supported.

RenderTotallerHTML Method (PageGenerator Object)

The RenderTotallerHTML method returns a variant that contains HTML data for
the Group Tree. This method can be invoked only when in formatting idle mode.

Syntax
Function RenderTotallerHTML (rootGroupPath, startingChildNumber As Long,

pastRootLevels As Integer, maxNodeCount, openGroupPath,

includeDrillDownLinks As Boolean, baseURL As String,

resultType As CRRenderResultType)

Parameters

Parameter Description

rootGroupPath Specifies an integer array that represents the root group path. An empty
array would represent the entire report, an array (0, 1) would represent a
drill down on the second group member within the first group member
where 0 = first group in Group #1 and 1 = second group in Group #2.

startingChildNumber The starting child level to display the report grouping at.

pastRootLevels Specifies the number of past root levels.

maxNodeCount The maximum number of nodes for each group level in the Group Tree.

resultType “CRRenderResultType” on page 225. Specifies whether the page will
be rendered using strings or arrays. See Remarks below.

Parameter Description

rootGroupPath Specifies an integer array that represents the root group path. An empty
array would represent the entire report, an array (0, 1) would represent a drill
down on the second group member within the first group member where 0 =
first group in Group #1 and 1 = second group in Group #2.

startingChild
Number

The starting child level to display the report grouping at.

pastRootLevels A value indicating the number of past root levels.

maxNodeCount The maximum number of nodes to display for each group level in the Group
Tree.

openGroupPath An array of groups to be opened in the report.

includeDrill
DownLinks

Indicates whether or not drill down hyperlinks are generated for summary
values in the report.
140 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Returns

Returns the HTML stream.

Remarks

Currently only arrays are supported.

Pages Collection
The Pages Collection is part of the Page Engine. Use the Page Engine when
designing web sites using Active Server Pages, the Crystal Report Engine
Automation Server, and the Crystal Design-Time ActiveX Control. Unless you are
experienced with the Crystal Report Engine Object Library, you should allow the
Crystal Design-Time ActiveX Control to generate VBScript code in your Active
Server Pages that controls the Page Engine objects.

The Page Engine generates pages of a report on the web server and sends the pages
to client web browsers as they are requested. For example, when a user first
requests a report, only the first page is sent to the web browser. If the user pages
forward or backward in the report, or requests a specific page, only that page is
sent. This limits the resources required by the web server and reduces download
time for the client browser.

The Pages Collection is a collection of “Page Object” on page 130. Access a specific
Page Object in the collection using the Item property.

Pages Collection Properties

Remarks

Item is a default property. You can reference a page directly, for example, Pages(1).

baseURL The URL used to access the report when it is first generated.

resultType “CRRenderResultType” on page 225. Specifies whether the page will be
rendered using strings or arrays. See Remarks below.

Parameter Description

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of page objects in the
collection.

Read only None

Item (index
As Long)

“Page Object” on page 130. Gets the collection
item based on the 1-based index number.

Read only None

Parent “PageGenerator Object” on page 135. Gets
reference to the parent object.

Read only None
Crystal Reports User’s Guide 141

ParameterFieldDefinition Object
ParameterFieldDefinition Object
The ParameterFieldDefinition Object represents a parameter field in the report.
This object provides properties and methods for retrieving information and setting
options for a parameter field in your report (that is, current value, default value,
etc.). A ParameterFieldDefinition Object is obtain from the Field property of the
“FieldObject Object” on page 106, when the specified field is a parameter field or
from the “ParameterFieldDefinitions Collection” on page 148 Object under Report.

ParameterFieldDefinition Object Properties

Property Description Read/
Write

Restriction in
event handler

DisallowEditing Boolean. Gets or sets the disallowing
editing option.

Read/
Write

Can be written only
when formatting idle.

DiscreteOrRange
Kind

“CRDiscreteOrRangeKind” on
page 210. Gets or sets the parameter
value kind (discrete and/or range).

Read/
Write

Can be written only
when formatting idle.

EditMask String. Gets or sets edit mask for string
parameter. See Remarks below for
additional information.

Read/
Write

Can be written only
when formatting idle.

EnableExclusive
Group

Boolean. Works in conjunction with
property PlaceInGroup. If
EnableExclusiveGroup is TRUE, a
Bool parameter group can have only
one value set to TRUE; if FALSE, then
the group can have multiple values set
to TRUE.

Read/
Write

Can be written only
when formatting idle.

EnableMultiple
Values

Boolean. Gets or sets the allow
multiple values option.

Read/
Write

Can be written only
when formatting idle.

EnableNullValue Boolean. Gets or sets the value
nullable option for Stored Procedure
parameters.

Read/
Write

Can be written only
when formatting idle.

EnableRangeLimit Boolean. Gets or sets the option which
specifies if this parameter field value
should be in the specified range.

Read/
Write

Can be written only
when formatting idle.

EnableShow
DescriptionOnly

Boolean. Gets or sets the show
description for pick list option.

Read/
Write

Can be written only
when formatting idle.

EnableSortBasedOn
Desc

Boolean. Gets or sets the sort based on
description in pick list option.

Read/
Write

Can be written only
when formatting idle.

GroupNumber Integer. Gets or sets boolean group
number.

Read/
Write

Can be written only
when formatting idle.

IsCurrentValueSet Boolean. Gets whether the current
value has been set.

Read
only

None
142 Crystal Reports User’s Guide

3 Report Designer Component Object Model
IsDefaultValueSet Boolean. Gets whether the default
value has been set.

Read
only

None

Kind “CRFieldKind” on page 212. Gets
which kind of field (database,
summary, formula, etc.).

Read
only

None

MaximumValue Variant. Gets or sets the maximum
value. See Remarks below for
additional comments.

Read/
Write

Can be written only
when formatting idle.

MinimumValue Variant. Gets or sets minimum value.
See Remarks below for additional
comments.

Read/
Write

Can be written only
when formatting idle.

Name String. Gets the unique formula name
of the parameter field as it appears in
the Parameter Field list (RDC
DataView).

Read
only

None

NeedsCurrentValue Boolean. Gets whether the field needs
a current value.

Read
only

None

NextValue Variant. Gets the next field value. Read
only

Can be read only
when top-level
Report object is
formatting active.

NthValue
Description (index
As Integer)

String. Gets or sets nth value
description.

Read/
Write

Can be written only
when formatting idle.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read
only

None

NumberOfCurrent
Ranges

Integer. Gets total number of current
ranges.

Read
only

None

NumberOfCurrent
Values

Integer. Gets the total number of
current values.

Read
only

None

NumberOfDefault
Values

Integer. Gets the total number of
default values.

Read
only

None

ParameterField
Name

String. Gets the name of the parameter
field as it is displayed (referenced) in
the report (RDC DataView).

Read
only

None

ParameterType “CRParameterFieldType” on
page 223. Gets parameter type.

Read
only

None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read
only

None

PickListSortMethod “CRParameterPickListSortMethod”on
page 223. Gets or sets the sort method
in pick list option.

Read/
Write

Can be written only
when formatting idle.

Property Description Read/
Write

Restriction in
event handler
Crystal Reports User’s Guide 143

ParameterFieldDefinition Object
Remarks

� Regarding property EditMask, please see the additional information available
in Crystal Reports Online Help. Search for "Edit Parameter Field dialog box" in
the SCR Online Help index.

� Regarding properties MaximumValue and MinimumValue, the following
comments apply.
� All parameter field types: EnableRangeLimit property must be set to TRUE

for MaximumValue and Minimum Value properties to have an effect.
� String parameter fields: The properties provide the maximum and

minimum lengths of the string, not a value range.
� Boolean parameter fields: The properties do not apply.

� Regarding properties EditMask, MaximumValue and MinimumValue,
changing values associated with one or more of these properties may result in
the loss of default values that do not fall within the scope of the new EditMask,
MaximumValue or MinimumValue properties.

PlaceInGroup Boolean. Gets or sets, when prompting
for values, whether a Boolean parameter
field should appear as part of a Boolean
parameter group or individually. Used
in conjunction with Boolean property
EnableExclusiveGroup.

Read/
Write

Can be written only
when formatting idle.

PreviousValue Variant. Gets the field previous value. Read
only

Can be read only
when top-level
Report object is
formattiong active.

Prompt String. Gets or sets the parameter field
prompting string.

Read/
Write

None

ReportName String. Gets the report name the
parameter field is in. If it is a main
report, the ReportName is empty.

Read
only

None

Value Variant. Gets the current value of the
field.

Read
only

Can be read only
when top-level
Report object is
formatting active.

ValueType “CRFieldValueType” on page 212.
Gets which type of value is found in
the field.

Read
only

None

Property Description Read/
Write

Restriction in
event handler
144 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ParameterFieldDefinition Object Methods
The following methods are discussed in this section:

“AddCurrentRange Method (ParameterFieldDefinition Object)” on page 145

“AddCurrentValue Method (ParameterFieldDefinition Object)” on page 145

“AddDefaultValue Method (ParameterFieldDefinition Object)” on page 146

“ClearCurrentValueAndRange Method (ParameterFieldDefinition Object)” on
page 146

“DeleteNthDefaultValue Method (ParameterFieldDefinition Object)” on page 146

“GetNthCurrentRange Method (ParameterFieldDefinition Object)” on page 147

“GetNthCurrentValue Method (ParameterFieldDefinition Object)” on page 147

“GetNthDefaultValue Method (ParameterFieldDefinition Object)” on page 147

“SetNthDefaultValue Method (ParameterFieldDefinition Object)” on page 148

AddCurrentRange Method (ParameterFieldDefinition Object)

The AddCurrentRange method adds the current parameter range to the specified
parameter field of a report. When this method is used, property
DiscreteOrRangeKind must be crRangeValue.

Syntax

Sub AddCurrentRange (start, end, rangeInfo As CRRangeInfo)

Parameters

AddCurrentValue Method (ParameterFieldDefinition Object)

The AddCurrentValue method adds a value to the specified parameter field of a
report. When this method is used, property DiscreteOrRangeKind must be
crDiscreteValue.

Syntax

Sub AddCurrentValue (CurrentValue)

Parameter Description

start Sets start of the value range.

end Sets end of the value range.

rangeInfo “CRRangeInfo” on page 225. Use this bitwise value to indicate whether the
upper and/or lower bound of the range should be included.
Crystal Reports User’s Guide 145

ParameterFieldDefinition Object
Parameter

AddDefaultValue Method (ParameterFieldDefinition Object)

The AddDefaultValue method adds a value to the group of default values for a
specified parameter in a report. The default value set should fall within the scope
of properties EditMask and MaximumValue and MinimumValue, if set. Use this
method instead of SetDefaultValue if the parameter field allows multiple values.

Syntax

Sub AddDefaultValue (DefaultValue)

Parameter

ClearCurrentValueAndRange Method
(ParameterFieldDefinition Object)

The ClearCurrentValueAndRange method clears the specified parameter field of
all current values and ranges.

Syntax

Sub ClearCurrentValueAndRange ()

DeleteNthDefaultValue Method (ParameterFieldDefinition Object)

The DeleteNthDefaultValue method deletes the nth default value of the parameter
field.

Syntax

Sub DeleteNthDefaultValue(index As Integer)

Parameter

Parameter Description

CurrentValue Specifies the current value to be added.

Parameter Description

DefaultValue Specifies the default value to be added.

Parameter Description

index Index of the value to be deleted.
146 Crystal Reports User’s Guide

3 Report Designer Component Object Model
GetNthCurrentRange Method (ParameterFieldDefinition Object)
The GetNthCurrentRange method retrieves a value range from the specified
parameter field in a report.

Syntax
Sub GetNthCurrentRange (index As Integer, pStart, pEnd,

pRangeInfo As CRRangeInfo)

Parameters

GetNthCurrentValue Method (ParameterFieldDefinition Object)
The GetNthCurrentValue method returns a value from the specified parameter
field of a report.

Syntax
Function GetNthCurrentValue (index As Integer)

Parameter

Returns

Returns the current value specified by the index parameter.

GetNthDefaultValue Method (ParameterFieldDefinition Object)
Get NthDefaultValue method retrieves a default value for a specified parameter
field in a report.

Syntax
Function GetNthDefaultValue (index As Integer)

Parameter

Parameter Description

index Index of the value range to be retrieved.

pStart Sets start of the value range.

pEnd Sets end of the value range.

pRangeInfo “CRRangeInfo” on page 225. Use this bitwise value to indicate whether
the upper and/or lower bound of the range should be included.

Parameter Description

index Index number of the current value to be retrieved.

Parameter Description

index The index number of the default value to be retrieved.
Crystal Reports User’s Guide 147

ParameterFieldDefinitions Collection
Returns

Returns the default value specified by the index parameter.

SetNthDefaultValue Method (ParameterFieldDefinition Object)

The SetNthDefaultValue method sets a default value for a specified parameter
field in a report. The default value set should fall within range and property
EditMask if a string field, if set.

Syntax

Sub SetNthDefaultValue (index As Integer, nthDefaultValue)

Parameters

ParameterFieldDefinitions Collection
The ParameterFieldDefinitions Collection is a collection of parameter fields in the
report. If the report contains any subreports, parameter fields in the subreports
will also be included in the collection. Access a specific ParameterFieldDefinition.

ParameterFieldDefinitions Collection Properties

Remarks

Item is a default property. You can reference a parameter field directly, for
example, ParameterFieldDefinitions(1).

Parameter Description

index The index number of the default value to be set.

nthDefaultValue Specifies the default value that you want to set for parameter field.

Property Description Read/
Write

Restriction in
event handler

Count Long. Gets the number of parameter fields in
the collection.

Read only None

Item (index As
Long)

“ParameterFieldDefinition Object” on
page 142. Gets the item in the Collection
specified by parameter index.

Read only None

Parent “Report Object” on page 150. Gets reference to
the parent object.

Read only None
148 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ParameterFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (ParameterFieldDefinitions Collection)” on page 149

“Delete Method (ParameterFieldDefinitions Collection)” on page 149

Add Method (ParameterFieldDefinitions Collection)

Use Add method to add a “ParameterFieldDefinition Object” on page 142, to the
ParameterFieldDefinitions Collection.

Syntax

Function Add (parameterName As String, ValueType As CRFieldValueType

) As ParameterFieldDefinition

Parameters

Returns

Returns the ParameterFieldDefinition Object added to the Collection

Delete Method (ParameterFieldDefinitions Collection)

Use Delete method to remove a ParameterFieldDefinition Object from the
Collection.

Syntax

Sub Delete (index)

Parameter

Parameter Description

parameterName Specifies the parameter name.

ValueType “CRFieldValueType” on page 212. Specifies the value type of the field.

Parameter Description

index Specifies the index number of the item that you want to delete from the Collection.
Crystal Reports User’s Guide 149

PrintingStatus Object
PrintingStatus Object
The PrintingStatus Object provides properties for retrieving information and
setting options for the printing status of a report (for example, number of pages,
latest page to be printed, etc.). A PrintingStatus Object is obtained from the
PrintingStatus property of the “Report Object” on page 150.

PrintingStatus Object Properties

Report Object
A report corresponds to a print job in the Crystal Report Engine. When the report
object is destroyed, or goes out of focus, it closes the print job. It holds on to
“Application Object” on page 68. When a Report Object gets destroyed, it releases
the application.

Access to the Report Object is dependent on the object variable you create. If the
object variable goes out of scope, you will lose access to the Report Object and,
therefore, the report. You may want to declare your Report Object variable as Global.

Report Object Properties

Property Description Read/Write Restriction in
event handler

NumberOfPages Long. Gets the total number of pages
in the report.

Read only None

NumberOfRecord
Printed

Long. Gets the number of records
printed.

Read only None

NumberOfRecordRead Long. Gets the number of records read. Read only None

NumberOfRecord
Selected

Long. Gets the number of records
selected.

Read only None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

Progress “CRPrintingProgress” on page 225.
Gets the printing progress.

Read only None

Property Description Read/
Write

Restriction in
event handler

Application “Application Object” on page 68. Gets
reference to the Application Object that
the Report Object is associated with.

Read
only

None

Application
Name

String. Gets or sets the application
name.

Read/
Write

None
150 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Areas “Areas Collection” on page 77. Gets
reference to the Areas Collection, a
collection of all the areas in the report
which can be indexed by a number or
by a string, such as “RH”, “GF1”. The
areas are in the same order as on the
Crystal Reports Design Tab. For
Example: RH, PH, GH1,...GHn, D,
GFn,...GF1, RF, PF. The abbreviations
for areas are case sensitive.

Read
only

None

BottomMargin Long. Gets or sets the page bottom
margin, in twips.

Read/
Write

Can be written only
when formatting idle.

CanPerform
GroupingOn
Server

Boolean. Gets whether the report can
perform grouping on the server.

Read
only

None

CaseInsensitive
SQLData

Boolean. Gets or sets the report option
that indicates whether the SQL data
used in the report becomes case
sensitive.

Read/
Write

Can be written only
when formatting idle.

ConvertDate
TimeType

“CRConvertDateTimeType” on
page 208. Gets or sets the report option
that specifies the format to be converted
for date/time fields.

Read/
Write

Can be written only
when formatting idle.

ConvertNull
FieldToDefault

Boolean. Gets or sets the report option
that indicates whether to convert any
null values to the database field default.

Read/
Write

Can be written only
when formatting idle.

Database “Database Object” on page 85. Gets
reference to the Database Object which
represents the database used in the
report.

Read
only

None

DisplayProgress
Dialog

Boolean. Enable or disable the progress
dialog.

Read/
Write

Can be written only
when formatting idle.

DriverName String. Gets the printer driver name
used by the current report. Gets an
empty string if default printer is used.

Read
only

Can be written only
when formatting idle.

EnableAsync
Query

Boolean. Gets or sets the enable
AsyncQuery

Read/
Write

Can be written only
when formatting idle.

EnableGenerating
DataForHidden
Object

Boolean. Gets or sets the Enable
Generating Data For Hidden Object
option.

Read/
Write

Can be written only
when formatting idle.

EnableParameter
Prompting

Boolean. Gets or sets the prompting for
parameter fields option.

Read/
Write

Can be written only
when formatting idle.

EnablePerform
Queries
Asynchronously

Boolean. Gets or sets the perform
queries asynchronously option

Read/
Write

Can be written only
when formatting idle.

EnableSelect
DistinctRecords

Boolean. Gets or sets the select distinct
records option

Read/
Write

Can be written only
when formatting idle.
Crystal Reports User’s Guide 151

Report Object
ExportOptions “ExportOptions Object” on page 100.
Gets reference to ExportOptions Object
for the report.

Read
only

None

FieldMapping
Type

“CRFieldMappingType” on page 212.
Gets or sets the field mapping type.

Read/
Write

Can be written only
when formatting idle.

FormulaFields “FormulaFieldDefinitions Collection”
on page 114. Gets reference to Collection
of all the named FormulaFieldDefinitions
defined in the Report.

Read
only

None

FormulaSyntax “CRFormulaSyntax” on page 213. Gets
or sets report formula syntax.

Read/
Write

Can be written only
when formatting idle.

GroupName
Fields

“GroupNameFieldDefinitions
Collection” on page 121. Gets reference
to a collection of all the group name
fields defined in the report.

Read
only

None

GroupSelection
Formula

String. Gets or sets the group selection
formula.

Read/
Write

Can be written only
when formatting idle.

GroupSortFields “SortFields Collection” on page 187.
Gets reference to group sort field
collection.

Read
only

None

HasSavedData Boolean. Gets whether the report has
data saved in memory.

Read
only

None

KeywordsIn
Report

String. Gets or sets the keywords in the
report.

Read/
Write

Can be written only
when formatting idle.

Kind “CRReportKind” on page 225. Gets
what kind of report.

Read
only

None

LastGetFormula
Syntax

“CRFormulaSyntax” on page 213. Gets
the formula syntax of the last formula
text returned.

Read
only

None

LeftMargin Long. Gets or sets the page left margin,
in twips.

Read/
Write

Can be written only
when formatting idle.

MorePrintEngine
ErrorMessages

Boolean. Gets or sets the report option
that indicates whether to pop up
database error dialogs during printing
when a Report Engine error occurs.

Read/
Write

Can be written only
when formatting idle.

NumberOfGroup Long. Gets the number of groups in the
report.

Read
only

None

PageEngine “PageEngine Object” on page 132. Gets
reference to the PageEngine object.

Read
only

None

PaperOrientation “CRPaperOrientation” on page 221.
Gets or sets the current printer paper
orientation. For the default printer,
crDefaultPaperOrientation is returned.

Read/
Write

Can be written only
when formatting idle.
152 Crystal Reports User’s Guide

3 Report Designer Component Object Model
PaperSize “CRPaperSize” on page 221. Gets or
sets the current printer paper size. For
the default printer, crDefaultPaperSize
is returned.

Read/
Write

Can be read or written
only when formatting
idle.

PaperSource “CRPaperSource” on page 223. Gets or
sets the current printer paper source.

Read/
Write

Can be written only
when formatting idle.

ParameterFields “ParameterFieldDefinitions Collection”
on page 148. Gets reference to the
collection of all the
ParameterFieldDefinitions defined in
the report. This property will return
parameter fields found in the main
report as well as any subreports
included in the report (for example, if
the main report has 3 parameters and a
subreport included within the report
has an additional 2 parameters, the
number of parameter fields in the
collection returned by
Report.ParameterFields would be 5).

Read
only

None

Parent “Report Object” on page 150. Gets
reference to the parent object for
subreports. (NULL for main report).

Read
only

None

PerformGrouping
OnServer

Boolean. Gets or sets the performing
grouping on server option.

Read/
Write

Can be written only
when formatting idle.

PortName String. Gets the printer port name used
by the current report. Gets an empty
string if the default printer is used.

Read
only

None

PrintDate Date. Gets or sets the print date for the
report. By default, the current date will
be used.

Read/
Write

Can be written only
when formatting idle.

PrinterDuplex “CRPrinterDuplexType” on page 224.
Gets or sets the current printer duplex
option.

Read/
Write

Can be written only
when formatting idle.

PrinterName String. Gets the printer name used by
the report. Gets an empty string if the
default printer is used.

Read
only

None

PrintingStatus “PrintingStatus Object” on page 150.
Gets PrintingStatus Object for the
report.

Read
only

None

RecordSelection
Formula

String. Gets or sets record selection
formula.

Read/
Write

Can be written only
when formatting idle.

RecordSortFields “SortFields Collection” on page 187.
Gets a collection of record sort fields.

Read
only

None

ReportAlerts “ReportAlerts Collection” on page 164.
Gets reference to Collection of all the
named Report Alerts defined in the
Report.

Read
only

None
Crystal Reports User’s Guide 153

Report Object
ReportAuthor String. Gets or sets the report author. Read/
Write

Can be written only
when formatting idle.

ReportComments String. Gets or sets report comments. Read/
Write

Can be written only
when formatting idle.

ReportSubject String. Gets or sets the report subject. Read/
Write

Can be written only
when formatting idle.

ReportTemplate String. Gets or sets the report template. Read/
Write

Can be written only
when formatting idle.

ReportTitle String. Gets or sets the report title. Read/
Write

Can be written only
when formatting idle.

RightMargin Long. Gets or sets the page right
margin, in twips.

Read/
Write

Can be written only
when formatting idle.

RunningTotal
Fields

“RunningTotalFieldDefinitions
Collection” on page 172. Gets running
total fields collection.

Read
only

None

SavePreview
Picture

Boolean. Gets or sets save preview
picture with report option.

Read/
Write

None

Sections “Sections Collection” on page 185. Gets
collection of all the sections in the
report.

Read
only

None

SQLExpression
Fields

“SQLExpressionFieldDefinitions
Collection” on page 191. Gets SQL
expression field collection.

Read
only

None

SQLQueryString String. Gets or sets SQL query string. Read/
Write

Can be written only
when formatting idle.

SummaryFields “SummaryFieldDefinitions Collection”
on page 200. Gets collection for group
and report summaries (cross-tab
summaries not available using this
property).

Read
only

None

TopMargin Long. Gets or sets the page top margin,
in twips.

Read/
Write

Can be written only
when formatting idle.

TranslateDos
Memos

Boolean. Gets or sets the report option
that indicates whether to translate DOS
memos.

Read/
Write

Can be written only
when formatting idle.

TranslateDos
Strings

Boolean. Gets or sets the report option
that indicates whether to translate DOS
strings.

Read/
Write

Can be written only
when formatting idle.

UseIndexFor
Speed

Boolean. Gets or sets the use index for
speed during record selection report
option.

Read/
Write

Can be written only
when formatting idle.

VerifyOnEvery
Print

Boolean. Gets or sets the report option
that indicates whether to verify the
database every time the report is printed.

Read/
Write

Can be written only
when formatting idle.
154 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Report Object Methods
The following methods are discussed in this section:

“AddGroup Method (Report Object)” on page 155

“AddReportVariable Method (Report Object)” on page 156

“AutoSetUnboundFieldSource Method (Report Object)” on page 156

“CancelPrinting Method (Report Object)” on page 157

“DeleteGroup Method (Report Object)” on page 157

“DiscardSavedData Method (Report Object)” on page 157

“Export Method (Report Object)” on page 157

“GetNextRows Method (Report Object)” on page 158

“GetReportVariableValue Method (Report Object)” on page 158

“OpenSubreport Method (Report Object)” on page 159

“PrinterSetup Method (Report Object)” on page 159

“PrintOut Method (Report Object)” on page 159

“ReadRecords Method (Report Object)” on page 160

“SaveAs Method (Report Object)” on page 160

“SelectPrinter Method (Report Object)” on page 160

“SetDialogParentWindow Method (Report Object)” on page 161

“SetReportVariableValue Method (Report Object)” on page 161

“SetUnboundFieldSource Method (FieldObject Object)” on page 111

AddGroup Method (Report Object)

The AddGroup Method adds a group to the report. ConditionField indicates the
field for grouping, Condition indicates a change in a field value that generates a
grouping, and SortDirection specifies the direction in which groups are sorted.

Syntax

Sub AddGroup (GroupNumber As Integer, pConditionField As Object,

Condition As CRGroupCondition, SortDirection As CRSortDirection)
Crystal Reports User’s Guide 155

Report Object
Parameters

AddReportVariable Method (Report Object)

Use AddReportVariable method to add a report variable to the report. This
variable can then be used to provide a calculated field value in the Format Event.
You can add as many report variables to your report as you need. Each report
variable is identified by its name, which must be unique.

Syntax

Sub AddReportVariable (type As CRReportVariableValueType,

pName As String, [arraySize As Long], [reserved])

Parameters

 AutoSetUnboundFieldSource Method (Report Object)

Use AutoSetUnboundFieldSource method to automatically bind unbound report
fields to database fields based on the unbound field’s name or name and value type.

Syntax

Sub AutoSetUnboundFieldSource (matchType As CRBindingMatchType,

[bindSubReports])

Parameter Description

GroupNumber Specifies the number of the group to be added (the position of the group in
relation to existing groups). For example, to add a group to the first position,
set GroupNumber=1.

pConditionField Specifies the field to be grouped. The field can be a database field definition
object or the field name

condition “CRGroupCondition” on page 216. Specifies CRGroupCondition (see table
below) indicating the grouping condition (that is, group on any value).

SortDirection “CRSortDirection” on page 228. Specifies the sort direction for the group.

Parameter Description

type “CRReportVariableValueType” on page 226. Specifies the type of
variable that you want to add to the report.

pName Specifies the unique name for the report variable that you want to add.

[arraySize As Long] Reserved. Do not use.

[reserved] Reserved. Do not use.
156 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

CancelPrinting Method (Report Object)

Use CancelPrinting method to cancel the printing of a report.

Syntax

Sub CancelPrinting ()

DeleteGroup Method (Report Object)

Use DeleteGroup method to remove a group from a report.

Syntax

Sub DeleteGroup (GroupNumber As Integer)

Parameter

DiscardSavedData Method (Report Object)

Use DiscardSavedData method to discard any saved data with the report before
previewing. This method can be invoked only when in formatting idle mode.

Syntax

Sub DiscardSavedData ()

Export Method (Report Object)

Use Export method to export reports to a format and destination specified with
“ExportOptions Object” on page 100.

Syntax

Sub Export ([promptUser])

Parameter Description

matchType “CRBindingMatchType” on page 208. Specifies whether to match
name alone or name and data type.

[bindSubReports] Specifies whether or not to bind subreport unbound fields.

Parameter Description

GroupNumber Specifies the index number of the group that you want to delete from the
report.
Crystal Reports User’s Guide 157

Report Object
Parameters

GetNextRows Method (Report Object)

Use GetNextRows method to get the specified rowset.

Syntax

Function GetNextRows (startRowN As Long, pRowN As Long)

Parameters

Returns

Returns the specified rowset.

GetReportVariableValue Method (Report Object)

Use GetReportVariableValue method to get the value of the specified uniquely
named report variable. This call can only be made in the formatting active mode.

Syntax

Function GetReportVariableValue (pName As String)

Parameters

Returns

Returns value of the specified report variable.

Parameter Description

[promptUser] Specifies Boolean value indicating if user should be prompted for export
options. If you don’t want to prompt the user, then you must set all
necessary export options. The application will prompt automatically for
any missing export options, even if promptUser = FALSE. Default value =
TRUE (prompt user).

Parameter Description

startRowN Specifies the row number to start the rowset on.

pRowN Specifies the number of rows to return to the rowset.

Parameter Description

pName Specifies the unique name of the report variable for which you want to
get the value.
158 Crystal Reports User’s Guide

3 Report Designer Component Object Model
OpenSubreport Method (Report Object)

The OpenSubreport method opens a subreport contained in the report and returns
a Report Object corresponding to the named subreport.

Syntax

Function OpenSubreport (pSubreportName As String) As Report

Parameter

Returns

Returns the specified subreport as a Report Object.

PrinterSetup Method (Report Object)

Use PrinterSetup method to open the printer setup dialog box so that the user can
change printers or printer settings for the report.

Syntax

Sub PrinterSetup (hWnd As Long)

Parameter

PrintOut Method (Report Object)

Use PrintOut method to print out the specified pages of the report to the printer
selected using the “SelectPrinter Method (Report Object)” on page 160. If no
printer is selected, the default printer specified in the report will be used. This
method can be invoked only when in formatting idle mode.

Syntax

Sub PrintOut ([promptUser], [numberOfCopy], [collated],

[startPageN], [stopPageN])

Parameter Description

pSubreportName Specifies the file name of the subreport to be opened.

Parameter Description

hWnd Specifies the handle of the printer setup dialog box parent window. If you
pass 0, the top level application window will be the parent.
Crystal Reports User’s Guide 159

Report Object
Parameters

ReadRecords Method (Report Object)

Use ReadRecords method to force the report to read all records in the report from
the database.

Syntax

Sub ReadRecords ()

SaveAs Method (Report Object)

Use SaveAs method to save a report with the ability to specify Crystal Reports 8 or
7 version file format. The user can specify which format to use when saving the
report. This call can only be made in formatting idle mode.

Syntax

Sub SaveAs (pFilePath As String, fileFormat As CRReportFileFormat)

Parameters

SelectPrinter Method (Report Object)

The SelectPrinter method selects a different printer for the report. This method can
be invoked only when in formatting idle mode.

Parameter Description

[promptUser] Specifies Boolean value indicating if the user should be prompted for
printer options.

[numberOfCopy] Specifies the number of report copies you want printed.

[collated] Specifies Boolean value specifying whether or not you want the report
copies collated.

[startPageN] Specifies the first page that you want printed.

[stopPageN] Specifies the last page that you want printed.

Parameter Description

pFilePath Specifies the file path and name that you want to use to save the report.

fileFormat “CRReportFileFormat” on page 225. Specifies the file format that you
want to use to save the report.
160 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Syntax

Sub SelectPrinter (pDriverName As String, pPrinterName As String,

pPortName As String)

Parameters

SetDialogParentWindow Method (Report Object)

The SetDialogParentWindow method sets the dialog parent window.

Syntax

Sub SetDialogParentWindow (hWnd As Long)

Parameter

SetReportVariableValue Method (Report Object)

Use SetReportVariableValue method to set the value of a report variable into the
Print Engine. The report variable is designed to be used in Format Event to do
calculated fields. However, you should not depend on how many times an event
is fired to do total calculations -- make sure that the calculation for the report
variable is correct. The Print Engine keeps track of the status. This call can me made
only in formatting active mode.

Syntax

Sub SetReportVariableValue (pName As String, var)

Parameters

Parameter Description

pDriverName Specifies the name of the printer driver for the selected printer.

pPrinterName Specifies the printer name for the selected printer.

pPortName Specifies the port name for the port to which the selected printer is attached.

Parameter Description

hWnd Specifies the handle of the parent window.

Property Description

pName Specifies the name of the variable for which you want to set the value.

var Specifies the value that you want to set.
Crystal Reports User’s Guide 161

Report Object
Report Object Events
The following events are discussed in this section:

“AfterFormatPage Event (Report Object)” on page 162

“BeforeFormatPage Event (Report Object)” on page 162

“FieldMapping Event (Report Object)” on page 162

“NoData Event (Report Object)” on page 163

AfterFormatPage Event (Report Object)

The AfterFormatPage event is fired after formatting a page.

Syntax

Event AfterFormatPage (PageNumber As Long)

Parameter

BeforeFormatPage Event (Report Object)

The BeforeFormatPage event is fired before formatting a page.

Syntax

Event BeforeFormatPage (PageNumber As Long)

Parameter

FieldMapping Event (Report Object)

The FieldMapping event fires if the database is changed while verifying database.

Syntax

Event FieldMapping (reportFieldArray, databaseFieldArray,

useDefault As Boolean)

Parameter Description

PageNumber Specifies the number of the report page triggering the event.

Parameter Description

PageNumber Specifies the number of the report page triggering the event.
162 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

NoData Event (Report Object)

The NoData event fires when there is no data for the report.

Syntax

Event NoData (pCancel As Boolean)

Parameter

ReportAlert Object
The ReportAlert object represents a Report Alert contained in a report. This object
provides properties for getting and setting information on Report Alerts in the report.

Report Alerts are custom messages created in either the Crystal Reports Designer,
the Report Designer Component, or the Embeddable Crystal Reports Designer
Control. Report Alerts may indicate action to be taken by the user or information
about report data. ReportAlert Object Properties. For more information see Report
Alerts in the Crystal Reports User’s Guide.

ReportAlert Object Properties

Parameter Description

reportFieldArray Specifies the report field array to map.

databaseFieldArray Specifies the database field array to map.

useDefault If TRUE, the values passed with parameters reportFieldArray and
databaseFieldArray will be ignored and the default values used; if FALSE, the
values passed with reportFieldArray and databaseFieldArray will be used.

Parameter Description

pCancel Specifies whether to cancel the report.

Property Definition Read/
Write

Restriction in
event handler

AlertInstances “ReportAlertInstances Collection” on
page 167. Gets a reference to a collection of
all the Report Alert instances created when
the Report Alert is run.

Read
only

None
Crystal Reports User’s Guide 163

ReportAlerts Collection
ReportAlerts Collection
The ReportAlerts collection contains the Report Alert objects defined in a report.
Access a specific “ReportAlert Object” on page 163,in the collection using the Item
property.

ReportAlerts Collection Properties

ConditionFor
mula

String. Gets or sets the condition formula for
the Report Alert. The condition formula can
be based on recurring records or on
summary fields, but cannot be based on
print-time fields, such as running totals or
print time formulas. Condition formulas
cannot have shared variables.

Read/
Write

Can be written only
when formatting idle.

DefaultMessa
ge

String. Gets or sets the default message for
the Report Alert.

Read/
Write

Can be written only
when formatting idle.

IsEnabled Boolean. Gets or sets wether or not the
Report Alert is enabled.

Read/
Write

Can be written only
when formatting idle

MessageForm
ula

String. Gets or sets the message when the
Report Alert is triggered. The result of the
formula must be a string, and is created by
combining a string with a report field. If
MessageFormula is set it will override the
value set for DefaultMessage.

Read/
Write

Can be written only
when formatting idle

Name String. Gets or sets the name of the Report
Alert.

Read/
Write

Can be written only
when formatting idle

Parent “Report Object” on page 150. Gets reference
to the parent object.

Read
only

None

Property Definition Read/
Write

Restriction in
event handler

Property Definition Read/
Write

Restriction in
event handler

Count Long. Gets the number of “ReportAlert Object” on
page 163, in the collection.

Read
only

None

Item (index
As Long)

“ReportAlert Object” on page 163. Gets an item from
the Collection. Item has an index parameter that is a 1-
based index (for example, Item(1) for the first Report
Alert in the collection). The items in the collection are
indexed in the order that they were added to the
report.

Read
only

None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read
only

None
164 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ReportAlerts Collection Methods
The following methods are discussed in this section:

“Add Method (ReportAlerts Collection)” on page 165

“Delete Method (ReportAlerts Collection)” on page 166

Add Method (ReportAlerts Collection)

The Add method is used to add a Report Alert object to the report.

Syntax

Function Add (Name As String, DefaultMessage As String, IsEnabled As Boolean,
ConditionFormula As String, [MessageFormula as String]) As ReportAlert

Sample

In this example a report is grouped by country and contains a summary of last
year’s sales per country. The Report Alert will be triggered when the summary of
last year’s sales exceeds $25,000.00. When the Report Alert is triggered a message
is created from the default message and the country name.

Parameter Description

Name Specifies the name of the Report Alert.

DefaultMessage Specifies the default message created by the Report Alert.

IsEnabled Specifies wether or not the Report Alert is enabled when the report is run.

ConditionFormula Specifies the conditional formula that evaluates when the Report Alert is
triggered.

MessageFormula Optional. Formula used to create the message when the Report Alert is
triggered. The result of the formula must be a string, and is created by
combining a string with a report field. If MessageFormula is set it will
override the value set for DefaultMessage.
Crystal Reports User’s Guide 165

ReportAlerts Collection
Dim name, defaultMessage, conditionFormula, messageFormula As String

'Name of the Report Alert

name = "Sales Alert"

defaultMessage = "Great sales in "

'Conditional formula used to evaluate the Report Alert

conditionFormula = "Sum ({Customer.Last Year's Sales},

{Customer.Country}) > 25000"

'Replaces the default message set for the Report Alert. The message is

'created in a formula by concatenating the value set in the

'DefaultMessage parameter, and the group name of the country that

'triggers the Report Alert.

'DefaultAttribute is a function used by the Formula Editor to return

'the default message set for the Report Alert.

messageFormula = "DefaultAttribute & GroupName ({Customer.Country})"

Report.ReportAlerts.Add _

name, defaultMessage, True, conditionFormula, messageFormula

Delete Method (ReportAlerts Collection)

Use Delete method to remove a ReportAlert Object from the Collection.

Syntax

Sub Delete (index)

Parameter

Parameter Description

index Specifies the index number of the Object that you want to remove from the Collection.
166 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ReportAlertInstance Object
A ReportAlertInstance object is created each time a Report Alert is triggered. This
object contains a property for getting the message created for that specific instance
of the Report Alert.

Note: In the present build only the first ReportAlertInstance is created at runtime.
This limitation will be addressed in a future release.

ReportAlertInstance Object Properties

ReportAlertInstances Collection
The ReportAlertInstances collection contains the ReportAlertInstance objects
created when a Report Alert is triggered. Access a specific “ReportAlertInstance
Object” on page 167,in the collection using the Item property.

Note: In the present build only the first ReportAlertInstance is created at runtime.
This limitation will be addressed in a future release.

ReportAlertInstances Properties

PropertLy Definition Read/Write Restriction in
event handler

AlertMessage String. Gets the message returned at the
time the Report Alert was triggered.

Read only None

Parent “ReportAlert Object” on page 163. Gets
reference to the parent object.

Read only None

Property Definition Read/
Write

Restriction in
event handler

Count Long. Gets the number of “ReportAlertInstance
Object” on page 167, in the collection.

Read
only

None

Item (index
As Long)

“ReportAlertInstance Object” on page 167. Gets
an item from the Collection. Item has an index
parameter that is a 1-based index (for example,
Item(1) for the first ReportAlertInstance in the
collection). The items in the collection are indexed
in the order that they were added to the report.

Note: In the present build only the first
ReportAlertInstance is created at runtime. This
limitation will be addressed in a future release.

Read
only

None

Parent “ReportAlert Object” on page 163. Gets reference
to the parent object.

Read
only

None
Crystal Reports User’s Guide 167

ReportObjects Collection
ReportObjects Collection
The ReportObjects Collection is a collection of report objects in a section. Report objects
can be a field, text, OLE, cross-tab, subreport, BLOB field, Box, Graph, Line, Map, or
OlapGrid objects. Access a specific object in the collection using the Item property.

ReportObjects Collection Properties

Remarks

Item is a default property. You can reference a report object directly, for example,
ReportObjects(1).

RunningTotalFieldDefinition Object
The RunningTotalFieldDefinition Object represents a running total field used in
the report. This object provides properties for getting information on running total
fields in the report.

Property Description Read/
Write

Restriction in
event handler

Count Long. Gets the number of report objects in the
collection.

Read only None

Item (index)
As Object

Gets a report object. Depending on the type of item
referenced, this can be a “BlobFieldObject Object”
on page 77, “FieldObject Object” on page 106,
“TextObject Object” on page 204,“Page Object” on
page 130, “CrossTabObject Object” on page 82,
“SubreportLinks Collection” on page 193, “” on
page 77, “GraphObject Object” on page 115,
“LineObject Object” on page 123, “MapObject
Object” on page 124, “OlapGridObject Object” on
page 127. Item has an index parameter that is a
numeric, 1-based index (that is, Item (1)). The items
in the collection are indexed in the order they were
added to the report.

Read only None

Parent “Section Object” on page 174. Gets reference to the
parent object.

Read only None
168 Crystal Reports User’s Guide

3 Report Designer Component Object Model
RunningTotalFieldDefinition Object Properties

Property Definition Read/
Write

Restriction in
event handler

Evaluate
Condition

“CRRunningTotalCondition” on
page 227. Gets evaluate condition.

Read
only

None

Evaluate
ConditionField

Object. Gets evaluate condition field. Read
only

None

Evaluate
ConditionFormula

String. Gets or sets evaluate condition
formula.

Read/
Write

Can be written only
when formatting idle.

Evaluate
GroupNumber

Integer. Gets or sets evaluate group
number.

Read/
Write

Can be written only
when formatting idle.

Hierarchical
SummaryType

“CRHierarchicalSummaryType” on
page 216. Gets or sets wether or not to
calculate the running total across the
hierarchy in a hierarchically grouped
report.

Read/
Write

Can be written only
when formatting idle.

Kind “CRFieldKind” on page 212. Gets
which kind of field (that is, database,
summary, formula, etc.).

Read
only

None

Name String. Gets the unique formula name
of the field within the report
(table.FIELD). For example, {#Test}.

Read
only

None

NextValue Variant. Gets the field next value. Read
only

Can be read only
when top-level
Report object is
formatting active.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read
only

None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read
only

None

PreviousValue Variant. Gets the field previous value. Read
only

Can be read only
when top-level
Report object is
formatting active.

ResetCondition “CRRunningTotalCondition” on
page 227. Gets the reset condition.

Read
only

None

ResetCondition
Field

Object. Gets reset condition field. Read
only

None

Reset
ConditionFormula

String. Gets or sets the reset condition
formula.

Read/
Write

Can be written only
when formatting idle.

ResetGroupNumber Integer. Gets or sets the reset group
number.

Read/
Write

Can be written only
when formatting idle.
Crystal Reports User’s Guide 169

RunningTotalFieldDefinition Object
RunningTotalFieldDefinition Object Methods
The following methods are discussed in this section:

“SetEvaluateConditionField Method (RunningTotalFieldDefinition Object)” on
page 170

“SetNoEvaluateCondition Method (RunningTotalFieldDefinition Object)” on
page 171

“SetNoResetCondition Method (RunningTotalFieldDefinition Object)” on
page 171

“SetResetConditionField Method (RunningTotalFieldDefinition Object)” on
page 171

“SetSecondarySummarizedField Method (RunningTotalFieldDefinition Object)”
on page 171

“SetSummarizedField Method (RunningTotalFieldDefinition Object)” on page 172

SetEvaluateConditionField Method
(RunningTotalFieldDefinition Object)

Use SetEvaluateConditionField to set the evaluate condition field.

Syntax

Sub SetEvaluateConditionField (pEvaluateConditionField)

RunningTotal
FieldName

String. Gets the running total field
name.

Read
only

None

Secondary
SummarizedField

Object. Gets the secondary
summarized field

Read
only

Can be written only
when formatting idle.

SummarizedField Object. Gets the summarized field. Read
only

Can be written only
when formatting idle.

Summary
OperationParameter

Long. Gets or sets summary operation
parameter.

Read/
Write

Can be written only
when formatting idle.

SummaryType “CRSummaryType” on page 229. Gets
or sets summary type.

Read/
Write

Can be written only
when formatting idle.

Value Variant. Gets the field current value. Read
only

Can be read only
when top-level
Report object is
formatting active.

ValueType “CRFieldValueType” on page 212.
Gets which type of value is found in
the field.

Read
only

None

Property Definition Read/
Write

Restriction in
event handler
170 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameter

SetNoEvaluateCondition Method (RunningTotalFieldDefinition
Object)

Use SetNoEvaluateCondition method to specify no evaluate condition for the
RunningTotalFieldDefinition Object.

Syntax

Sub SetNoEvaluateCondition ()

SetNoResetCondition Method (RunningTotalFieldDefinition
Object)

Use SetNoResetCondition method to specify no reset condition for the
RunningTotalFieldDefinition Object.

Syntax

Sub SetNoResetCondition ()

SetResetConditionField Method (RunningTotalFieldDefinition
Object)

Use SetResetConditionField to specify the reset condition field to use with the
RunningTotalFieldDefinition Object.

Syntax

Sub SetResetConditionField (pResetConditionField)

Parameter

SetSecondarySummarizedField Method
(RunningTotalFieldDefinition Object)

Use SetSecondarySummarizedField method to specify which condition field you want
to use as the second summarized field for the RunningTotalFieldDefinition Object.

Parameter Description

pEvaluateConditionField Specifies the condition field that you want to use.

Parameter Description

pResetConditionField Specifies the condition field that you want to use.
Crystal Reports User’s Guide 171

RunningTotalFieldDefinitions Collection
Syntax

Sub SetSecondarySummarizedField (secondarySummariedField)

Parameter

SetSummarizedField Method (RunningTotalFieldDefinition Object)

Use SetSummarizedField method to specify a second summarized field for the
RunningTotalFieldDefinition Object.

Syntax

Sub SetSummarizedField (SummarizedField)

Parameter

RunningTotalFieldDefinitions Collection
The RunningTotalFieldDefinitions Collection is a collection of running total field
definition objects. One object exists in the collection for every running total field
accessed by the report. Access a specific “RunningTotalFieldDefinition Object” on
page 168, in the collection using the Item property.

RunningTotalFieldDefinitions Collection Properties

Parameter Description

secondarySummariedField Specifies the condition field that you want to use.

Parameter Description

SummarizedField Specifies the condition field that you want to use.

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of
“RunningTotalFieldDefinition Object” on
page 168, in the collection.

Read only None

Item (index
As Long)

“RunningTotalFieldDefinition Object” on
page 168. Gets an item from the Collection. Item
has an index parameter that is a 1-based index (for
example, Item(1) for the first database field in the
collection). The items in the collection are indexed
in the order that they were added to the report.

Read only None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read only None
172 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Remarks

Instead of using the Item property as shown, you can reference a database directly,
for example, RunningTotalFieldDefinitions(1).

RunningTotalFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (RunningTotalFieldDefinitions Collection)” on page 173

“Delete Method (RunningTotalFieldDefinitions Collection)” on page 173

Add Method (RunningTotalFieldDefinitions Collection)

Use Add method to add a “RunningTotalFieldDefinition Object” on page 168 to
the Collection.

Syntax

Function Add (runningTotalName As String) As RunningTotalFieldDefinition

Parameter

Returns

Returns a “RunningTotalFieldDefinition Object” on page 168 member of the
Collection.

Delete Method (RunningTotalFieldDefinitions Collection)

Use Delete method to remove a RunningTotalFieldDefinition Object from the
Collection.

Syntax

Sub Delete (index)

Parameter

Parameter Description

runningTotalName Specifies the name of the RunningTotal field that you want to add.

Parameter Description

index Specifies the index number of the Object that you want to remove from the Collection.
Crystal Reports User’s Guide 173

Section Object
Section Object
Report areas contain at least one section. The Section Object includes properties for
accessing information regarding a section of your report. This object holds on to a
report object, then releases the report object when it is destroyed.

Section Object Properties

Property Description Read/
Write

Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
section background color.

Read/
Write

Can be written only when
formatting idle or active.

Height Long. Gets or sets the height of the
section, in twips.

Read/
Write

Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the option that
indicates whether to keep the entire
section on the same page if it is split
into two pages.

Read/
Write

Can be written only when
formatting idle or active.

MinimumHeight Long. Gets the minimum section
height, in twips.

Read
only

None

Name String. Gets or sets the name of the
section.

Read/
Write

Can be written only when
formatting idle.

NewPageAfter Boolean. Gets or sets the option that
indicates whether to start a new
page after the current section.

Read/
Write

Can be written only when
formatting idle or active.

NewPageBefore Boolean. Gets or sets the option that
indicates whether to start a new
page before the current section.

Read/
Write

Can be written only when
formatting idle or active.

Number Integer. Gets the index number
associated with the section in the
area (for example, if the first section
in an area, the number returned is 1).

Read
only

None

Parent “Area Object” on page 74. Gets
reference to the parent object.

Read
only

None

PrintAtBottomOf
Page

Boolean. Gets or sets the option that
indicates whether to print the
current section at the bottom of the
page.

Read/
Write

Can be written only when
formatting idle or active.

ReportObjects “ReportObjects Collection” on
page 168. Gets reference to the
heterogeneous collection of report
objects for the section.

Read
only

None

ResetPage
NumberAfter

Boolean. Gets or sets the option that
indicates whether to reset the page
number after the current section.

Read/
Write

Can be written only when
formatting idle or active.
174 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Section Object Methods
The following methods are discussed in this section:

“AddBlobFieldObject Method (Section Object)” on page 176

“AddBoxObject Method (Section Object)” on page 176

“AddCrossTabObject Method (Section Object)” on page 177

“AddFieldObject Method (Section Object)” on page 177

“AddGraphObject Method (Section Object)” on page 178

“AddLineObject Method (Section Object)” on page 178

“AddPictureObject Method (Section Object)” on page 179

“AddSpecialVarFieldObject Method (Section Object)” on page 180

“AddSubreportObject Method (Section Object)” on page 180

“AddSummaryFieldObject Method (Section Object)” on page 181

“AddTextObject Method (Section Object)” on page 181

“AddUnboundFieldObject Method (Section Object)” on page 182

“DeleteObject Method (Section Object)” on page 182

“ImportSubreport Method (Section Object)” on page 183

Suppress Boolean. Gets or sets the section
visibility.

Read/
Write

Can be written only when
formatting idle or active.

SuppressIfBlank Boolean. Gets or sets the option that
indicates whether to suppress the
current section if it is blank.

Read/
Write

Can be written only when
formatting idle or active.

UnderlaySection Boolean. Gets or sets the underlay
following section option.

Read/
Write

Can be written only when
formatting idle or active.

Width Long. Gets the width of the section,
in twips.

Read
only

None

Property Description Read/
Write

Restriction in
event handler
Crystal Reports User’s Guide 175

Section Object
AddBlobFieldObject Method (Section Object)

The AddBlobFieldObject method adds a “BlobFieldObject Object” on page 77 to
the Section Object.

Syntax

Function AddBlobFieldObject (Field, Left As Long, Top As Long

) As BlobFieldObject

Parameters

Returns

Returns a “BlobFieldObject Object” on page 77.

AddBoxObject Method (Section Object)

The BoxObject method adds a “” on page 77 to the Section Object.

Syntax

Function AddBoxObject (Left As Long, Top As Long, Right As Long,

Bottom As Long, [pEndSection]) As BoxObject

Parameters

Parameter Description

Field Variant. Can be formula form name or any field definition that specifies
the field that you want to add.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Parameter Description

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Right Specifies the offset of the bottom right corner of the Object that you are adding
relative to the bottom right corner of the parent (or end) Section, in twips.

Bottom Specifies the offset of the bottom right corner of theObject that you are adding
relative to the bottom right corner of the parent (or end) Section, in twips.

[pEndSection] Specifies the Section in which the end of the BoxObject will be placed, if not the
parent Section.
176 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Returns

Returns a “” on page 77.

AddCrossTabObject Method (Section Object)

The AddCrossTabObject method adds a “CrossTabObject Object” on page 82 to
the Section Object. This method creates an empty CrossTabObject. Use the
CrossTabObject properties and methods to add grouping and summary info.

Syntax

Function AddCrossTabObject (Left As Long, Top As Long) As CrossTabObject

Parameters

Returns

Returns a “CrossTabObject Object” on page 82.

AddFieldObject Method (Section Object)

The AddFieldObject method adds a “FieldObject Object” on page 106 to the
Section Object. The FieldObject can be reference to a database field definition,
formula field definition, running total field definition, SQL expression field
definition, or parameter field definition.

Syntax

Function AddFieldObject (Field, Left As Long, Top As Long) As FieldObject

Parameters

Parameter Description

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Parameter Description

Field Specifies the field that you want to add to the Section.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.
Crystal Reports User’s Guide 177

Section Object
Returns

Returns a “FieldObject Object” on page 106.

AddGraphObject Method (Section Object)

The AddGraphObject method adds a “GraphObject Object” on page 115 (Chart) to
the Section Object. The inserted GraphObject is empty. Use the GraphObject
properties and methods to add data, groups and settings. If optional parameter
[pCrossTabObject] is passed, you can insert a CrossTab Chart.

Syntax

Function AddGraphObject (graphDataType As CRGraphDataType,

Left As Long, Top As Long, [pCrossTabObject]) As GraphObject

Parameters

Returns

Returns a “GraphObject Object” on page 115.

AddLineObject Method (Section Object)

The AddLineObject method adds a “LineObject Object” on page 123 to the Section
Object. If optional parameter [pEndSection] is passed different from the current
section, you can add a vertical line across sections.

Syntax

Function AddLineObject (Left As Long, Top As Long,

Right As Long, Bottom As Long, [pEndSection]) As LineObject

Parameter Description

graphDataType “CRGraphDataType” on page 213. Specifies the data type for the graph
that you want to add.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

[pCrossTabObject] If graphDataType=crCrossTabGraph, this parameter specifies the
CrossTabObject to associate with the chart.
178 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Returns

Returns a “LineObject Object” on page 123.

AddPictureObject Method (Section Object)

The AddLineObject method adds a picture object from an image in the form of an
“OleObject Object” on page 128 to the Section Object.

Syntax

Function AddPictureObject (pImageFilePath As String, Left As Long,

Top As Long) As OleObject

Parameters

Returns

Returns a “OleObject Object” on page 128.

Parameter Description

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Right Specifies the offset of the bottom right corner of theObject that you are adding
relative to the bottom right corner of the parent (or end) Section, in twips.

Bottom Specifies the offset of the bottom right corner of theObject that you are adding
relative to the bottom right corner of the parent (or end) Section, in twips.

[pEndSection] Specifies the Section in which the end of the LineObject will be placed, if not
the parent Section.

Parameter Description

pImageFilePath Specifies the image file path and name that you want to add.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.
Crystal Reports User’s Guide 179

Section Object
AddSpecialVarFieldObject Method (Section Object)

The SpecialVarFieldObject Method adds a SpecialVar “FieldObject Object” on
page 106 to the Section Object.

Syntax

Function AddSpecialVarFieldObject (specialVarType As CRSpecialVarType,

Left As Long, Top As Long) As FieldObject

Parameters

Returns

Returns a “FieldObject Object” on page 106.

AddSubreportObject Method (Section Object)

The SubReportObject method adds a “SubreportObject Object” on page 195 to the
Section Object. This method adds an empty subreport to the Section. You can then
add Objects and Sections to the SubreportObject.

Syntax

Function AddSubreportObject (pSubreportName As String,

Left As Long, Top As Long) As SubreportObject

Parameters

Returns

Returns a “SubreportObject Object” on page 195.

Parameter Description

specialVarType “CRSpecialVarType” on page 228. Specifies the SpecialVar type.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Parameter Description

pSubreportName Specifies the name of the subreport that you want to add.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.
180 Crystal Reports User’s Guide

3 Report Designer Component Object Model
AddSummaryFieldObject Method (Section Object)

The AddSummaryField method adds a summary “FieldObject Object” on
page 106 to the Section Object.

Syntax
Function AddSummaryFieldObject (Field, SummaryType As CRSummaryType,

Left As Long, Top As Long, [secondSummaryFieldOrFactor]) As

FieldObject

Parameters

Returns

Returns a “FieldObject Object” on page 106.

AddTextObject Method (Section Object)
The AddTextObject method adds a “TextObject Object” on page 204 to the Section
Object. String parameter pText can contain formatting information such as tab
stops and carriage returns.

Syntax
Function AddTextObject (pText As String, Left As Long, Top As Long,

[formatText]) As TextObject

Parameters

Parameter Description

Field Specifies the summary field that you want to add.

SummaryType “CRSummaryType” on page 229. Specifies the type of summary field.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

[secondSummary
FieldOrFactor]

Specifies the second summary field or factor, if required by the summary type.

Parameter Description

pText Specifies the text that you want to add.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

[formatText] Boolean. If TRUE, the text will be formatted according to the formatting
characters included in the text string (for example, carriage returns, tabs,
etc.). If FALSE, formatting characters in the text string will be ignored.
Crystal Reports User’s Guide 181

Section Object
Returns

Returns a “FieldObject Object” on page 106.

AddUnboundFieldObject Method (Section Object)

The AddUnboundFieldObject method adds an unbound “FieldObject Object” on
page 106 to the Section Object. The unbound field can be bound to a Crystal Report
formula or a data source at runtime.

Syntax

Function AddUnboundFieldObject (ValueType As CRFieldValueType,

Left As Long, Top As Long) As FieldObject

Parameters

Returns

Returns a “FieldObject Object” on page 106.

DeleteObject Method (Section Object)

The DeleteObject method removes an object from the Section Object

Syntax

Sub DeleteObject (reportObject)

Parameter

Parameter Description

ValueType “CRFieldValueType” on page 212. Specifies the type of value in the field.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Parameter Description

reportObject Specifies the report object that you want to remove from the Section.
182 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ImportSubreport Method (Section Object)

The ImportSubreport method imports a “SubreportObject Object” on page 195
into the Section Object. With this call you can insert a subreport object obtained
from an existing report file. The inserted Subreport Object will have all of the
Objects and Sections of the original (source) report, except for Page Header and
Page Footer Sections.

Syntax

Function ImportSubreport (subreportFileName As String,

Left As Long, Top As Long) As SubreportObject

Parameters

Returns

Returns a “SubreportObject Object” on page 195.

Section Object Events
The following events are discussed in this section:

“Format Event (Section Object)” on page 183

Format Event (Section Object)

The Format event is fired before the print engine starts formatting a section. In the
Format event handler you can use the object model to write some code to change
the outcome of the formatted section. Be aware, however, that not all of the
properties and methods provided in the object model are accessible at all times in
the event handler. Specifically, only those properties and methods that have been
marked "formatting active" or "no restrictions" can be used in the Event.

Syntax

Event Format (FormattingInfo As Object)

Parameter Description

subreportFileName Specifies the name of the subreport that you want to import.

Left Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.

Top Specifies the offset of the top left corner of the Object that you are adding
relative to the top left corner of the parent Section, in twips.
Crystal Reports User’s Guide 183

Section Object
Parameter

Remarks

The following comments regarding Restrictions and Rules apply to Format Event:

Restrictions

The Format event handler should not have any state. No matter when or how
many times it is called it should always behave the same way. It should not keep
track of how many times it is called and then, for example, change the background
color based on how many times it has been called. The print engine formatting
procedure is very complicated and one section can be formatted many times
depending on different situations.

Note: Because the Format event for each section may be fired more than once
during page printing you should not use it to do any totaling in which values are
carried over from one section to another. However, you can use report variables
to do calculated fields.

There are three formatting modes:

Since there is only one section Format event when one section is formatting all of
the objects in that section are in FormattingActive mode and all the rest of the
sections and objects are in FormattingInactive mode.

Rules

� The read property can be accessed in any formatting mode. (There are a few
exceptions, please see the object model reference section.)

� Top level Report, Areas and Area write properties and methods can only be
accessed in formatting idle mode, aside from a few exceptions.

� When in FormattingIdle mode you should make changes before going to
preview or print. Making changes between changing pages may result in an
unexpected result.

Parameter Description

FormattingInfo The FormattingInfo object which will contain formatting information to
be used by the Format event handler.

FormattingIdle No formatting occurs. This can be before going to preview or print or
between changing pages in the viewer.

FormattingActive The start of formatting an object. The object mode is marked as formatting
active.

FormattingInactive When the print engine is formatting and one object is in FormattingActive
mode the rest of the objects are in FormattingInactive mode.
184 Crystal Reports User’s Guide

3 Report Designer Component Object Model
� For sections and objects within sections write property or method access is
denied when the section is in FormattingInactive mode.

� For sections and objects within sections some write property or method access
is permitted and some denied while the section is in FormattingActive mode.
Please refer the object model reference for details.

Sections Collection
Sections can come from either the “Report Object” on page 150 or “Area Object” on
page 74. The Sections Collection is a collection of section objects. Access a specific
Section Object in the collection using the Item property.
� When from the Report Object, the sections object will contain all the sections in

the report.
� When from the Area Object, the sections object will contain all the sections in

the area only.

Sections Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a section directly,
for example, Sections (“Da”).

Property Description Read/
Write

Restriction in
event handler

Count Long. Gets the number of section in the collection. Read only None

Item
(index)

“Section Object” on page 174. Gets reference to an
item in the Collection. Item has an index parameter
that can be either a string reference to the area
section (i.e., for areas with one section: “RH”, “PH”,
“GHn”, “D”, “GFn”, “PF”, or “RF”) or a numeric, 1-
based index (i.e., Item (1)) for the Report Header
area. Numeric index for sections starts at 1 for first
section in the area/report and continues in order of
appearance. If the area has multiple sections, they
are represented using a lowercase letter (for
example, “Da”, “Db”, etc.).

Read only None

Parent “Report Object” on page 150 or “Area Object” on
page 74. Gets reference to the parent object.

Read only None
Crystal Reports User’s Guide 185

Sections Collection
Sections Collection Methods
The following methods are discussed in this section:

“Add Method (Sections Collection)” on page 186

“Delete Method (Sections Collection)” on page 186

Add Method (Sections Collection)

Use Add method to add a “Section Object” on page 174 to the Sections Collection.

Syntax

Function Add ([index]) As Section

Parameter

Returns

Returns a “Section Object” on page 174 member of the Sections Collection.

Delete Method (Sections Collection)

Use Delete method to remove a “Section Object” on page 174 from the Sections
Collection.

Syntax

Sub Delete(index)

Parameter

Parameter Description

[index] Specifies the index where you would like to add the Section to the
Collection.

Parameter Description

index Specifies the index of the Section that you want to delete from the
Collection.
186 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SortField Object
The SortField Object includes properties for accessing information for record or
group sort fields. It holds on to Report object, then releases the report object when
destroyed. This object has an index instance variable to indicate its index.

SortField Object Properties

SortFields Collection
The SortFields Collection is a collection of sort fields; can be either record sort field
or group sort field. Access a specific SortField Object in the collection using the
Item property.

SortFields Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a sort field directly,
for example, SortFields(1).

Property Description Read/Write Restriction in
event handler

Field Object. Gets or sets the sorting field
definition object.

Read/
Write

Can be read or written
only when formatting
idle.

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

SortDirection “CRSortDirection” on page 228.
Gets or sets the sort direction.

Read/
Write

Can be written only
when formatting idle.

Property Description Read/
Write

Restriction in
event handler

Count Long. Gets the number of sort fields in the
collection.

Read only None

Item
(index As
Long)

“SortField Object” on page 187. Gets reference to an
item in the Collection. Item has an index parameter
that is a numeric, 1-based index (that is, Item (1)).
The sort fields in the collection are indexed in the
order they were added as sort fields to the report.

Read only None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read only None
Crystal Reports User’s Guide 187

SortFields Collection
SortFields Collection Methods
The following methods are discussed in this section:

“Add Method (SortFields Collection)” on page 188

“Delete Method (SortFields Collection)” on page 188

Add Method (SortFields Collection)

The Add method adds a record or group sort field to the Collection.

Syntax

Sub Add (pFieldDefinition As IFieldDefinition,

SortDirection As CRSortDirection)

Parameters

Delete Method (SortFields Collection)

The Delete method deletes a record or group sort field from the Collection.

Syntax

Sub Delete (index As Long)

Parameter

Parameter Description

pFieldDefinition “FieldDefinition Object” on page 121. Specifies the field definition or field
name.

SortDirection “CRSortDirection” on page 228. Specifies the direction in which the field
data should be sorted (that is, ascending, descending, etc.).

Parameter Description

index Specifies the 1-based index number of the sort field in the collection that you want
to delete.
188 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SpecialVarFieldDefinition Object
The SpecialVarFieldDefinition Object provides properties for retrieving
information and setting options for a special field found in your report (i.e., last
modification date, print date, etc.). A SpecialVarFieldDefinition Object is obtained
from the Field property of the “FieldObject Object” on page 106.

SpecialVarFieldDefinition Object Properties

Property Description Read/Write Restriction in
event handler

Kind “CRFieldKind” on page 212. Gets
which kind of field (database,
summary, formula, etc.).

Read only None

Name String. Gets the field definition
unique formula name of the
special var. field.

Read only None

NextValue Variant. Gets the field next value. Read only Can be read only when
top-level Report object
is formatting active.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read only None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

PreviousValue Variant. Gets the field previous
value.

Read only Can be read only when
top-level Report object
is formatting active.

SpecialVarType “CRSpecialVarType” on page 228.
Gets what the type of special field
(for example, ReportTitle,
PageNumber, etc.).

Read only None

Value Variant. Gets the field current
value.

Read only Can be read only when
top-level Report object
is formatting active.

ValueType “CRFieldValueType” on page 212.
Gets which type of value is found
in the field.

Read only None
Crystal Reports User’s Guide 189

SQLExpressionFieldDefinition Object
SQLExpressionFieldDefinition Object
The SQLExpressionFieldDefinition Object represents a SQL expression field used
in the report. This object provides properties for getting information on SQL
expression fields in the report.

SQLExpressionFieldDefinition Object Properties

Property Definition Read/Write Restriction in
event handler

Kind “CRFieldKind” on page 212. Gets
which kind of field (that is,
database, summary, formula, etc.).

Read only None

Name String. Gets the field definition
unique formula name of the field
within the report, Crystal formula
syntax.

Read only None

NextValue Variant. Gets the field next value. Read only Can be read only when
top-level Report object
is formatting active.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read only None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

PreviousValue Variant. Gets the field previous
value.

Read only Can be read only when
top-level Report object
is formatting active.

SQLExpression
FieldName

String. Gets the SQL expression
field name.

Read only None

Text String. Gets or sets the SQL
expression text.

Read/Write Can be written only
when formatting idle.

Value Variant. Gets the field current
value.

Read only Can be read only when
top-level Report object
is formatting active.

ValueType “CRFieldValueType” on page 212.
Gets which type of value is found
in the field.

Read only None
190 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SQLExpressionFieldDefinition Object Methods
The following method is discussed in this section:

“Check Method (SQLExpressionFieldDefinition Object)” on page 191

Check Method (SQLExpressionFieldDefinition Object)

Use Check method to check whether a SQL expression is valid.

Syntax

Sub Check (pBool As Boolean, ppErrorString As String)

Parameters

SQLExpressionFieldDefinitions Collection
The SQLExpressionFieldDefinitions Collection is a collection of SQL expression
field definition objects. One object exists in the collection for every SQL expression
field accessed by the report. Access a specific “SQLExpressionFieldDefinition
Object” on page 190 in the collection using the Item property.

SQLExpressionFieldDefinitions Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a database directly,
for example, SQLExpressionFieldDefinitions(1).

Parameter Description

pBool Boolean value indicating the condition of the formula string. Will be set to
TRUE if the formula is valid and FALSE if the formula contains one or more
errors.

ppErrorString Specifies the error message string if the formula contains an error.

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of items in the Collection. Read only None

Item (index
As Long)

“SQLExpressionFieldDefinition Object” on
page 190. Gets an item from the Collection. Item
has an index parameter that is a 1-based index (that
is, Item (1) for the first SQL Expression field in the
collection). The items in the collection are indexed
in the order they were added to the report.

Read only None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read only None
Crystal Reports User’s Guide 191

SQLExpressionFieldDefinitions Collection
SQLExpressionFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (SQLExpressionFieldDefinitions Collection)” on page 192

“Delete Method (SQLExpressionFieldDefinitions Collection)” on page 192

Add Method (SQLExpressionFieldDefinitions Collection)

Use Add method to add a “SQLExpressionFieldDefinition Object” on page 190 to
the Collection.

Syntax

Function Add (SQLExpressionName As String,

Text As String) As SQLExpressionFieldDefinition

Parameters

Returns

Returns a “SQLExpressionFieldDefinition Object” on page 190 member of the
Collection.

Delete Method (SQLExpressionFieldDefinitions Collection)

Use Delete method to remove a “SQLExpressionFieldDefinition Object” on
page 190 from the Collection.

Syntax

Sub Delete (index)

Parameter

Parameter Description

SQLExpressionName Specifies the name of the SQL expression that you want to add to the
Collection.

Text Specifies the text of the SQL expression that you want to add to the
Collection.

Parameter Description

index Specifies the index number of the SQLExpressionFieldDefinition
Object that you want to remove from the Collection.
192 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SubreportLink Object
The SubreportLink Object provides information about Subreport Links to the main
report.

SubreportLink Object Properties

SubreportLinks Collection
The SubreportLinks Collection contains the “SubreportLink Object” on page 193
related to the report.

SubreportLinks Collection Properties

SubreportLinks Collection Methods
The following methods are discussed in this section:

“Add Method (SubreportLinks Collection)” on page 194

“Delete Method (SubreportLinks Collection)” on page 194

Property Description Read/Write Restriction
in event handler

MainReportField “FieldDefinition Object” on
page 121. Gets the main report
field to which the subreport
field is linked.

Read only None

Parent “SubreportObject Object” on
page 195. Gets the subreport
link’s parent object.

Read only None

SubReportField “FieldDefinition Object” on
page 121. Gets the subreport
field.

Read only None

Property Description Read/Write Restriction in event handler

Count Long. Gets a count of the items
in the Collection.

Read only None

Item (index
As Long)

“SubreportLink Object” on
page 193. Gets an item from the
Collection.

Read only None

Parent “SubreportObject Object” on
page 195. Gets reference to the
subreport link’s parent object.

Read only None
Crystal Reports User’s Guide 193

SubreportLinks Collection
Add Method (SubreportLinks Collection)

Use Add method to add a “SubreportLink Object” on page 193 to the Collection.

Syntax

Function Add (MainReportField, SubreportField) As SubreportLink

Parameters

Returns

Returns a “SubreportLink Object” on page 193 member of the Collection.

Delete Method (SubreportLinks Collection)

Use Delete method to remove a “SubreportLink Object” on page 193 from the
Collection.

Syntax

Sub Delete (index As Long)

Parameter

Parameter Description

MainReportField Specifies the field in the main report that you want the new Object in the
Collection to link.

SubreportField Specifies the field in the subreport that you want the new Object in the
Collection to link.

Parameter Description

index Specifies the index number of the Object in the Collection that you
want to remove.
194 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SubreportObject Object
The SubreportObject Object represents a subreport placed in a report. A subreport
is a free-standing or linked report found within the main report. This object
provides properties for retrieving information on the subreport (for example,
name, formatting options, etc.).

SubreportObject Object Properties

Property Description Read/Write Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/Write Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/Write Can be written only when
formatting idle or active.

BottomLineStyle “CRLineStyle” on page 218.
Gets or sets the bottom line
style.

Read/Write Can be written only when
formatting idle or active.

CanGrow Boolean. Gets or sets the can
grow option.

Read/Write Can be written only when
formatting idle or active.

CloseAtPage
Break

Boolean. Gets or sets close
border on page break.

Read/Write Can be written only when
formatting idle or active.

EnableOn
Demand

Boolean. Gets the real-time
subreport option.

Read only None

HasDropShadow Boolean. Gets or sets the
border drop shadow option.

Read/Write Can be written only when
formatting idle or active.

Height Long. Gets or sets the object
height, in twips.

Read/Write Can be written only when
formatting idle or active.

KeepTogether Boolean. Gets or sets the keep
object together option.

Read/Write Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221.
Gets what kind of object (for
example, box, cross-tab, field).

Read only None

Left Long. Gets or sets the object
upper left position, in twips.

Read/Write Can be written only when
formatting idle or active.

LeftLineStyle “CRLineStyle” on page 218.
Gets or sets the left line style.

Read/Write Can be written only when
formatting idle or active.
Crystal Reports User’s Guide 195

SubreportObject Object
SubreportObject Object Methods
The following methods are discussed in this section:

“OpenSubreport Method (SubreportObject Object)” on page 196

OpenSubreport Method (SubreportObject Object)

Every subreport has a pointer to its parent report. Subreports hold on to their parent
reports until they are destroyed. The OpenSubreport method opens a subreport
contained in the report and returns a Report Object corresponding to the named
subreport. It corresponds to PEOpenSubreport of the Crystal Report Engine. This
method can be invoked only in FormattingIdle or FormattingActive mode.

Syntax

Function OpenSubreport () As Report

Returns

Returns a “SubreportObject Object” on page 195.

Links “SubreportLinks Collection”
on page 193. Gets reference to
the Collection.

Read Only None

Name String. Gets or sets the object
name.

Read/Write Can be written only when
formatting idle or active.

Parent “Section Object” on page 174.
Gets reference to the parent
object.

Read only None

RightLineStyle “CRLineStyle” on page 218.
Gets or sets the right line style.

Read/Write Can be written only when
formatting idle or active.

SubreportName String. Gets or sets the name of
the subreport.

Read/Write Can be written only when
formatting idle.

Suppress Boolean. Gets or sets the object
visibility option.

Read/Write Can be written only when
formatting idle or active.

Top Long. Gets or sets the object
upper top position, in twips.

Read/Write Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218.
Gets or sets the top line style.

Read/Write Can be written only when
formatting idle or active.

Width Long. Gets or sets the object
width, in twips.

Read/Write Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in
event handler
196 Crystal Reports User’s Guide

3 Report Designer Component Object Model
ReImportSubreport Method (Subreport Object)

Subreports can be newly created in the main report or imported from an existing
report file. If the subreport is imported from an existing report file, it can be re-
imported at runtime using the ReImportSubreport method. When previewed,
printed, or exported, a re-imported subreport will reflect all changes made to the
formatting, grouping, and structure of the existing report file.

Syntax

Sub ReImportSubreport (pReimported as Boolean)

Parameter

Remarks

pReimported is an output parameter. Create a variable to hold the result of
pReimported and check the value of the variable to see if the method is successful.

Sample

'Boolean value to hold the result of the ReimportSubreport method

Dim bReimported As Boolean

'Call ReImportSubReport

Report.Subreport1.ReimportSubreport bReimported

'If bReimported is True the subreport re-imported successfully

'If bReimported is False the subreport failed to re-import

If bReimported Then

 MsgBox "Subreport re-imported successfully"

Else

 MsgBox "Subreport failed to re-import"

 Exit Sub

End If

'Refresh the viewer to display the updated subreport.

'Set the parameter to True if you want to update the data

'or False if you only want to refresh the report

CRViewer1.RefreshEx False

Parameter Description

pReimported Boolean value indicating success or failure when re-importing the subreport.
Will be set to TRUE if re-importing the subreport succeeds and FALSE if re-
importing the subreport fails.See remarks below.
Crystal Reports User’s Guide 197

SummaryFieldDefinition Object
SummaryFieldDefinition Object
The SummaryFieldDefinition Object represents the summary used in a cross-tab,
group, or report.

SummaryFieldDefinition Object Properties

Property Description Read/
Write

Restriction in
event handler

FooterArea “Area Object” on page 74. Gets the
area pair that the summary is in.

Read only None

ForCrossTab Boolean. Gets for-cross-tab. Read only None

HeaderArea “Area Object” on page 74. Gets the
area pair that the summary is in.

Read only None

Hierarchical
SummaryType

“CRHierarchicalSummaryType”
on page 216. Gets or sets wether or
not to calculate the summary
across the hierarchy in a
hierarchically grouped report.

Read/
Write

Can be written only
when formatting idle.

Kind “CRFieldKind” on page 212. Gets
which kind of field (database,
summary, formula, etc.).

Read only None

Name String. Gets the field definition
unique formula name of the
summary field for a group or
report summary field. Cross-tab
summaries do not have a unique
name so an empty string will be
returned.

Read only None

NextValue Variant. Gets the field next value. Read only Can be read only when
top-level Report object
is formatting.

NumberOfBytes Integer. Gets the number of bytes
required to store the field data in
memory.

Read only None

Parent “Report Object” on page 150. Gets
reference to the parent object.

Read only None

PreviousValue Variant. Gets the field previous
value.

Read only Can be read only when
top-level Report object
is formatting.

Secondary
SummarizedField

Object. Gets the secondary
summarized field.

Read only None

SummarizedField Object. Gets the summarized field. Read only None

SummaryOperati
onParameter

Long. Gets or sets the summary
operation parameter.

Read/
Write

Can be written only
when formatting idle.
198 Crystal Reports User’s Guide

3 Report Designer Component Object Model
SummaryFieldDefinition Object Methods
The following methods are discussed in this section:

“SetSecondarySummarizedField Method (SummaryFieldDefinition Object)” on
page 199

“SetSummarizedField Method (SummaryFieldDefinition Object)” on page 199

SetSecondarySummarizedField Method
(SummaryFieldDefinition Object)

Use SetSecondarySummarizedField method to set the secondary summarized
field for a report.

Syntax

Sub SetSecondarySummarizedField (secondarySummariedField)

Parameter

SetSummarizedField Method (SummaryFieldDefinition Object)

Syntax

Sub SetSummarizedField (SummarizedField)

Parameter

SummaryType “CRSummaryType” on page 229.
Gets or sets the type of summary
(for example, sum, average, etc.).

Read/
Write

Can be written only
when formatting idle.

Value Variant. Gets the field current
value.

Read only Can be read only when
top-level Report object
is formatting active.

ValueType “CRFieldValueType” on page 212.
Gets which type of value is found
in the field.

Read only None

Property Description Read/
Write

Restriction in
event handler

Parameter Description

secondarySummariedField Specifies the field that you want to set.

Parameter Description

SummarizedField Specifies the field that you want to set.
Crystal Reports User’s Guide 199

SummaryFieldDefinitions Collection
SummaryFieldDefinitions Collection
The SummaryFieldDefinitions Collection is a collection of summary field
definitions. Can be from either CrossTabObject Object or Report Object. Access a
specific SummaryFieldDefinition Object in the collection using the Item property.

SummaryFieldDefinitions Collection Properties

Remarks

Instead of using the Item property as shown, you can reference a summary field
directly, for example, SummaryFieldDefinitions(1).

SummaryFieldDefinitions Collection Methods
The following methods are discussed in this section:

“Add Method (SummaryFieldDefinitions Collection)” on page 200

“Delete Method (SummaryFieldDefinitions Collection)” on page 201

Add Method (SummaryFieldDefinitions Collection)

Use Add method to add a “SummaryFieldDefinition Object” on page 198 to the
Collection.

Syntax

Function Add (groupLevel As Long, Field,

SummaryType As CRSummaryType, [secondSummaryFieldOrFactor]

) As SummaryFieldDefinition

Property Description Read/Write Restriction in
event handler

Count Long. Gets the number of summary fields in the
collection.

Read only None

Item
(index
As Long)

“SummaryFieldDefinition Object” on page 198. Gets
an item from the Collection. Item has an index
parameter that is a numeric, 1-based index (for
example, Item (1)). The items in the collection are
indexed in the order they were added to the report.

Read only None

Parent “Report Object” on page 150. Gets reference to the
parent object.

Read only None
200 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Parameters

Returns

Returns a “SummaryFieldDefinition Object” on page 198 member of the
Collection.

Delete Method (SummaryFieldDefinitions Collection)

Use delete method to delete a “SummaryFieldDefinition Object” on page 198 from
the Collection.

Syntax

Sub Delete (index)

Parameter

Parameter Description

groupLevel Specifies the group level for the summary.

Field Specifies the summary field.

SummaryType “CRSummaryType” on page 229. Specifies the summary type.

[secondSummaryFieldOr
Factor]

Specifies the second summary field or factor.

Parameter Description

index Specifies the index number of the object that you want to delete from the
Collection.
Crystal Reports User’s Guide 201

TableLink Object
TableLink Object
The TableLink Object provides information about database table links.

TableLink Object Properties

TableLinks Collection
The TableLinks Collection contains the “TableLink Object” on page 202 Objects
associated with the report.

TableLinks Collection Properties

Property Description Read/Write Restriction in
event handler

DestinationFields “DatabaseFieldDefinitions
Collection” on page 93. Gets reference
to table link destination field
definitions Collection.

Read only None

DestinationTable “DatabaseTable Object” on page 93.
Gets reference to the table link
destination table.

Read only None

IndexUsed Integer. Gets table link IndexUsed Read only None

JoinType “CRLinkJoinType” on page 218. Gets
the table link join type.

Read only None

LookupType “CRLinkLookUpType” on page 219.
Gets table link lookup type.

Read only None

Parent “Database Object” on page 85. Gets
reference to the parent object.

Read only None

PartialMatch Enabled Boolean. Gets the table link partial-
match enabled option.

Read only None

SourceFields “DatabaseFieldDefinition Object” on
page 92. Gets the table link source
field definitions.

Read only None

SourceTable “DatabaseTable Object” on page 93.
Gets table link source table.

Read only None

Property Definition Read/
Write

Restriction in
event handler

Count Long. Gets a count of the collection items. Read only None

Item (index As Long) “TableLink Object” on page 202. Gets an
item from the Collection.

Read only None

Parent “Database Object” on page 85. Gets
reference to the parent object.

Read only None
202 Crystal Reports User’s Guide

3 Report Designer Component Object Model
TableLinks Collection Methods
The following methods are discussed in this section:

“Add Method (TableLinks Collection)” on page 203

“Delete Method (TableLinks Collection)” on page 203

Add Method (TableLinks Collection)
Use Add method to add a “TableLink Object” on page 202 to the Collection.

Syntax

Function Add (psrcTable As DatabaseTable, pDestTable As DatabaseTable,

srcFields, destFields,

JoinType As CRLinkJoinType, LookupType As CRLinkLookUpType,

PartialMatchEnabled As Boolean, indexInUse As Integer) As TableLink

Parameters

Returns

Returns a “TableLink Object” on page 202 member of the Collection.

Delete Method (TableLinks Collection)
Use Delete method to remove a “TableLink Object” on page 202 from the
Collection.

Syntax

Sub Delete (index As Long)

Parameter

Parameter Description

psrcTable “DatabaseTable Object” on page 93. Specifies the source database table.

pDestTable “DatabaseTable Object” on page 93. Specifies the destination database
table.

srcFields Specifies the source fields.

destFields Specifies th destination fields.

JoinType “CRLinkJoinType” on page 218. Specifies the link join type.

LookupType “CRLinkLookUpType” on page 219. Specifies the link lookup type.

PartialMatchEnabled Specifies whether the PartialMatchEnabled option has been set.

indexInUse Specifies index in use.

Parameter Description

index Specifies the index number of the item that you want to remove from the Collection.
Crystal Reports User’s Guide 203

TextObject Object
TextObject Object
The Text Object represents a text object found in a report. This object provides
properties for retrieving information and setting options for a text object in your
report.

TextObject Object Properties

Property Description Read/Write Restriction in
event handler

BackColor OLE_COLOR. Gets or sets the
object background color.

Read/Write Can be written only when
formatting idle or active.

BorderColor OLE_COLOR. Gets or sets the
object border color.

Read/Write Can be written only when
formatting idle or active.

BottomLineStyle “CRLineStyle” on page 218.
Gets or sets the bottom line
style.

Read/Write Can be written only when
formatting idle or active.

CanGrow Boolean. Gets or sets the can
grow option.

Read/Write Can be written only when
formatting idle or active.

CharacterSpacing Long. Gets or sets the character
spacing.

Read/Write Can be written only when
formatting idle.

CloseAtPage
Break

Boolean. Gets or sets th close
border on page break option.

Read/Write Can be written only when
formatting idle or active.

FirstLineIndent Long. Gets or sets first line
indent, in twips.

Read/Write Can be written only when
formatting idle.

Font IFontDisp. Gets or sets the
standard OLE font of the text
object.

Read/Write Can be written only when
formatting idle or active.

HasDropShadow Boolean. Gets or sets the
border drop shadow option.

Read/Write Can be written only when
formatting idle or active.

Height Long. Gets or sets the object
height, in twips.

Read/Write Can be written only when
formatting idle or active.

HorAlignment “CRAlignment” on page 207.
Gets or sets the horizontal
alignment.

Read/Write Can be written only when
formatting idle.

KeepTogether Boolean. Gets or sets the keep
area together option.

Read/Write Can be written only when
formatting idle or active.

Kind “CRObjectKind” on page 221.
Gets what kind of object (for
example, box, cross-tab, field).

Read only None

Left Long. Gets or sets the object
upper left position, in twips.

Read/Write Can be written only when
formatting idle or active.

LeftIndent Long. Gets or sets left indent. Read/Write Can be written only when
formatting idle.
204 Crystal Reports User’s Guide

3 Report Designer Component Object Model
LeftLineStyle “CRLineStyle” on page 218.
Gets or sets the left line style.

Read/Write Can be written only when
formatting idle or active.

LineSpacing Double. Gets the line spacing. Read only Can be written only when
formattin idle.

LineSpacingType “CRLineSpacingType” on
page 218. Gets the line spacing
type.

Read only

MaxNumberOf
Lines

Integer. Gets or sets the
maximum number of line for a
string memo field.

Read/Write Can be written only when
formatting idle or active.

Name String. Gets or sets area name. Read/Write Can be written only when
formatting idle.

Parent “Section Object” on page 174.
Gets reference to the parent
object.

Read only None

RightIndent Long. Gets or sets the right
indent.

Read/Write Can be written only when
formatting idle.

RightLineStyle “CRLineStyle” on page 218.
Gets or sets the right line style.

Read/Write Can be written only when
formatting idle or active.

Suppress Boolean. Gets or sets object
visibility.

Read/Write Can be written only when
formatting idle or active.

SuppressIf
Duplicated

Boolean. Gets or sets the
suppress if duplicated option.

Read/Write Can be written only when
formatting idle or active.

Text String. Gets the text within the
text object. If it has embedded
fields, [] is used to represent
the embedded field.

Read only None

TextColor OLE_COLOR. Gets or sets the
object text color.

Read/Write Can be written only when
formatting idle.

TextRotation
Angle

“CRRotationAngle” on
page 226. Gets or sets text
rotation angle.

Read/Write Can be written only when
formatting idle.

Top Long. Gets or sets the object
upper top position, in twips.

Read/Write Can be written only when
formatting idle or active.

TopLineStyle “CRLineStyle” on page 218.
Gets or sets the top line style.

Read/Write Can be written only when
formatting idle or active.

Width Long. Gets or sets the object
width, in twips.

Read/Write Can be written only when
formatting idle or active.

Property Description Read/Write Restriction in
event handler
Crystal Reports User’s Guide 205

TextObject Object
TextObject Object Methods
The following methods are discussed in this section:

“SetLineSpacing Method (TextObject Object)” on page 206

“SetLineSpacing Method (TextObject Object)” on page 206

SetLineSpacing Method (TextObject Object)

Use the SetLineSpacing method to set the line spacing for a “TextObject Object” on
page 204. The information passed will be used during formatting.

Syntax

Sub SetLineSpacing (LineSpacing As Double,

LineSpacingType As CRLineSpacingType)

Parameters

SetText Method (TextObject Object)

Use the SetText method to set the text object to return the specified text. This
method can be invoked only in the FormattingIdle or FormattingActive mode.

Syntax

Sub SetText (pText As String)

Parameter

Remarks

When the SetText method is called within the sections Format event handler, the
text parameter passed should not be dependent upon some state that the event
handler may be tracking. For example, the event handler may hold a count and
increment it each time the Format event is fired. This could should not be used
directly or indirectly to create the SetText text parameter.

Parameter Description

LineSpacing Specifies the line spacing.

LineSpacingType “CRLineSpacingType” on page 218. Specifies the line spacing type.

Parameter Description

pText Specifies the text string for the Object. See Remarks below.
206 Crystal Reports User’s Guide

3 Report Designer Component Object Model
Enumerated Types

CRAlignment

CRAMPMType

CRAreaKind

CRBarSize

Constant Value

crDefaultAlign 0

crHorCenterAlign 2

crJustified 4

crLeftAlign 1

crRightAlign 3

Constant Value

crAmPmAfter 1

crAmPmBefore 0

Constant Value

crDetail 4

crGroupFooter 5

crGroupHeader 3

crPageFooter 7

crPageHeader 2

crReportFooter 8

crReportHeader 1

Constant (numeric order) Description

crMinimumBarSize 0

crSmallBarSize 1

crAverageBarSize 2

crLargeBarSize 3

crMaximumBarSize 4
Crystal Reports User’s Guide 207

Enumerated Types
CRBindingMatchType

CRBooleanOutputType

CRConvertDateTimeType

CRCurrencyPositionType

CRCurrencySymbolType

Constant Value

crBMTName 0

crBMTNameAndValue 1

Constant Value

crOneOrZero 4

crTOrF 1

crTrueOrFalse 0

crYesOrNo 2

crYOrN 3

Constant Value

crConvertDateTimeToDate 1

crConvertDateTimeToString 0

crKeepDateTimeType 2

Constant Value

crLeadingCurrencyInsideNegative 0

crLeadingCurrencyOutsideNegative 1

crTrailingCurrencyInsideNegative 2

crTrailingCurrencyOutsideNegative 3

Constant Value

crCSTFixedSymbol 1

crCSTFloatingSymbol 2

crCSTNoSymbol 0
208 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRDatabaseType

CRDateCalendarType

CRDateEraType

CRDateOrder

CRDateWindowsDefaultType

Constant Value

crSQLDatabase 2

crStandardDatabase 1

Constant Value

crGregorianCalendar 1

crGregorianUSCalendar 2

crHijriCalendar 6

crJapaneseCalendar 3

crKoreanCalendar 5

crTaiwaneseCalendar 4

crThaiCalendar 7

Constant Value

crLongEra 1

crNoEra 2

crShortEra 0

Constant Value

crDayMonthYear 1

crMonthDayYear 2

crYearMonthDay 0

Constant Value

crNotUsingWindowsDefaults 2

crUseWindowsLongDate 0

crUseWindowsShortDate 1
Crystal Reports User’s Guide 209

Enumerated Types
CRDayType

CRDiscreteOrRangeKind

CRDivisionMethod

CRExchangeDestinationType

CRExportDestinationType

Constant Value

crLeadingZeroNumericDay 1

crNoDay 2

crNumericDay 0

Constant (numeric order) Value

crDiscreteValue 0

crRangeValue 1

crDiscreteAndRangeValue 2

Constant Value

crAutomaticDivision 0

crManualDivision 1

Constant Value

crExchangeFolderType 0

crExchangePostDocMessage 1011

Constant Value

crEDTApplication 5

crEDTDiskFile 1

crEDTEMailMAPI 2

crEDTEMailVIM 3

crEDTLotusDomino 6

crEDTMicrosoftExchange 4

crEDTNoDestination 0
210 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRExportFormatType

Constant Value

crEFTCharSeparatedValues 7

crEFTCommaSeparatedValues 5

crEFTCrystalReport 1

crEFTCrystalReport70 33

crEFTDataInterchange 2

crEFTExactRichText 35

crEFTExcel50 21

crEFTExcel50Tabular 22

crEFTExcel70 27

crEFTExcel70Tabular 28

crEFTExcel80 29

crEFTExcel80Tabular 30

crEFTExplorer32Extend 25

crEFTHTML32Standard 24

crEFTHTML40 32

crEFTLotus123WK1 12

crEFTLotus123WK3 13

crEFTLotus123WKS 11

crEFTNoFormat 0

crEFTODBC 23

crEFTPaginatedText 10

crEFTPortableDocFormat 31

crEFTRecordStyle 3

crEFTReportDefinition 34

crEFTTabSeparatedText 9

crEFTTabSeparatedValues 6

crEFTText 8

crEFTWordForWindows 14

crEFTXML 36
Crystal Reports User’s Guide 211

Enumerated Types
CRFieldKind

CRFieldMappingType

CRFieldValueType

Constant Value

crDatabaseField 1

crFormulaField 2

crGroupNameField 5

crRunningTotalField 7

crParameterField 6

crSpecialVarField 4

crSQLExpressionField 8

crSummaryField 3

Constant Value

crAutoFieldMapping 0

crEventFieldMapping 2

crPromptFieldMapping 1

Constant Value

crBitmapField 17

crBlobField 15

crBooleanField 9

crChartField 21

crCurrencyField 8

crDateField 10

crDateTimeField 16

crIconField 18

crInt16sField 3

crInt16uField 4

crInt32sField 5

crInt32uField 6

crInt8sField 1

crInt8uField 2
212 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRFormulaSyntax

CRGraphColor

CRGraphDataPoint

CRGraphDataType

crNumberField 7

crOleField 20

crPersistentMemoField 14

crPictureField 19

crStringField 12

crTimeField 11

crTransientMemoField 13

crUnknownField 22

Constant Value

Constant Value

crBasicSyntaxFormula 1

crCrystalSyntaxFormula 0 Default value

Constant Value

crBlackAndWhiteGraph 1

crColorGraph 0

Constant Value

crNone 0

crShowLabel 1

crShowValue 2

Constant Value

crCrossTabGraph 2

crDetailGraph 1

crGroupGraph 0
Crystal Reports User’s Guide 213

Enumerated Types
CRGraphDirection

CRGraphType

Constant Value

crHorizontalGraph 0

crVerticalGraph 1

Constant Value

crAbsoluteAreaGraph 20

crDualAxisBubbleGraph 91

crFaked3DAbsoluteAreaGraph 23

crFaked3DPercentAreaGraph 25

crFaked3DPercentBarGraph 5

crFaked3DRegularPieGraph 31

crFaked3DSideBySideBarGraph 3

crFaked3DStackedAreaGraph 24

crFaked3DStackedBarGraph 4

crHighLowDualAxisGraph 101 Obsolete.

crHighLowGraph 100

crHighLowOpenCloseDualAxisGraph 105 Obsolete.

crHighLowOpenCloseGraph 104

crHighLowOpenDualAxisGraph 103 Obsolete.

crHighLowOpenGraph 102 Obsolete.

crLineGraphWithMarkers 13

crMultipleDoughnutGraph 41

crMultiplePieGraph 32

crMultipleProportionalDoughnut
Graph

42

crMultipleProportionalPieGraph 33

crPercentageLineGraph 12

crPercentageLineGraphWithMarkers 15

crPercentAreaGraph 22

crPercentBarGraph 2

crRadarDualAxisGraph 82

crRegularBubbleGraph 90
214 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRGridlineType

crRegularDoughnutGraph 40

crRegularLineGraph 10

crRegularPieGraph 30

crRegularRadarGraph 80

crSideBySideBarGraph 0

crStackedAreaGraph 21

crStackedBarGraph 1

crStackedLineGraph 11

crStackedLineGraphWithMarkers 14

crStackedRadarGraph 81

crThreeDCutCornersGraph 53

crThreeDOctagonGraph 52

crThreeDPyramidGraph 51

crThreeDRegularGraph 50

crThreeDSurfaceHoneycombGraph 62

crThreeDSurfaceRegularGraph 60

crThreeDSurfaceWithSidesGraph 61

crUnknownGraph 1000

crXyScatterDualAxisGraph 71

crXyScatterDualAxisWithLabelsGraph 73

crXyScatterGraph 70

crXyScatterWithLabelsGraph 72

Constant Value

Constant Value

crMajorAndMinorGridlines 3

crMajorGridlines 2

crMinorGridlines 1

crNoGridlines 0
Crystal Reports User’s Guide 215

Enumerated Types
CRGroupCondition

CRHierarchicalSummaryType

CRHourType

Constant Value

crGCAnnually 7

crGCAnyValue 14

crGCBiweekly 2

crGCByAMPM 18

crGCByHour 17

crGCByMinute 16

crGCBySecond 15

crGCDaily 0

crGCEveryNo 11

crGCEveryYes 10

crGCMonthly 4

crGCNextIsNo 13

crGCNextIsYes 12

crGCQuarterly 5

crGCSemiAnnually 6

crGCSemimonthly 3

crGCToNo 9

crGCToNo 8

crGCWeekly 1

Constant Value

crHierarchicalSummaryNone 0

crSummaryAcrossHierarchy 1

Constant Value

Const crNoHour 2

Const crNumericHour 0

Const
crNumericHourNoLeadingZero

1

216 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRHTMLPageStyle

CRHTMLToolbarStyle
These bitwise constants can be XOR’d to specify the toolbar style.

CRImageType

CRLeadingDayPosition

CRLeadingDayType

Constant Value

crFramePageStyle 2

crPlainPageStyle 0

crToolbarAtBottomPageStyle 4

crToolbarAtTopPageStyle 3

crToolbarPageStyle 1

Constant Value

crToolbarRefreshButton 1

crToolbarSearchBox 2

Constant Value

crDIBImageType 1

crJPEGImageType 2

Constant Value

crLeadingDayOfWeek 0

crTrailingDayOfWeek 1

Constant Value

crLongLeadingDay 1

crNoLeadingDay 2

crShortLeadingDay 0
Crystal Reports User’s Guide 217

Enumerated Types
CRLegendPosition

CRLineSpacingType

CRLineStyle

CRLinkJoinType

Constant Value

crPlaceBottomCenter 1

crPlaceLeft 4

crPlaceRight 3

crPlaceTopCenter 2

crPlaceUpperRight 0

Constant Value

crExactSpacing 1

crMultipleSpacing 0

Constant Value

crLSDashLine 3

crLSDotLine 4

crLSDoubleLine 2. Not valid for LineObject.LineStyle and BoxObject.LineStyle.

crLSNoLine 0. Not valid for LineObject.LineStyle and BoxObject.LineStyle.

crLSSingleLine 1

Constant Value

crJTEqual 4

crJTGreaterOrEqual 10

crJTGreaterThan 8

crJTLeftOuter 5

crJTLessOrEqual 11

crJTLessThan 9

crJTNotEqual 12

crJTRightOuter 6
218 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRLinkLookUpType

CRMarkerShape

CRMarkerSize

CRMinuteType

Constant Value

crLTLookupParallel 1

crLTLookupProduct 2

crLTLookupSeries 3

Constant Value

crCircleShape 4

crDiamondShape 5

crRectangleShape 1

crTriangleShape 8

Constant Value

crLargeMarkers 4

crMediumLargeMarkers 3

crMediumMarkers 2

crMediumSmallMarkers 1

crSmallMarkers 0

Constant Value

crNoMinute 2

crNumericMinute 0

crNumericMinuteNoLeadingZero 1
Crystal Reports User’s Guide 219

Enumerated Types
CRMonthType

CRNegativeType

CRNumberFormat

Constant Value

crLeadingZeroNumericMonth 1

crLongMonth 3

crNoMonth 4

crNumericMonth 0

crShortMonth 2

Constant Value

crBracketed 3

crLeadingMinus 1

crNotNegative 0

crTrailingMinus 2

Constant Value

crCurrencyMillions 12

crCurrencyNoDecimal 3

crCurrencyThousands 11

crCurrencyTwoDecimal 4

crCustomNumberFormat 8

crMillionsNoDecimal 10

crNoDecimal 0

crOneDecimal 1

crPercentNoDecimal 5

crPercentOneDecimal 6

crPercentTwoDecimal 7

crThousandsNoDecimal 9

crTwoDecimal 2
220 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRObjectKind

CRPaperOrientation

CRPaperSize

Constant Value

crBlobFieldObject 9

crBoxObject 4

crCrossTabObject 8

crFieldObject 1

crGraphObject 7

crLineObject 3

crMapObject 10

crOlapGridObject 11

crOleObject 6

crSubreportObject 5

crTextObject 2

Constant Value

crDefaultPaperOrientation 0

crLandscape 2

crPortrait 1

Constant Value

crDefaultPaperSize 0

crPaper10x14 16

crPaper11x17 17

crPaperA3 8

crPaperA4 9

crPaperA4Small 10

crPaperA5 11

crPaperB4 12
Crystal Reports User’s Guide 221

Enumerated Types
crPaperB5 13

crPaperCsheet 24

crPaperDsheet 25

crPaperEnvelope10 20

crPaperEnvelope11 21

crPaperEnvelope12 22

crPaperEnvelope14 23

crPaperEnvelope9 19

crPaperEnvelopeB4 33

crPaperEnvelopeB5 34

crPaperEnvelopeB6 35

crPaperEnvelopeC3 29

crPaperEnvelopeC4 30

crPaperEnvelopeC5 28

crPaperEnvelopeC6 31

crPaperEnvelopeC65 32

crPaperEnvelopeDL 27

crPaperEnvelopeItaly 36

crPaperEnvelopeMonarch 37

crPaperEnvelopePersonal 38

crPaperEsheet 26

crPaperExecutive 7

crPaperFanfoldLegalGerman 41

crPaperFanfoldStdGerman 40

crPaperFanfoldUS 39

crPaperFolio 14

crPaperLedger 4

crPaperLegal 5

crPaperLetter 1

crPaperLetterSmall 2

crPaperNote 18

crPaperQuarto 15

crPaperStatement 6

crPaperTabloid 3
222 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRPaperSource

CRParameterFieldType

CRParameterPickListSortMethod

Constant Value

crPRBinAuto 7

crPRBinCassette 14

crPRBinEnvelope 5

crPRBinEnvManual 6

crPRBinFormSource 15

crPRBinLargeCapacity 11

crPRBinLargeFmt 10

crPRBinLower 2

crPRBinManual 4

crPRBinMiddle 3

crPRBinSmallFmt 9

crPRBinTractor 8

crPRBinUpper 1

Constant Value

crQueryParameter 1

crReportParameter 0

crStoreProcedureParameter 2

Constant (numeric order) Value

crNoSort 0

crAlphanumericAscending 1

crAlphanumericDescending 2

crNumericAscending 3

crNumericDescending 4
Crystal Reports User’s Guide 223

Enumerated Types
CRPieLegendLayout

CRPieSize

CRPlaceHolderType

CRPrinterDuplexType

Constant Value

crAmountLayout 1

crCustomLayout 2

crPercentLayout 0

Constant (numeric order) Value

crMaximumPieSize 0

crLargePieSize 16

crAveragePieSize 32

crSmallPieSize 48

crMinimumPieSize 64

Constant Value

crAllowPlaceHolders 2

crDelayTotalPageCountCalc 1

Constant Value

crPRDPDefault 0

crPRDPHorizontal 3

crPRDPSimplex 1

crPRDPVertical 2
224 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRPrintingProgress

CRRangeInfo

CRRenderResultType

CRReportFileFormat

CRReportKind

Constant Value

crPrintingCancelled 5

crPrintingCompleted 3

crPrintingFailed 4

crPrintingHalted 6

crPrintingInProgress 2

crPrintingNotStarted 1

Constant (numeric order) Value

crRangeNotIncludeUpperLowerBound 0

crRangeIncludeUpperBound 1

crRangeIncludeLowerBound 2

crRangeNoUpperBound 4

crRangeNoLowerBound 8

Constant Value

crBSTRType 8. This constant is currently not supported.

crUISafeArrayType 8209

Constant Value

cr70FileFormat 1792

cr80FileFormat 2048

Constant Value

crColumnarReport 1

crLabelReport 2

crMulColumnReport 3
Crystal Reports User’s Guide 225

Enumerated Types
CRReportVariableValueType

CRRotationAngle

CRRoundingType

Constant Value

crRVBoolean 2

crRVCurrency 1

crRVDate 3

crRVDateTime 5

crRVNumber 0

crRVString 6

crRVTime 4

Constant (numeric order) Value

crRotate0 0

crRotate90 1

crRotate270 2

Constant (numeric order) Value

crRoundToMillion 17

crRoundToHundredThousand 16

crRoundToTenThousand 15

crRoundToThousand 14

crRoundToHundred 13

crRoundToTen 12

crRoundToUnit 11

crRoundToTenth 10

crRoundToHundredth 9

crRoundToThousandth 8

crRoundToTenThousandth 7

crRoundToHundredThousandth 6

crRoundToMillionth 5

crRoundToTenMillionth 4

crRoundToHundredMillionth 3
226 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRRunningTotalCondition
0

CRSearchDirection

CRSecondType

CRSliceDetachment

crRoundToBillionth 2

crRoundToTenBillionth 1

Constant (numeric order) Value

Constant Value

crRTEvalNoCondition 0

crRTEvalOnChangeOfField 1

crRTEvalOnChangeOfGroup 2

crRTEvalOnFormula 3

Constant (numeric order) Value

crForward 0

crBackward 1

Constant Value

crNumericNoSecond 2

crNumericSecond 0

crNumericSecondNoLeadingZero 1

Constant (numeric order) Value

crLargestSlice 2

crSmallestSlice 1

crNoDetachment 0
Crystal Reports User’s Guide 227

Enumerated Types
CRSortDirection

CRSpecialVarType

Constant Value

crAscendingOrder 0

crDescendingOrder 1

crOriginalOrder 2. Not supported for any kind of groups.

crSpecifiedOrder 3. Not supported for any kind of groups.

Constant Value

crSVTDataDate 4

crSVTDataTime 5

crSVTFileAuthor 15

crSVTFileCreationDate 16 (&H10)

crSVTFilename 14

crSVTGroupNumber 8

crSVTGroupSelection 13

crSVTModificationDate 2

crSVTModificationTime 3

crSVTPageNofM 17 (&H11)

crSVTPageNumber 7

crSVTPrintDate 0

crSVTPrintTime 1

crSVTRecordNumber 6

crSVTRecordSelection 12

crSVTReportComments 11

crSVTReportTitle 10

crSVTTotalPageCount 9
228 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRSummaryType

CRTableDifferences

Constant Value

crSTAverage 1

crSTCount 6

crSTDCorrelation 10

crSTDCovariance 11

crSTDistinctCount 9

crSTDMedian 13

crSTDMode 17

crSTDNthLargest 15

crSTDNthMostFrequent 18

crSTDNthSmallest 16

crSTDPercentage 19

crSTDPercentile 14

crSTDWeightedAvg 12

crSTMaximum 4

crSTMinimum 5

crSTPopStandardDeviation 8

crSTPopVariance 7

crSTSampleStandardDeviation 3

crSTSampleVariance 2

crSTSum 0

Constant Value

crTDOK 0x00000000

crTDDatabaseNotFound 0x00000001

crTDServerNotFound 0x00000002

crTDServerNotOpened 0x00000004

crTDAliasChanged 0x00000008

crTDIndexesChanged 0x00000010

crTDDriverChanged 0x00000020

crTDDictionaryChanged 0x00000040

crTDFileTypeChanged 0x00000080
Crystal Reports User’s Guide 229

Enumerated Types
CRTextFormat

CRTimeBase

CRTopOrBottomNGroupSortOrder

crTDRecordSizeChanged 0x00000100

crTDAccessChanged 0x00000200

crTDParametersChanged 0x00000400

crTDLocationChanged 0x00000800

crTDDatabaseOtherChanges 0x00001000

crTDNumberFieldChanged 0x00010000

crTDFieldOtherChanges 0x00020000

crTDFieldNameChanged 0x00040000

crTDFieldDescChanged 0x00080000

crTDFieldTypeChanged 0x00100000

crTDFieldSizeChanged 0x00200000

crTDNativeFieldTypeChanged 0x00400000

crTDNativeFieldOffsetChanged 0x00800000

crTDNativeFieldSizeChanged 0x01000000

crTDFieldDecimalPlacesChanged 0x02000000

Constant Value

Constant Value

crHTMLText 2

crRTFText 1

crStandardText 0

Constant Value

cr12Hour 0

cr24Hour 1

Constant Value

crAllGroupsSorted 1

crAllGroupsUnsorted 0

crBottomNGroups 3

crTopNGroups 2
230 Crystal Reports User’s Guide

3 Report Designer Component Object Model
CRValueFormatType

CRViewingAngle

CRYearType
0

Constant Value

crAllowComplexFieldFormatting 4

crIncludeFieldValues 1

crIncludeHiddenFields 2

Constant Value

crBirdsEyeView 15

crDistortedStdView 10

crDistortedView 4

crFewGroupsView 9

crFewSeriesView 8

crGroupEmphasisView 7

crGroupEyeView 6

crMaxView 16

crShorterView 12

crShortView 5

crStandardView 1

crTallView 2

crThickGroupsView 11

crThickSeriesView 13

crThickStdView 14

crTopView 3

Constant Value

crLongYear 1

crNoYear 2

crShortYear 0
Crystal Reports User’s Guide 231

Enumerated Types
232 Crystal Reports User’s Guide

Programming the Crystal Report Viewers 4

The Crystal Report Viewer is a front-end user interface for
viewing reports. In this chapter you will find detailed
information on implementing the ActiveX and Java Bean
viewers in your application.
Crystal Reports Technical Reference Guide 233

Enhancements to the Report Viewer
Enhancements to the Report Viewer
The Report Viewer has been enhanced substantially in Version 8:
� The Report Viewer uses multi-threading. As a result, your users can begin

viewing a report sooner, even if the report requires that it all be run before
certain values are generated (page numbering, for example, of the style “page
24 of 125”). In such a case, the Report Engine uses place holders for the yet-to-
be-generated total page count. When that page count is completed, the Report
Engine inserts the missing data into the pages already read.

� The report’s group tree is loaded on-demand. This allows your users to use the
tree functionality for navigation even when only a partial group tree has been
loaded.

� You can specify a page number to go to in the report you are currently
viewing.

� You can use the Select Expert and the Search Expert in the viewer to select
records and search for specific values using formulas.

� The Report Viewer supports the use of rotated text in the report.
� The toolbar for the Report Viewer for ActiveX has a new look.
� You can customize the Report Viewer by resizing sections of the toolbar,

adding custom bitmaps, and more.
� There is a Help button implemented for applications. Clicking on the Help button

can fire an event to your application so it can display the appropriate help.
� There are over 30 events giving you the ability to make previewing the report a

truly interactive activity.

For a better understanding of all the capabilities of the Report Viewer, review the
viewer object model (CRVIEWERLibCtl) in the Visual Basic Object Browser.

Note: Visit the Seagate Software Developer Zone web site at
http://www.seagatesoftware.com/products/dev_zone.
Click Support to get links for finding documentation and knowledge base articles
about the Report Designer Component.

Application Development with Crystal Report Viewers
Developing applications that display reports on screen is now a straightforward
process. Crystal Reports includes the Crystal Report Viewers as easy to use but
complex components that can be embedded directly in an application. Once added
to an application, reports accessed through the Report Engine Automation Server,
the Report Designer Component, or the Crystal Web Reports Server can be
displayed right inside your own applications. The Report Viewer retains all of the
powerful formatting, grouping, and totalling power of the original report, and
your users get access to data in a dynamic and clear format.
234 Crystal Reports Technical Reference Guide

4 : Programming the Crystal Report Viewers
Crystal Reports provides two Report Viewers specifically designed for application
development: the Crystal Report Viewer for ActiveX and the Crystal Report
Viewer Java Bean. Both provide a complete object model for programming and
manipulating the Report Viewer at runtime inside your applications. Simply
displaying a single report inside the Report Viewer is a simple process requiring
only a couple of lines of code. However, if necessary for your application, you have
the option of complete control over how the Report Viewer appears and functions.

With the Crystal Report Viewer as a front-end user interface for viewing reports,
Crystal Reports development technologies allow you to develop even complex
client/server or multi-tier applications that access, manipulate, and display data
for intranet systems, workgroups, or any group of people needing clear and
informative data on a regular basis. Design robust Business Support systems and
Enterprise Information Management applications delivering even the most
complex data through the Crystal Report Viewers.

This chapter describes both the ActiveX and Java Bean versions of the Report
Viewer in relation to designing applications using Crystal Reports development
technologies.

Crystal Report Viewer for ActiveX
The Crystal Report Viewer for ActiveX is a standard ActiveX control that can be
added to an application in any development environment that supports ActiveX.
Programmers using Visual Basic, Delphi, Visual C++, or Borland C++
programmers all receive the benefit of quickly adding a powerful report viewer to
an application with little coding.

As a standard component, the ActiveX Report Viewer exposes several properties
at design time, but also provides a complete object model with properties,
methods, and events that can be programmed at runtime. The following sections
discuss various topics for working with the ActiveX Report Viewer in Visual Basic.
If you are using a development environment other than Visual Basic, use these
topics as a guideline, but refer to your development software documentation for
specific information on working with ActiveX controls.

The Crystal Report Viewer, as an ActiveX control, includes a complete object
model for controlling how it appears in an application, and how it displays reports.
Simply displaying a report in the Report Viewer window takes little code, but to
truly make use of its power requires a broader understanding of how to work with
the object model.

Related topics:
“Adding the Report Viewer to a Visual Basic project” on page 236.

“Using the CRViewer object” on page 236.
Crystal Reports Technical Reference Guide 235

Crystal Report Viewer for ActiveX
Adding the Report Viewer to a Visual Basic project
If you create a new report using the Create Report Expert in the Crystal Report
Designer Component, the Report Viewer control can be automatically added to a
Form in your Visual Basic project. However, there may be times when you need to
add the control by hand. In addition, the Report Viewer control can be
implemented in other environments, many of which may not support ActiveX
designers, meaning the Create Report Expert is unavailable.

Use the following steps to add the Crystal Report Viewer ActiveX control to a Form
in your Visual Basic application. This tutorial assumes the Form already exists in
your project and is named Form1.

1 First, you must verify that a reference to the Report Viewer control exists in
your project. From the Project menu, select the Components command. The
Components dialog box appears.

2 On the Controls Tab of the Components dialog box, scroll through the list of
ActiveX controls until you find Crystal Report Report Viewer.

Note: If you do not see the Crystal Report Report Viewer control in the list, use
the Browse button to locate the CRVIEWER.DLL component in the C:\Program
Files\Seagate Software\Viewers\ActiveXViewer directory.

3 If the check box next to the Report Viewer control is not toggled on, toggle it
on now.

4 Click OK, and the CRViewer control will appear in the Visual Basic toolbox.

5 Click the CRViewer control on the toolbox, then draw the Report Viewer
control on your form by dragging a rectangle across the form with the mouse
pointer. An instance of the control will be added to your Form.

6 Adjust the size and position of the Report Viewer on your form, and use the
Properties window to adjust the overall appearance of the control.

Using the CRViewer object
The CRViewer object represents an instance of the Report Viewer control that has
been added to your project. If you have created a report using the Crystal Report
Designer Component and accepted the defaults for adding the Report Viewer to
your project, the Report Viewer control in your application will be named
CRViewer1. CRViewer1 can be used in your code as a CRViewer object. For
instance, the following code demonstrates a simple technique for assigning a
report to the Report Viewer, and displaying it:

CRViewer1.ReportSource = report

CRViewer1.ViewReport

For more information on the properties and methods available with this object,
refer to the Report Viewer object model and the CRViewer object.
236 Crystal Reports Technical Reference Guide

4 : Programming the Crystal Report Viewers
The topics listed below describe several aspects of the Report Viewer object model
and present examples of how to use the Report Viewer objects, methods,
properties and events in your Visual Basic code.
� “Specifying a report” on page 237
� “Working with secure data in reports” on page 237
� “Handling Report Viewer events” on page 238
� “Moving through a report” on page 239
� “Printing the report” on page 240
� “Controlling the appearance of the Report Viewer” on page 240
� “Connecting to the Web Reports Server” on page 241

Specifying a report

The most important task with the Report Viewer control is to specify a report and
display it at runtime. This is easily handled with the ReportSource property and
the ViewReport method.
Private Sub Form1_Load()

 Dim report As New CrystalReport1

 CRViewer1.ReportSource = report

 CRViewer1.ViewReport

End Sub

In this example, assigning the report and displaying it in the Report Viewer is
handled when the Form containing the Report Viewer object is loaded into the
application. A reference to the report is first obtained in the form of a Report object
representing a Crystal Report Designer Component that has been added to the
Visual Basic project.

ReportSource is a property of the Report Viewer’s CRViewer object which
corresponds directly to the Report Viewer control added to the project. In this case,
that control has been named CRViewer1. The ReportSource property can accept a
report in the form of a Report Object exposed by the Report Designer Component
or the Crystal Web Reports Server.

Finally, the ViewReport method is called. This method has no parameters and has
the job simply of displaying the specified report inside the Report Viewer control.

Working with secure data in reports

If your report connects to a secure data source that requires log on information,
you must release the Report object from the Report Viewer before you can log off
of the data source. This can be done by assigning a new Report object to the
ReportSource property, or by closing the CRViewer object. Until this is done, the
data source will not be released from the Report object and you cannot log off.
Crystal Reports Technical Reference Guide 237

Crystal Report Viewer for ActiveX
Handling Report Viewer events

The Report Viewer control allows you to write custom code for several events relating
to user interaction with both the control window and the report displayed. For
instance, if you design a drill down report using the Report Designer Component,
your users are likely to want to drill down on detail data. You can provide custom
handling of such an event by writing code fort the DrillOnGroup event.

To add event procedures to the Report Viewer control for the DrillOnGroup and
PrintButtonClicked events:

1 In the Visual Basic Project window, select the Form containing the Report
Viewer control.

2 Click the View Code button in the toolbar for the Project window. A code
window for the form appears.

3 In the drop-down list box at the upper left hand corner of the code window,
select the CRViewer1 control. (This name will appear different if you changed
the Name property of the control in the Properties window.)

4 In the drop-down list box at the upper right corner of the code window, select
the DrillOnGroup event. A procedure appears for handling the event.

5 Add the following code to the DrillOnGroup event procedure:
Private Sub CRViewer1_DrillOnGroup(GroupNameList As Variant, _

ByVal DrillType As CRVIEWERLibCtl.CRDrillType, UseDefault As

Boolean)

MsgBox "You're drilling down on the " & GroupNameList(0) & " group!"

End Sub

6 In the drop-down list box at the upper right of the code window, select the
PrintButtonClicked event. A new procedure appears for this event.

7 Add the following code for the new event:
Private Sub CRViewer1_PrintButtonClicked(UseDefault As Boolean)

MsgBox "You clicked the Print button!"

End Sub

The DrillOnGroup event is triggered when a user double-clicks on a chart, on a
map, or on a report summary field. The code added to the event procedure will
display a message box with the name of the group. The PrintButtonClicked event
is fired if the user clicks the print button on the Report Viewer window. Note that
any code added to these event handlers replaces the default action of the event. A
more practical use of these events would be to display custom dialogs or perform
other report related calculations and procedures.
238 Crystal Reports Technical Reference Guide

4 : Programming the Crystal Report Viewers
Moving through a report

Often, reports consist of several pages. The Report Viewer control provides, by
default, controls that allow a user to move through the pages of the report.
However, you may need to implement a system through which your own code
controls when separate pages are displayed.

The CRViewer object provides several methods for moving through a report,
including methods to move to specific pages:
� ShowFirstPage
� ShowLastPage
� ShowNextPage
� ShowPreviousPage
� ShowNthPage
� GetCurrentPageNumber

And methods for moving to specific groups in the report:
� ShowGroup

Moving through pages

The first set of methods designed for moving through the pages of a report are
straightforward and correspond directly to controls that normally appear on the
Report Viewer control window. ShowFirstPage, ShowLastPage, ShowNextPage,
and ShowPreviousPage simply switch to the first, last, next, or previous page in
the report, respectively. They are all used in the same manner in code:
CRViewer1.ShowFirstPage

CRViewer1.ShowLastPage

CRViewer1.ShowNextPage

CRViewer1.ShowPreviousPage

If the requested page cannot be displayed, for instance, if the last page in the report
is currently displayed and ShowNextPage is called, the currently displayed page
will be refreshed.

For more controlled movements through the report, ShowNthPage can display a
specific page of the report:

CRViewer1.ShowNthPage 5

This method accepts a page number as its only argument. If the selected page number
does not exist, for example, page 10 is selected from a 6 page report, then either the last
or first page will be displayed, depending on the page number requested.

As a convenience, the GetCurrentPageNumber method has also been included.
You can obtain the currently displayed page from within your code at any time
using this method:
Dim pageNum As Long

pageNum = CRViewer1.GetCurrentPageNumber
Crystal Reports Technical Reference Guide 239

Crystal Report Viewer for ActiveX
Moving to a specific group

Grouping is a common feature of reports, and, since page numbers can frequently
change based on current data, it may be more appropriate to navigate through a report
using groups. For example, if a report is grouped by cities within states, and by states
within countries, you can include code to display the group for a specific city.

Printing the report

Although the Report Viewer control is designed primarily for displaying reports
on screen, users frequently want a hard-copy of the data. The PrintReport method
provides a simple means of allowing access to the Windows print features. Simply
call the method as below, and Windows can take over.
Dim Report As New Crystalreport1

CRViewer1.ReportSource = Report

CRViewer1.PrintReport

Controlling the appearance of the Report Viewer

By default, the Report Viewer window includes several controls for allowing users
to navigate through a report, enlarge the view of a report, refresh the data in a
report, and more. There may be applications that you create in which you want to
limit a user’s interaction, change the look of the Report Viewer window, or provide
an alternate means of accessing the same functionality.

For instance, you could turn off the navigation controls in the Report Viewer, then
create your own controls to navigate through the report that call the
ShowFirstPage, ShowLastPage, ShowNextPage, ShowPreviousPage, and
ShowNthPage methods. (See “Moving through a report” on page 239.) For
handling such custom features, the Report Viewer object model provides several
properties for enabling and disabling different features of the Report Viewer
ActiveX control:
� DisplayBackgroundEdge
� DisplayBorder
� DisplayGroupTree
� DisplayTabs
� DisplayToolbar
� EnableAnimationCtrl
� EnableCloseButton
� EnableDrillDown
� EnableGroupTree
� EnableNavigationControls
� EnablePrintButton
240 Crystal Reports Technical Reference Guide

4 : Programming the Crystal Report Viewers
� EnableProgressControl
� EnableRefreshButton
� EnableSearchControl
� EnableStopButton
� EnableToolbar
� EnableZoomControl

Using these properties requires assigning a value of either True or False. True
enables the specified control or feature of the Report Viewer, while False disables
it. All controls and features are, by default, enabled.

The following code demonstrates how to disable the entire toolbar for the Report
Viewer window:

CRViewer1.DisplayToolbar = False

Connecting to the Web Reports Server

The Web Reports Server provides not only a powerful means of distributing
reports across the web, but also provides a report distribution mechanism that can
be incorporated into multi-tier applications. By using the Crystal Report Viewer
for ActiveX as a client-side report viewer, the Web Reports Server can become a
report distribution engine within a larger application that runs over a network.

Connecting to the Web Reports Server requires accessing two new ActiveX
components: the WebReportBroker and the WebReportSource. The following
samples demonstrate how to connect to the Web Reports Server using
“Connecting from Visual Basic” on page 241, and “Connecting from VBScript” on
page 242, inside a web page.

Connecting from Visual Basic

The following code is an example of how to connect to the Web Reports Server
from Visual Basic and assign a report to the Crystal Report Viewer for ActiveX.
This assumes that you have added the ActiveX viewer control to a form named
Form1, and the ActiveX viewer control is named CRViewer1.
Private Sub Form1_Load()

Dim webBroker, webSource

Set webBroker = CreateObject("WebReportBroker.WebReportBroker")

Set webSource = CreateObject("WebreportSource.WebReportSource")

webSource.ReportSource = webBroker

webSource.URL = "http://<machinename>/scrreports/xtreme/hr.rpt"

webSource.Title = "Employee Profiles"

CRViewer1.ReportSource = webSource

CRViewer1.ViewReport

End Sub
Crystal Reports Technical Reference Guide 241

The Crystal Report Viewer Java Bean
Connecting from VBScript

The following code assumes you have added the Crystal Report Viewer for
ActiveX to a web page using the <OBJECT> tag and assigned it an ID of CRViewer.

<OBJECT ID="WebSource" Width=0 Height=0>

CLASSID="CLSID:F2CA2115-C8D2-11D1-BEBD-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/swebrs.dll#Version=1.2.0.5"

</OBJECT>

<OBJECT ID="WebBroker" Width=0 Height=0>

CLASSID="CLSID:F2CA2119-C8D2-11D1-BEBD-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/swebrs.dll#Version=1.2.0.5"

</OBJECT>

<OBJECT ID="Export" Width=0 Height=0>

CLASSID="CLSID:BD10A9C1-07CC-11D2-BEFF-00A0C95A6A5C"

CODEBASE="viewer/ActiveXViewer/sviewhlp.dll#Version=1.0.0.4"

</OBJECT>

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Page_Initialize

Dim webBroker

Dim webSource

Set webBroker = CreateObject("WebReportBroker.WebReportBroker")

Set webSource = CreateObject("WebReportSource.WebReportSource")

webSource.ReportSource = webBroker

webSource.URL = Location.Protocol + "//" + Location.Host + _

"/scrreports/xtreme/invent.rpt"

CRViewer.ReportSource = webSource

CRViewer.ViewReport

End Sub

-->

</SCRIPT>

The Crystal Report Viewer Java Bean
The Crystal Report Viewer Java Bean (or Report Viewer Bean) can be added to an
application in any development environment that supports Java (version 1.1).
Programmers receive the benefit of quickly adding a powerful report viewer to an
application with little coding.

As a standard component, the Crystal Report Viewer Java Bean exposes several
properties at design time, but also provides a complete object model with
properties, methods, and events that can be programmed at runtime. The
following discusses one approach to creating an application using the Crystal
Report Viewer Java Bean. It describes the creation of a simple Applet which will
allow a report to be viewed from your browser.

This example uses the Bean Box a component of the Bean Developer Kit (BDK)
from Sun Microsystems Inc. The Bean Box is not intended to be used for serious
application development, rather as a platform for testing Beans interactively at
design time, and creating simple applets for run time testing. The Bean Box is
available for download from Sun Microsystems.
242 Crystal Reports Technical Reference Guide

4 : Programming the Crystal Report Viewers
Adding the Report Viewer Bean to the project
To add the Report Viewer Bean to the Bean Box:

1 Locate the JAR file called ReportViewerBean.jar in the "Viewers" directory
(\SeagateSoftware\Viewers\JavaViewerBean).

2 Either copy the file to the \jars subdirectory of the BDK
or

From the Bean Box Select LoadJar from the File menu and specify the
pathname of the file.

3 The Crystal Report Viewer Icon should appear in the ToolBox palette.

Creating a simple applet with the Report Viewer
To add the Report Viewer Bean to the Bean Box Composition window and create
an applet:

1 Click on the Report Viewer Beans name (Crystal Report Viewer) in the
ToolBox palette.

2 Click on the location in the Bean Box Composition window where you want
the Report Viewer Bean to appear.

3 Resize the Report Viewer in the Composition window until you are able to see
the controls and report window.

4 In the Bean Box Property Sheet window you will see the list of Report Viewer
Bean properties. These can be set and edited. For example to view a report
click on the reportName property. When the dialog box appears enter the URL
of a report file (for example: "http://localhost/scrreports/craze/
adcont2s.rpt").
The report should be displayed in the Crystal Report Viewer Report window.

5 To create a simple applet select MakeApplet from the File menu. This will
create an applet which when called from your browser will display the report
specified in the reportName property. You will be prompted to specify a
directory where your applet and its supporting file will be placed (or the
default tmp subdirectory of the beanbox directory).

If you look at the directory containing the applet, you will notice that there are a
number of supporting files and directories. Locate the html file
(<appletname>.html) and click on it. Your default browser should display the
Report Viewer and the report.

The minimum required to actually run the application using the bean is:
� the html file which references the applet class file
� the extracted ReportViewerBean.jar file and any supporting jar files
� the applet class file.
Crystal Reports Technical Reference Guide 243

The Crystal Report Viewer Java Bean
244 Crystal Reports Technical Reference Guide

Report Viewer Object Model 5

The Crystal Report Viewer contains an extensive object
model allowing you complete control over how the viewer
appears and functions. This chapter provides detailed
information on the properties, methods and events of the
Crystal Report Viewer object model for both the ActiveX
viewer, and the Java Bean viewer.
Crystal Reports Technical Reference Guide 245

Report Viewer/ActiveX Object Model Technical Reference
Report Viewer/ActiveX Object Model Technical
Reference

The following diagram outlines the Report Viewer hierarchy.

CRField Object (CRVIEWERLib)
The CRField Object contains information related to the fields in a report displayed
in the Report Viewer.

CRField Object Properties

CRFields Collection (CRVIEWERLib)
The CRFields Collection contains instances of CRFields Objects.

CRFields Collection Properties

Property Description Read/Write

FieldType “CRFieldType (CRViewerLib)” on page 268. Gets the type of
field.

Read-only

IsRawData Boolean. Gets whether or not the data in the field is raw data. Read-only

Name String. Gets the name of the field. Read-only

Value Variant. Default property gets the value in the field. Read-only

Property Description Read/Write

Count Long. Gets the total number of items in the Collection. Read-only

Item (index As
Long)

Long. Default property gets the 1-based index number of
the item in the Collection.

Read-only

SelectedFieldIndex Long. Gets the index of the selected field. Read-only
246 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
CRVEventInfo Object (CRVIEWERLib)
The CRVEventInfo Object contains information about events relating to objects
within a report.

CRVEventInfo Object Properties

CRVEventInfo Object Methods
The following methods are discussed in this section:

“GetFields Method (CRVEventInfo Object)” on page 247

GetFields Method (CRVEventInfo Object)

Use GetFields method to get the Fields Collection.

Syntax

Function GetFields ()

CRViewer Object (CRVIEWERLib)
The CRViewer Object is the primary object representing the Report Viewer control
as it appears on a Form in your Visual Basic application. The current interface is
ICrystalReportViewer3.

Property Description Read/Write

CanDrillDown Boolean. Gets whether or not the object is drillable. Read-only

Index Long. Gets or sets the number identifying a control in a control
array.

Read-only

ParentIndex Long. Gets reference to the object’s parent’s index. Read-only

Text String. Gets the object’s text string. Read-only

Type “CRObjectType (CRViewerLib)” on page 269. Gets the object
type.

Read-only
Crystal Reports Technical Reference Guide 247

Report Viewer/ActiveX Object Model Technical Reference
CRViewer Object Properties

Property Description Read/Write

ActiveViewIndex Integer. Gets the 1-based index of the current
view (tab).

Read only

DisplayBackgroundEdge Boolean. Gets or sets whether the report is offset
from the edge of its view window.

Read/Write

DisplayBorder Boolean. Gets or sets whether the border of the
viewer object is displayed.

Read/Write

DisplayGroupTree Boolean. Gets or sets the visibility of the group
tree.

Read/Write

DisplayTabs Boolean. Gets or sets whether the viewer has tabs
for navigation between views.

Read/Write

DisplayToolbar Boolean. Gets or sets the visibility of the toolbar. Read/Write

EnableAnimationCtrl Boolean. Gets or sets whether or not the
animation control is visible.

Read/Write

EnableCloseButton Boolean. Gets or sets the visibility of the close
button.

Read/Write

EnableDrillDown Boolean. Gets or sets whether drill down is
allowed.

Read/Write

EnableExportButton Boolean. Gets or sets the visibility of the Export
toolbar button.

Read/Write

EnableGroupTree Boolean. Gets or sets whether or not the group
tree is available.

Read/Write

EnableHelpButton Boolean. Gets or sets whether or not the help
button appears on the toolbar.

Read/Write

EnableNavigationControls Boolean. Gets or sets whether or not the First
Page button, Previous Page button, Next Page
button, and Last Page button appear on the
toolbar.

Read/Write

EnablePopupMenu Boolean. Gets or sets whether the popup menu is
available.

Read/Write

EnablePrintButton Boolean. Gets or sets the visibility of the Print
button.

Read/Write

EnableProgressControl Boolean. Gets or sets the visibility of the progress
control.

Read/Write

EnableRefreshButton Boolean. Gets or sets the visibility of the Refresh
button.

Read/Write

EnableSearchControl Boolean. Gets or sets the visibility of the search
control.

Read/Write

EnableSearchExpertButton Boolean. Gets or sets the status of the Search
Expert toolbar button.

Read/Write
248 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
CRViewer Object Methods
The following methods are discussed in this section:

“ActivateView Method (CRViewer Object)” on page 250

“AddView Method (CRViewer Object)” on page 250

“CloseView Method (CRViewer Object)” on page 250

“GetCurrentPageNumber Method (CRViewer Object)” on page 250

“GetViewName Method (CRViewer Object)” on page 251

“GetViewPath Method (CRViewer Object)” on page 251

“PrintReport Method (CRViewer Object)” on page 252

“Refresh Method (CRViewer Object)” on page 252

“SearchByFormula Method (CRViewer Object)” on page 252

“SearchForText Method (CRViewer Object)” on page 253

“ShowFirstPage Method (CRViewer Object)” on page 253

“ShowGroup Method (CRViewer Object)” on page 253

“ShowLastPage Method (CRViewer Object)” on page 253

“ShowNextPage Method (CRViewer Object)” on page 253

“ShowNthPage Method (CRViewer Object)” on page 254

“ShowPreviousPage Method (CRViewer Object)” on page 254

“ViewReport Method (CRViewer Object)” on page 254

“Zoom Method (CRViewer Object)” on page 254

EnableStopButton Boolean. Gets or sets whether the viewer
displays the stop button.

Read/Write

EnableToolbar Boolean. Gets or sets the visibility of the toolbar. Read/Write

EnableZoomControl Boolean. Gets or sets the visibility of the zoom
control.

Read/Write

IsBusy Boolean. Gets the status of the control, busy or
not busy.

Read only

ReportSource Unknown. Gets or sets the report source. Read/Write

TrackCursorInfo “CRVTrackCursorInfo Object (CRVIEWERLib)”
on page 266. Gets reference to TrackCursor
information.

Read only

ViewCount Integer. Gets the current number of views (tabs). Read only

Property Description Read/Write
Crystal Reports Technical Reference Guide 249

Report Viewer/ActiveX Object Model Technical Reference
ActivateView Method (CRViewer Object)

Use ActivateView method to activate a particular view.

Syntax

Sub ActivateView (Index)

Parameter

AddView Method (CRViewer Object)

Use AddView method to add a new view tab to the Viewer.

Syntax

Sub AddView (GroupPath)

Parameter

CloseView Method (CRViewer Object)

Use CloseView method to close the specified view.

Syntax

Sub CloseView (Index)

Parameter

GetCurrentPageNumber Method (CRViewer Object)

Use GetCurrentPageNumber method to retrieve the number of the page of the
report that is currently being viewed.

Parameter Description

Index The 1-based index number of the view that you want to activate.

Parameter Description

GroupPath GroupPath can be a colon-delimited string (Country:State:City) or a safe array of
strings. It indicates the group for which you want to add a view (tab) to the
Report Viewer window.

Parameter Description

Index The 1- based index number of the view that you want to close.
250 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
Syntax

Function GetCurrentPageNumber () As Long

Returns

Returns the current page number, if the call is successful.

GetViewName Method (CRViewer Object)

Use GetViewName method to retrieve the current view's tab name and the current
report document's name.

Syntax

Function GetViewName (pTabName As String) As String

Parameter

Returns

� Returns the current report’s document name, if the call is successful.
� Passes back the current view’s tab name.

GetViewPath Method (CRViewer Object)

Use GetViewPath method to retrieve the path to the current view. Path contains a
safe array of strings. Views refer to the main Preview Tab and drill down tabs that
appear in the Report Viewer as the user interacts with the report.

Syntax

Function GetViewPath (Index As Integer)

Parameter

Returns

Returns a safe array of strings indicating the path to the current view, if the call is
successful.

Parameter Description

pTabName Specifies the name of the current view (tab) As String.

Parameter Description

Index Specifies the 1-based index number of the view (tab) displayed in the Report
Viewer for which you want to retrieve the path.
Crystal Reports Technical Reference Guide 251

Report Viewer/ActiveX Object Model Technical Reference
Example

Use the following code as an example of how to use GetViewPath.
Dim vPath As Variant

Dim vString As String

Dim x As Integer

Dim y As Integer

Dim counter As Integer

vPath = CRViewer1.GetViewPath(userEnteredInteger)

x = Lbound(vPath)

y = Ubound(vPath)

For counter = x To y

 If vString <> “” Then

 vString = vString & “:”

 End If

 vString = vString & vPath(counter)

Next counter

ViewPathName.Caption = “View path is: “ & vString

PrintReport Method (CRViewer Object)

Use PrintReport method to initiate printing of the report in the current view.

Syntax

Sub PrintReport ()

Refresh Method (CRViewer Object)

Use Refresh method to reload and display the report displayed in the Report
Viewer from its original source.

Syntax

Sub Refresh ()

SearchByFormula Method (CRViewer Object)

Use SearchByFormula method to search using the specified formula. The Search
GUI is displayed if parameter formula is empty.

Syntax

Sub SearchByFormula (formula As String)

Parameter

Parameter Description

formula Specifies the formula that you want to use for the search As String.
252 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
SearchForText Method (CRViewer Object)
Use SearchForText to search for the specified String.

Syntax

Sub SearchForText (Text As String)

Parameter

ShowFirstPage Method (CRViewer Object)
Use ShowFirstPage method to display the first page of the report.

Syntax

Sub ShowFirstPage ()

ShowGroup Method (CRViewer Object)
Use ShowGroup method to display the indicated group in the current view.
GroupPath can be a colon-delimited string (Country:State:City) or a safe array of
strings.

Syntax

Sub ShowGroup (GroupPath)

Parameter

ShowLastPage Method (CRViewer Object)

Use ShowLastPage method to display the last page of the report.

Syntax

Sub ShowLastPage ()

ShowNextPage Method (CRViewer Object)
Use ShowNextPage method to display the next page of the report.

Syntax
Sub ShowNextPage ()

Parameter Description

Text Specifies the text that you want to search for As String.

Parameter Description

GroupPath Specifies the path to the group that you want to display. Use a safe array of strings
or a colon delimited string (for example, Canada:BC:Vancouver).
Crystal Reports Technical Reference Guide 253

Report Viewer/ActiveX Object Model Technical Reference
ShowNthPage Method (CRViewer Object)

Use ShowNthPage method to display the specified page of the report.

Syntax

Sub ShowNthPage (PageNumber As Integer)

Parameter

ShowPreviousPage Method (CRViewer Object)

Use ShowPreviousPage method to display the previous page of the report.

Syntax

Sub ShowPreviousPage ()

ViewReport Method (CRViewer Object)

Use ViewReport method to display the report.

Syntax

Sub ViewReport ()

Zoom Method (CRViewer Object)

Use Zoom method to change the magnification used to display the report.

Syntax

Sub Zoom (ZoomLevel As Integer)

Parameter

Parameter Description

PageNumber The page number that you want to display As Integer.

Parameter Description

ZoomLevel The zoom level to use to view the report As Integer. Indicate a percentage, or use
1 to fit the entire width of the page in the Report Viewer window (but not the
entire page) or 2 to fit the entire page in the window.
254 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
CRViewer Object Events
The following events are discussed in this section:

“Clicked Event (CRViewer Object)” on page 256

“CloseButtonClicked Event (CRViewer Object)” on page 256

“DblClicked Event (CRViewer Object)” on page 256

“DownloadFinished Event (CRViewer Object)” on page 257

“DownloadStarted Event (CRViewer Object)” on page 257

“DrillOnDetail Event (CRViewer Object)” on page 258

“DrillOnGraph Event (CRViewer Object)” on page 258

“DrillOnGroup Event (CRViewer Object)” on page 258

“DrillOnSubreport Event (CRViewer Object)” on page 259

“ExportButtonClicked Event (CRViewer Object)” on page 259

“FirstPageButtonClicked Event (CRViewer Object)” on page 260

“GoToPageNClicked Event (CRViewer Object)” on page 260

“GroupTreeButtonClicked Event (CRViewer Object)” on page 260

“HelpButtonClicked Event (CRViewer Object)” on page 261

“LastPageButtonClicked Event (CRViewer Object)” on page 261

“NextPageButtonClicked Event (CRViewer Object)” on page 261

“OnReportSourceError Event (CRViewer Object)” on page 261

“PrevPageButtonClicked Event (CRViewer Object)” on page 262

“PrintButtonClicked Event (CRViewer Object)” on page 262

“RefreshButtonClicked Event (CRViewer Object)” on page 262

“SearchButtonClicked Event (CRViewer Object)” on page 263

“SearchExpertButtonClicked Event (CRViewer Object)” on page 263

“SelectionFormulaBuilt Event (CRViewer Object)” on page 263

“SelectionFormulaButtonClicked Event (CRViewer Object)” on page 264

“ShowGroup Event (CRViewer Object)” on page 264

“StopButtonClicked Event (CRViewer Object)” on page 265

“ViewChanged Event (CRViewer Object)” on page 265

“ViewChanging Event (CRViewer Object)” on page 265

“ZoomLevelChanged Event (CRViewer Object)” on page 266
Crystal Reports Technical Reference Guide 255

Report Viewer/ActiveX Object Model Technical Reference
Clicked Event (CRViewer Object)

The Clicked event occurs when an object in the viewer is clicked.

Syntax

Event Clicked (x As Long, y As Long, EventInfo, UseDefault As Boolean)

Parameters

CloseButtonClicked Event (CRViewer Object)

The CloseButtonClicked event occurs when the Close Current View button is
clicked.

Syntax

Event CloseButtonClicked (UseDefault As Boolean)

Parameter

DblClicked Event (CRViewer Object)

The DblClicked event occurs when an object is double clicked.

Syntax

Event DblClicked (x As Long, y As Long, EventInfo, UseDefault As Boolean)

Parameter Description

X Long. The X coordinate of the object clicked.

Y Long. The Y coordinate of the object clicked.

EventInfo A “CRVEventInfo Object (CRVIEWERLib)” on page 247, containing information
about the object clicked.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.
256 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
Parameters

DownloadFinished Event (CRViewer Object)

The DownloadFinished event occurs when report data finishes loading into the
report. For example, if the user displays a new page, a new set of report data is
downloaded.

Syntax

Event DownloadFinished (loadingType As CRLoadingType)

Parameter

DownloadStarted Event (CRViewer Object)

The DownloadStarted event occurs when report data starts being downloaded into
the Report Viewer. For example, if the user displays a new page, a new set of report
data is downloaded.

Syntax

Event DownloadStarted (loadingType As CRLoadingType)

Parameter

Parameter Description

X Long. The X coordinate of the object that was double clicked.

Y Long. The Y coordinate of the object that was double clicked.

EventInfo A “CRVEventInfo Object (CRVIEWERLib)” on page 247, containing information
about the object clicked.

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

LoadingType “CRLoadingType (CRViewerLib)” on page 269. Indicates the type of data
being loaded into the Report Viewer.

Parameter Description

LoadingType “CRLoadingType (CRViewerLib)” on page 269. Indicates the type of data
being loaded into the Report Viewer.
Crystal Reports Technical Reference Guide 257

Report Viewer/ActiveX Object Model Technical Reference
DrillOnDetail Event (CRViewer Object)

The DrillOnDetail event occurs when you drill down on a field in the Detail section
of the report. This event is not available in the current version of the Report Viewer,
but will be enabled in a future upgrade.

Syntax

Event DrillOnDetail (FieldValues, SelectedFieldIndex As Long,

UseDefault As Boolean)

Parameters

DrillOnGraph Event (CRViewer Object)

The DrillOnGraph event occurs when you drill down on a graph.

Syntax

Event DrillOnGraph (PageNumber As Long, x As Long, y As Long,

UseDefault As Boolean)

Parameters

DrillOnGroup Event (CRViewer Object)

The DrillOnGroup event occurs when drilling down (double-clicking) on a group
field viewer window.

Syntax

Event DrillOnGroup (GroupNameList, DrillType As CRDrillType,

UseDefault As Boolean)

Parameter Description

FieldValues An array of objects containing details on the field.

SelectedFieldIndex Long. The array index of the value in the field actually drilled on.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

PageNumber Long. The page number of the report containing the graph where the event
occurred.

x Long. The X coordinate of the graph that was drilled on.

y Long. The Y coordinate of the graph that was drilled on.

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.
258 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
Parameters

DrillOnSubreport Event (CRViewer Object)

The DrillOnSubreport event occurs when drilling down (double-clicking) on a
subreport.

Syntax

Event DrillOnSubreport (GroupNameList, SubreportName As String,

Title As String, PageNumber As Long,

Index As Long, UseDefault As Boolean)

Parameters

ExportButtonClicked Event (CRViewer Object)

The ExportButtonClicked event occurs when the Export button is clicked.

Syntax

Event ExportButtonClicked (UseDefault As Boolean)

Parameter

Parameter Description

GroupNameList An array containing all group names for the group drilled on.

DrillType “CRLoadingType (CRViewerLib)” on page 269. Specifies what type of object
the drill event occurred on (for example, graph, group tree, map, etc.).

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

GroupNameList An array containing all group names for the group drilled on.

SubreportName String. Indicates the name of the subreport that was drilled on.

Title String. Indicates the title of the subreport that was drilled on.

PageNumber Long. Indicates the page number that the event occurred on.

Index Long. Indicates the index of the subreport that was drilled on.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.
Crystal Reports Technical Reference Guide 259

Report Viewer/ActiveX Object Model Technical Reference
FirstPageButtonClicked Event (CRViewer Object)

The FirstPageButtonClicked event occurs when the button which navigates
through the report to the first page is clicked.

Syntax

Event FirstPageButtonClicked (UseDefault As Boolean)

Parameter

GoToPageNClicked Event (CRViewer Object)

The GoToPageNClicked event occurs when a user requests and goes to a specific
page in the report.

Syntax

Event GoToPageNClicked (UseDefault As Boolean, PageNumber As Integer)

Parameters

GroupTreeButtonClicked Event (CRViewer Object)

The GroupTreeButtonClicked event occurs when the Group Tree button is clicked
to show/hide the Group Tree in the viewer window.

Syntax

Event GroupTreeButtonClicked (Visible As Boolean)

Parameter

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

PageNumber Integer. The page number of the page that is to be displayed.

Parameter Description

Visible Boolean. Indicates whether or not the Group Tree is now visible.
260 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
HelpButtonClicked Event (CRViewer Object)

The HelpButtonClicked event occurs when the Help button is clicked.

Syntax

Event HelpButtonClicked ()

LastPageButtonClicked Event (CRViewer Object)

The LastPageButtonClicked event occurs when the button which navigates
through the report to the last page is clicked.

Syntax

Event LastPageButtonClicked (UseDefault As Boolean)

Parameter

NextPageButtonClicked Event (CRViewer Object)

The NextPageButtonClicked event occurs when the button which navigates
through the report to the next page is clicked.

Syntax

Event NextPageButtonClicked (UseDefault As Boolean)

Parameter

OnReportSourceError Event (CRViewer Object)

The OnReportSourceError event occurs when the report source (assigned to the
CRViewer.ReportSource property) causes an error or cannot be loaded by the
Report Viewer.

Syntax

Event OnReportSourceError (errorMsg As String,

errorCode As Long, UseDefault As Boolean)

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.
Crystal Reports Technical Reference Guide 261

Report Viewer/ActiveX Object Model Technical Reference
Parameters

PrevPageButtonClicked Event (CRViewer Object)

The PrevPageButtonClicked event occurs when the button which navigates
through the report to the previous page is clicked.

Syntax

Event PrevPageButtonClicked (UseDefault As Boolean)

Parameter

PrintButtonClicked Event (CRViewer Object)

The PrintButtonClicked event occurs when the Print button is clicked.

Syntax

Event PrintButtonClicked (UseDefault As Boolean)

Parameter

RefreshButtonClicked Event (CRViewer Object)

The RefreshButtonClicked event occurs when the Refresh button is clicked.

Syntax

Event RefreshButtonClicked (UseDefault As Boolean)

Parameter Description

errorMsg String. Indicates the error message.

errorCode Long. Indicates the code or ID for the error.

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.
262 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
Parameter

SearchButtonClicked Event (CRViewer Object)

The SearchButtonClicked event occurs when the Search button is clicked.

Syntax

Event SearchButtonClicked (searchText As String, UseDefault As Boolean)

Parameters

SearchExpertButtonClicked Event (CRViewer Object)

The SearchExpertButtonClicked event occurs when the Search Expert button is
clicked.

Syntax

Event SearchExpertButtonClicked (UseDefault As Boolean)

Parameter

SelectionFormulaBuilt Event (CRViewer Object)

The SelectionFormulaBuilt event occurs when a new selection formula is assigned
to the report. This event is not valid when the Report Viewer is used in conjunction
with the Report Designer Component.

Syntax

Event SelectionFormulaBuilt (

selctionFormula As String, UseDefault As Boolean)

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

searchText String. Indicates the data being searched for.

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.
Crystal Reports Technical Reference Guide 263

Report Viewer/ActiveX Object Model Technical Reference
Parameters

SelectionFormulaButtonClicked Event (CRViewer Object)

The SelectionFormulaButtonClicked event occurs when the Selection Formula
button in the Report Viewer is clicked. This is not valid when the Report Viewer is
assigned a report source produced by the Report Designer Component.

Syntax

Event SelectionFormulaButtonClicked (

selctionFormula As String, UseDefault As Boolean)

Parameters

ShowGroup Event (CRViewer Object)

The ShowGroup event occurs when you click a group in the Group Tree.

Syntax

Event ShowGroup (GroupNameList, UseDefault As Boolean)

Parameters

Parameter Description

selectionFormula String. Indicates the new selection formula assigned to the report.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

selectionFormula String. The current selection formula that will be replaced.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.

Parameter Description

GroupNameList An array containing all group names for the group selected.

UseDefault Boolean. Indicates whether or not the default action of the event will be
performed.
264 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
StopButtonClicked Event (CRViewer Object)

The StopButtonClicked event occurs when the user clicks the Stop button in the
Report Viewer, forcing the Viewer to stop loading data from the report source.

Syntax

Event StopButtonClicked (

loadingType As CRLoadingType, UseDefault As Boolean)

Parameters

ViewChanged Event (CRViewer Object)

The ViewChanged event occurs after the view in the Report Viewer has changed.
Views refer to the main Preview Tab and drill down tabs that appear in the Report
Viewer as the user interacts with the report.

Syntax

Event ViewChanged (oldViewIndex As Long, newViewIndex As Long)

Parameters

ViewChanging Event (CRViewer Object)

The ViewChanging event occurs when there has been a request for the view in the
Report Viewer to change. Views refer to the main Preview Tab and drill down tabs
that appear in the Report Viewer as the user interacts with the report.

Syntax

Event ViewChanging (oldViewIndex As Long, newViewIndex As Long)

Parameter Description

loadingType “CRLoadingType (CRViewerLib)” on page 269. Indicates what was being loaded
into the Report Viewer when the Stop button was clicked.

UseDefault Boolean. Indicates whether or not the default action of the event will be performed.

Parameter Description

oldViewIndex Long. An index referring to the view the user switched from.

newViewIndex Long. An index referring to the view the user switched to.
Crystal Reports Technical Reference Guide 265

Report Viewer/ActiveX Object Model Technical Reference
Parameters

ZoomLevelChanged Event (CRViewer Object)
The ZoomLevelChanging event occurs when the zoom level of the Report Viewer
is changed.

Syntax

Event ZoomLevelChanged (ZoomLevel As Integer)

Parameter

CRVTrackCursorInfo Object (CRVIEWERLib)
The CRVTrackCursorInfo Object contains information about the types of mouse
cursors displayed while the user interacts with the report in the Report Viewer.
This object corresponds to the TrackCursorInfo property in the “CRViewer Object
(CRVIEWERLib)” on page 247.

CRVTrackCursorInfo Object Properties

WebReportBroker Object (CRWEBREPORTBROKERLib)
The WebReportBroker Object is used internally by the Report Viewer to access web
servers. In most applications, developers will not need to access this object directly.

Parameter Description

oldViewIndex Long. An index referring to the view the user is switching from.

newViewIndex Long. An index referring to the view the user is switching to.

Parameter Description

ZoomLevel Integer. A value indicating the new zoom level percentage.

Property Description Read/Write

DetailAreaCursor “CRTrackCursor (CRViewerLib)” on page 270. Gets or sets
the DetailAreaCursor type.

Read/Write

DetailAreaField
Cursor

“CRTrackCursor (CRViewerLib)” on page 270. Gets or sets
the DetailAreaFieldCursor type.

Read/Write

GraphCursor “CRTrackCursor (CRViewerLib)” on page 270. Gets or sets
the GraphCursor type.

Read/Write

GroupAreaCursor “CRTrackCursor (CRViewerLib)” on page 270. Gets or sets
the GroupAreaCursor type.

Read/Write

GroupAreaField
Cursor

“CRTrackCursor (CRViewerLib)” on page 270. Gets or sets
the GroupAreaFieldCursor type.

Read/Write
266 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
WebReportSource Object (CRWEBREPORTBROKERLib)
The WebReportSource Object contains information and methods related to the
display of a report by the Report Viewer.

WebReportSource Object Properties

WebReportSource Object Methods
The following methods are discussed in this section:

“AddParameter Method (WebReportSource Object)” on page 267

“AddParameterEx Method (WebReportSource Object)” on page 268

AddParameter Method (WebReportSource Object)
Use AddParameter method to pass additional information for setting values for
prompts in code as an alternative to prompting user to provide it. For example,
you can provide user information which the server might request, rather than
prompting the user to enter the information at runtime.

Syntax

Sub AddParameter (tag As String, value As String)

Parameters

Property Description Read/Write

ImageType Reserved. Do not use in current development. Gets or
sets the image type.

Read/Write

PromptOnRefresh Boolean. Gets or sets the prompt mode. If TRUE, the user
will be prompted for new information each time the
Report Viewer displays the report. If FALSE, the user
will not get a prompt and the information provided with
the previous prompt will be used, unless the server
requires new information.

Read/Write

ReportSource Unknown. Gets or sets the report source for the
WebReportBroker.

Read/Write

Title String. Gets or sets the report title that can be displayed
in viewer.

Read/Write

URL String. Gets or sets the URL source for the report. Read/Write

Parameter Description

tag String. Specifies the prompt for which you want to pass a value.

value String. Specifies the response string that you want to provide.
Crystal Reports Technical Reference Guide 267

Enumerated Types
AddParameterEx Method (WebReportSource Object)
AddParameterEx method is not implemented for the current release. This method
will allow you to pass more information than AddParameter Method, which
should be used at this time.

Enumerated Types
The following enumerated types of the Report Viewer Object Model are discussed
in this section:

“CRLoadingType (CRViewerLib)” on page 269

“CRFieldType (CRViewerLib)” on page 268

“CRLoadingType (CRViewerLib)” on page 269

“CRObjectType (CRViewerLib)” on page 269

“CRTrackCursor (CRViewerLib)” on page 270

CRDrillType (CRViewerLib)

CRFieldType (CRViewerLib)

Constant Value

crDrillOnGraph 2

crDrillOnGroup 0

crDrillOnGroupTree 1

crDrillOnMap 3

crDrillOnSubreport 4

Constant Value

crBoolean 5

crCurrency 4

crDate 6

crDateTime 8

crInt16 1

crInt32 2

crInt8 0

crNumber 3

crString 9

crTime 7

crUnknownFieldType 255
268 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
CRLoadingType (CRViewerLib)

CRObjectType (CRViewerLib)

Constant Value

LoadingNothing 0

LoadingPages 1

LoadingQueryInfo 3

LoadingTotaller 2

Constant Value

crBitmap 103 (&H67)

crBlob 104 (&H68)

crBox 106 (&H6A)

crCrossTab 110 (&H6E)

crCrosstabChart 108 (&H6C)

crCrosstabMap 115 (&H73)

crDatabaseFieldType 1

crDetailChart 109 (&H6D)

crDetailMap 116 (&H74)

crDetailSection 202 (&HCA)

crFormulaFieldType 5

crGraphic 111 (&H6F)

crGroupChart 107 (&H6B)

crGroupFooterSection 201 (&HC9)

crGroupHeaderSection 200 (&HC8)

crGroupMap 114 (&H72)

crGroupNameFieldType 8

crLine 105 (&H69)

crOLAPChart 113 (&H71)

crOLAPCrossTabFieldType 4

crOLAPDataFieldType 3

crOLAPDimensionFieldType 2

crOLAPMap 117 (&H75)

crOLEObject 101 (&H65)

crOOPSubreport 112 (&H70)
Crystal Reports Technical Reference Guide 269

Enumerated Types
CRTrackCursor (CRViewerLib)

crPageFooterSection 206 (&HCE)

crPageHeaderSection 205 (&HCD)

crPromptingVarFieldType 9

crReportFooterSection 204 (&HCC)

crReportHeaderSection 203 (&HCB)

crSpecialVarFieldType 7

crSubreport 102 (&H66)

crSummaryFieldType 6

crText 100 (&H64)

crUnknownFieldDefType 0

Constant Value

crAppStartingCursor 12

crArrowCursor 1

crCrossCursor 2

crDefaultCursor 0

crHelpCursor 13

crIBeamCursor 3

crMagnifyCursor 99

crNoCursor 10

crWaitCursor 11

Constant Value
270 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
The Report Viewer/Java Bean Technical Reference
The following Properties, Methods, and Events are discussed in this section:
� “The Report Viewer/Java Bean Properties” on page 271
� “The Report Viewer/Java Bean Methods” on page 273
� “closeCurrentView” on page 274
� “exportView” on page 274
� “printView” on page 274
� “refreshReport” on page 275
� “searchForText” on page 275
� “showLastPage” on page 275
� “showPage” on page 276
� “stopAllCommands” on page 276
� “The Report Viewer/Java Bean Events” on page 276
� “ServerRequestEvent” on page 276
� “ViewChangeEvent” on page 276

The Report Viewer/Java Bean Properties
The Report Viewer Bean properties may have one or more of the characteristics
listed below:
� read: you can get the current value.
� write: you can set the value.
� bound: you can get a notification every time the value changes.
� constrained: you can veto a request to change the value.

Property Description
Read(r), Write(w),
Bound(b),
Constrained(c)

busy Boolean. True if the ReportViewer is currently
processing a command initiated by user action,
method call, or property change.

r, b

canCloseCurrentView Boolean. True if the current views tab can be
closed. The initial ("Preview") tab cannot be
closed. Refer to method closeCurrentView.

r,b

canDrillDown Boolean. True if drill-down views can be opened.
Normally, clicking on a hidden group in the group
tree (indicated by a magnifying glass icon next to
the group name) or double-clicking on a chart or
map or group section in the page will open a drill-
down view.

r,w,b,c
Crystal Reports Technical Reference Guide 271

The Report Viewer/Java Bean Technical Reference
currentMessage string. The message currently displayed in the
status area of the toolbar.

r,b

currentPageNumber int. The number of the page currently being
viewed.

r,b

currentTip string. The "tool tip" currently displayed in the
status area of the toolbar. Tool tips temporarily
override any message in the status area.

r,b

currentViewName string. The name of the view whose tab is selected. r,b

exportingPossible Boolean. False if exporting is not possible because
the user has denied the bean permission to write
to the local disk.

r

hasExportButton Boolean. True if the Export button can be made
visible in the toolbar. If exporting is not possible
(refer to property exportingPossible), requests to set
this property to True will be vetoed.

r,w,b,c

hasGroupTree Boolean. If set to True then the GroupTree toggle
button is made visible in the toolbar and the
GroupTree can be displayed (refer to property
showGroupTree).

r,w,b,c

hasPrintButton Boolean. If True then the Print button will be
visible in the toolbar. If printing is not possible
(refer to property printingPossible) then requests to
set this property to True will be vetoed.

r,w,b,c

hasRefreshButton Boolean. If True then the Refresh button is visible
in the toolbar.

r,w,b,c

hasToolBar Boolean. If True then the toolbar is visible. r,w,b,c

hasTextSearch
Controls

Boolean. If True then the Text Search field and the
Find Next button are visible in the toolbar.

r,w,b,c

language string. Contains the 2 letter international Standard
code for the language to be used for the user
interface. Languages currently supported are:

English -- en
French -- fr
German -- de
Japanese -- ja
Italian -- it
Spanish -- es
Portuguese -- pt

r,w,b,c

lastPageNumber int. Indicates to the highest numbered page
currently available in the report. This may or may
not be the final page. (refer to property
lastPageNumberKnown).

r,b

Property Description
Read(r), Write(w),
Bound(b),
Constrained(c)
272 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
The Report Viewer/Java Bean Methods
Each of the methods in the Report Viewer Bean starts what may be a lengthy
operation, and they return to the caller before that operation is complete. If it is
important to know when the command begun by one of these methods is finished, the
calling code should watch for the associated events or property change notifications.

Generally there will be a time delay between the method call returning and the
associated event being fired or the property changing. In fact, there may be a delay in
beginning the command if the report viewer is busy processing a previous command.
Commands are begun strictly one at a time in the order they are generated although,
once begun, they may be processed in parallel in different threads.

The events and property change notifications will be given to the calling code on a
different thread from the one that made the method call.

lastPageNumber
Known

Boolean. True if the number of the final page in the
report is known. If False then there are more pages
in the report than the lastPageNumber property
indicates.

r,b

printingPossible Boolean. True if printing is possible. If False then
either the Java implementation doesn’t support it or
the user has denied the bean permission to print.

r

reportName string. The URL of the report to be viewed. For
example:

http://server_name/report_dir/
report.rpt
Setting this property causes the ReportViewer to
request page 1 of the report from the server.

r,w,b,c

searchText string. Contains the text most recently searched
for, or the text being typed by the user int to the
Text Search field in the toolbar.

r,b

selectionFormula string. The current selection formula to be used for
subsequent commands. The formula is expressed
in the Crystal Reports formula language. Setting
this property closes all views except the initial one
(the "Preview" view), discards all information
cached for the report, and re-requests the current
page of the report.

r,w,b,c

showGroupTree Boolean. If True and the hasGroupTree property is
True then the GroupTree will be visible.

r,w,b,c

Property Description
Read(r), Write(w),
Bound(b),
Constrained(c)
Crystal Reports Technical Reference Guide 273

The Report Viewer/Java Bean Technical Reference
closeCurrentView

If the canCloseCurrentView property is True, closes the current view. Equivalent to
the Close button in the toolbar. A viewClosed and a viewActivated event are fired.
The currentViewName property is changed.

Syntax

void closeCurrentView ()

exportView

If the exportingPossible property is True, requests the report from the server in the
indicated format and writes it to the local disk. Similar to the Export button in the
toolbar.

Syntax

void exportView (int exportFormat, File destinationFile)

Parameters

printView

If the printingPossible property is True, prints all pages in the current view,
requesting them from the server if necessary. Equivalent to the Print button in the
toolbar.

Syntax

void printView ()

exportFormat Specifies the format in which the requested report should appear.

Constant Value

toHTML 0

toCrystalReport 1

toMSWord 2

toMSExcel 3

destinationFile Complete pathname of the destination file.
274 Crystal Reports Technical Reference Guide

5 : Report Viewer Object Model
refreshReport

Closes all views except the initial one (the "Preview" view), discards all
information cached for the report, and re-requests the current page of the report.

Syntax

void refreshReport ()

searchForText

Displays the next occurrence of the indicated text in the report output. Equivalent
to the text search field in the toolbar. Currently, the second and third parameters
are ignored; the search is always forward and case-insensitive. The searchText
property is changed.

Syntax

void searchForText (String searchString, boolean forwardSearch,

boolean caseSensitive)

Parameters

showLastPage

Shows the last page of the report, requesting it from the server if necessary.
Equivalent to the Last Page button in the toolbar. The lastPageNumber and
lastPageNumberKnown properties may be changed.

Syntax

void showLastPage ()

searchString The string for which you want to search.

forwardSearch This parameter is ignored.

caseSensitive This parameter is ignored.
Crystal Reports Technical Reference Guide 275

The Report Viewer/Java Bean Technical Reference
showPage

Displays the indicated page, requesting it from the server if necessary. Equivalent
to the page number field in the toolbar. The currentPageNumber property is
changed.

Syntax

void showPage (int pageNumber)

Parameter

stopAllCommands

Cancels all unfinished commands. Equivalent to the Stop button in the toolbar.

Syntax

void stopAllCommands ()

The Report Viewer/Java Bean Events
There are 2 event classes defined by the Report Viewer Bean and discussed in this
section: class ViewChangeEvent and class ServerRequestEvent.

ServerRequestEvent

ViewChangeEvent

pageNumber Number of the page to be displayed.

Description Properties ListenerInterface Methods

Indicates a request has been sent to the
server owning the current report.

string ServerURL
string Parameter

requestStarted(event e)
requestEnde(event e)

Description Properties ListenerInterface Methods

Indicates that a view has changed. string viewName viewOpened(event e)
viewActivated(event e)
viewClosed(event e)
276 Crystal Reports Technical Reference Guide

Crystal Report Engine 6

The Crystal Report Engine API is a powerful development
tool for your reporting needs. In this chapter you will find
detailed information on the functions, structures and
constants of the Crystal Report Engine API. Syntax for the
functions and structures is provided for C, Microsoft Visual
Basic, and Delphi. In addition you will find a section on
obsolete functions, structures, and constants, including a
list of obsolete calls with the applicable replacement calls.
Crystal Reports Technical Reference Guide 277

Print Engine Functions
Print Engine Functions
The Print Engine functions are listed alphabetically in this section.

PEAddParameterCurrentRange

Use PEAddParameterCurrentRange to add a parameter range to the specified
parameter field of a report. Note that these parameter field capabilities are not
currently supported in Web Viewers. See “Working with Parameter Values and
Ranges” on page 45.

C Syntax

BOOL CRPE_API PEAddParameterCurrentRange (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEValueInfo FAR *rangeStart,

PEValueInfo FAR *rangeEnd,

short rangeInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

printJob Specifies the print job to which you want to add a parameter current range.

parameterField
Name

Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

rangeStart Specifies a pointer to “PEValueInfo” on page 516, which contains the lower
bound of the value range.

rangeEnd Specifies a pointer to “PEValueInfo” on page 516, which contains the upper
bound of the value range.

rangeInfo Use this bitwise value to indicate whether the upper and/or lower bound(s)
in the range should be added. Use one or more of the “Range Info Constants”
on page 559.
278 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PEAddParameterCurrentRange Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, rangeStart As PEValueInfo, _

rangeEnd As PEValueInfo, ByVal rangeInfo As Integer) As Integer

Delphi Syntax

procedure PEAddParameterCurrentRange (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

var rangeStart: PEValueInfo;

var rangeEnd: PEValueInfo;

 rangeInfo: smallint;

): BOOL stdcall;

PEAddParameterCurrentValue

Use PEAddParameterCurrentValue to add a value to the specified parameter field
of a report. Note that these parameter field capabilities are not currently supported
in Web Viewers. See “Working with Parameter Values and Ranges” on page 45.

C Syntax

BOOL CRPE_API PEAddParameterCurrentValue (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEValueInfo FAR *currentValue);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job to which you want to add a parameter current value.

parameterField
Name

Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

currentValue Specifies a pointer to “PEValueInfo” on page 516, which will contain the value
to be added to the parameter field. Use PE_VI_NOVALUE to indicate no
value when not NULL (for example, PEValueInfo.currentValue =
PE_VI_NOVALUE).
Crystal Reports Technical Reference Guide 279

Print Engine Functions
Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

This call will succeed when called with a ranged parameter. It will add a range
with the start and end points equal to the given value to the Current Range list (if
there are multiple ranges, otherwise it will replace the current range).

VB Syntax

Declare Function PEAddParameterCurrentValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, currentValue As PEValueInfo) As Integer

Delphi Syntax

procedure PEAddParameterCurrentValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

var currentValue: PEValueInfo

): BOOL stdcall;

PEAddParameterDefaultValue

Use PEAddParameterDefaultValue to add a value to the group of default values
for the specified parameter in a report.

C Syntax

BOOL CRPE_API PEAddParameterDefaultValue (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEValueInfo FAR *valueInfo);

Parameters

printJob Specifies the print job to which you want to add a parameter default value.

parameterField
Name

Specifies a pointer to the name of the parameter field to which the default
value will be added.

reportName Specifies a pointer to the report name. See Remarks below.

valueInfo Specifies a pointer to “PEValueInfo” on page 516 which will contain the
added default value.
280 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEAddParameterDefaultValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, valueInfo As PEValueInfo) As Integer

Delphi Syntax

procedure PEAddParameterDefaultValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

var valueInfo: PEValueInfo

): BOOL stdcall;

PECancelPrintJob

Use PECancelPrintJob to cancel the printing of a report. This function can be tied
to a control that allows the user to cancel a print job in progress. You can use this
command as a replacement for the Cancel button when “PEShowPrintControls”
on page 447, disables the Print Control buttons.

C Syntax

void CRPE_API PECancelPrintJob (

short printJob);

Parameter

Returns

Void.

VB Syntax

Declare Sub PECancelPrintJob Lib “crpe32.dll” (ByVal printJob As

Integer)

printJob Specifies the print job that you want to cancel.
Crystal Reports Technical Reference Guide 281

Print Engine Functions
Delphi Syntax

procedure PECancelPrintJob (

printJob: Word

)stdcall;

dBASE for Windows Syntax

EXTERN CVOID PECancelPrintJob (CWORD) CRPE.DLL

PECanCloseEngine

Use PECanCloseEngine to determine whether or not the Crystal Report Engine can
be closed. Use this function before calling “PECloseEngine” on page 287, to verify
that the engine is no longer processing print jobs. If the Crystal Report Engine
closes while a print job is still running, an error can occur in your application or on
the user’s system.

C Syntax

BOOL CRPE_API PECanCloseEngine (void);

Returns

� TRUE if the Engine can be closed.
� FALSE if the Engine is busy.

VB Syntax

Declare Function PECanCloseEngine Lib “crpe32.dll” () As Integer

Delphi Syntax

function PECanCloseEngine:

Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PECanCloseEngine () CRPE.DLL

PECheckFormula

Use to check the text of a named formula for validity. Use this function to check a
named formula for errors.

C Syntax

BOOL CRPE_API PECheckFormula (

short printJob,

const char FAR *formulaName);
282 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the formula is correct.
� FALSE if the formula has an error.

Remarks

� When specifying the name of the formula, do not use the @ symbol before the
name. The @ symbol is only used by Crystal Reports to separate a formula
field from other types of fields.

� PECheckFormula works like the Check button that appears in the Crystal
Reports Formula Editor.

VB Syntax

Declare Function PECheckFormula Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal FormulaName As String) As Integer

Delphi Syntax

function PECheckFormula (

printJob: Word;

formulaName: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PECheckFormula (CWORD, CSTRING) CRPE.DLL

PECheckGroupSelectionFormula

Use PECheckGroupSelectionFormula to check the text of the report's group
selection formula for errors. Use this function when the group selection formula in
a report has changed and you need to check the new group selection formula.

C Syntax

BOOL CRPE_API PECheckGroupSelectionFormula (

short printJob);

Parameter

printJob Specifies the print job containing the named formula that you want to check.

formulaName Specifies a pointer to the name of the formula that you want to check for errors.

printJob Specifies the print job for the report containing the group selection formula that
you want to check.
Crystal Reports Technical Reference Guide 283

Print Engine Functions
Returns

� TRUE if the selection formula does not have an error.
� FALSE if the selection formula contains an error. See Remarks below.

Remarks

� You can use PECheckGroupSelectionFormula to provide your users with the
functionality of the Check button that appears in the Crystal Reports Formula
Editor.

� If PECheckGroupSelectionFormula returns FALSE, you can provide the
associated error text with calls to “PEGetErrorCode” on page 304;
“PEGetErrorText” on page 305; and “PEGetHandleString” on page 318.

VB Syntax

Declare Function PECheckGroupSelectionFormula Lib “crpe32.dll” (ByVal

printJob As Integer) As Integer

Delphi Syntax

function PECheckGroupSelectionFormula (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PECheckGroupSelectionFormula (CWORD) CRPE.DLL

PECheckNthTableDifferences

Use PECheckNthTableDifferences to retrieve database table differences. This
function is not implemented for reports based on a dictionary.

C Syntax

BOOL CRPE_API PECheckNthTableDifferences (

short printJob,

short tableN,

PETableDifferenceInfo FAR *tabledifferenceinfo);

Parameters

printJob Specifies the print job for the report containing the database table that you
want to check.

tableN Specifies the 0-based number of the table for which you want to retrieve
table location information. The first table is table 0. The last table is N-1.

tabledifferenceinfo Specifies a pointer to “PETableDifferenceInfo” on page 508, which will
contain the information retrieved.
284 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.
� Returns “Error Codes” on page 545, PE_ERR_NOTIMPLEMENTED if the

specified report was based on a dictionary.

VB Syntax

Declare Function PECheckNthTableDifferences Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal tableN As Integer,

tabledifferenceinfo As PETableDifferenceInfo) As Integer

Delphi Syntax

function PECheckNthTableDifferences (

 printJob : Smallint;

 tableN : Smallint;

 var tabledifferenceinfo : PETableDifferenceInfo): Bool; {$ifdef WIN32}

stdcall; {$endif}

PECheckSelectionFormula

Use PECheckSelectionFormula to check the text of the report's record selection
formula for errors. Use this function whenever the record selection formula has
been changed and you want to check the formula for syntax errors.

C Syntax

BOOL CRPE_API PECheckSelectionFormula (

short printJob);

Parameter

Returns

� TRUE if the selection formula does not have an error.
� FALSE if the selection formula contains an error. See Remarks below.

Remarks

� You can use PECheckSelectionFormula to provide your users with the
functionality of the Check button that appears in the Crystal Reports Formula
Editor.

� If PECheckSelectionFormula returns FALSE, you can provide the associated
error text with calls to “PEGetErrorCode” on page 304; “PEGetErrorText” on
page 305; and “PEGetHandleString” on page 318.

printJob Specifies the print job containing the record selection formula that you want to check.
Crystal Reports Technical Reference Guide 285

Print Engine Functions
VB Syntax

Declare Function PECheckSelectionFormula Lib “crpe32.dll” (ByVal

printJob As Integer) As Integer

Delphi Syntax

function PECheckSelectionFormula (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PECheckSelectionFormula (CWORD) CRPE.DLL

PECheckSQLExpression

Use to check the text of the specified SQL expression for errors. Use this function
whenever the SQL expression has been changed and you want to check the
formula for syntax errors.

C Syntax

BOOL CRPE_API PECheckSQLExpression (

short printJob,

const char FAR *expressionName);

Parameters

Returns

� TRUE if the SQL expression does not have an error.
� FALSE if the SQL expression contains an error.

Remarks

You must be connected to the database to use this function.

VB Syntax

Declare Function PECheckSQLExpression Lib "crpe32.dll" (ByVal printJob

As Integer, ByVal expressionName As String) As Integer

Delphi Syntax

function PECheckSQLExpression (

printJob: smallint;

const expressionName: PChar

): Bool stdcall;

printJob Specifies the print job containing the SQL expression that you want to check.

expressionName Specifies a pointer to the name of the SQL expression that you want to check.
286 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEClearParameterCurrentValuesAndRanges

Use PEClearParameterCurrentValuesAndRanges to clear the specified parameter
field of all current values and ranges.

C Syntax

BOOL CRPE_API PEClearParameterCurrentValuesAndRanges (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEClearParameterCurrentValuesAndRanges Lib "crpe32.dll"

_

(ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String) As Integer

Delphi Syntax

function PEClearParameterCurrentValuesAndRanges (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar

): BOOL stdcall;

PECloseEngine

Use PECloseEngine to terminate the Crystal Report Engine. All printing is stopped
and all windows are closed. This function stops the Crystal Report Engine from
sending output, but the report may continue to print from data remaining in the
spooler.

C Syntax

void CRPE_API PECloseEngine (void);

printJob Specifies the print job for which you want to clear specified parameter fields.

parameterField
Name

Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below
Crystal Reports Technical Reference Guide 287

Print Engine Functions
Returns

Void.

Remarks

� Once this function has been called, no other Crystal Report Engine functions
can be called except “PEOpenEngine” on page 377.

� Call “PECanCloseEngine” on page 282, before calling this function to make
sure no print jobs are in a
busy state.

VB Syntax

Declare Sub PECloseEngine Lib “crpe32.dll” ()

Delphi Syntax

procedure PECloseEngine

stdcall;

dBASE for Windows Syntax

EXTERN CVOID PECloseEngine () CRPE.DLL

PEClosePrintJob

Use PEClosePrintJob to close the print job. If printing has not yet finished, it
continues; if the preview window is open, it stays open. This function is used as a
mandatory part of each Custom-Print Link to shut down the print job once it has
finished printing.

C Syntax

BOOL CRPE_API PEClosePrintJob (

short printJob);

Parameter

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Once this function has been called, most other Crystal Report Engine functions
except “PEOpenPrintJob” on page 378; “PECloseEngine” on page 287;
“PEGetVersion” on page 369; and “PELogOnServer” on page 374, cannot be called.

printJob Specifies the print job that you want to close.
288 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PEClosePrintJob Lib “crpe32.dll” (ByVal printJob _

As Integer) As Integer

Delphi Syntax

function PEClosePrintJob (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEClosePrintJob (CWORD) CRPE.DLL

PECloseSubreport

Use PECloseSubreport to close the specified subreport.

C Syntax

BOOL CRPE_API PECloseSubreport (

short printJob);

Parameter

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Once this function has been called, “PEGetSubreportInfo” on page 367, or any
other Crystal Report Engine function that applies to the subreport cannot be called.

VB Syntax

Declare Function PECloseSubreport Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Delphi Syntax

function PECloseSubreport (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PECloseSubreport(CWORD) CRPE.DLL

printJob Specifies the print job for the subreport that you want to close.
Crystal Reports Technical Reference Guide 289

Print Engine Functions
PECloseWindow

Use PECloseWindow to close the preview window. Use this function as part of a
Custom-Print Link to enable the user to review the report in the preview window and
then to close the window in response to a user event. Use PECloseWindow to replace
the Close button when PEShowPrintControls disables the Print Control buttons.

C Syntax

void CRPE_API PECloseWindow (

short printJob);

Parameter

Returns

Void.

Remarks

The preview window will not be closed if it is busy (generating pages, reading
records, etc.).

VB Syntax

Declare Sub PECloseWindow Lib “crpe32.dll” (ByVal printJob As Integer)

Delphi Syntax

procedure PECloseWindow (

printJob: Word

)stdcall;

dBASE for Windows Syntax

EXTERN CVOID PECloseWindow (CWORD) CRPE.DLL

PEConvertPFInfotoVInfo

Use PEConvertPFInfotoVInfo to convert the value returned in the CurrentValue or
DefaultValue member of “PEParameterFieldInfo” on page 484, to the appropriate
type and place the result in “PEValueInfo” on page 516.

C Syntax

BOOL CRPE_API PEConvertPFInfoToVInfo(

void FAR *value,

short valueType,

PEValueInfo FAR *valueInfo);

printJob Specifies the print job for which you want to close the preview window.
290 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEConvertPFInfoToVInfo Lib “crpe32.dll” (ByVal value _

As Any, ByVal valueType As Integer, valueInfo As PEValueInfo) As

Integer

Delphi Syntax

function PEConvertPFInfoToVInfo (

value: PChar;

valueType: Word;

var valueInfo: PEValueInfo

): Bool stdcall;

PEConvertVInfotoPFInfo

Use PEConvertVInfotoPFInfo to convert a value contained in “PEValueInfo” on
page 516, into the binary representation expected by “PESetNthParameterField”
on page 423.

C Syntax

BOOL CRPE_API PEConvertVInfoToPFInfo (

PEValueInfo FAR *valueInfo,

WORD FAR *valueType,

void FAR *value);

Parameters

value Specifies a pointer to the current or default parameter value (returned from
“PEGetNthParameterField” on page 340) to convert.

valueType Specifies the type of parameter field from which the value came. Use one of the
“Parameter Field Value Type Constants” on page 559.

valueInfo Specifies a pointer to “PEValueInfo” on page 516, that is used to store the value
in converted form.

valueInfo Specifies a pointer to “PEValueInfo” on page 516, that contains the value to be
converted.

valueType Specifies a pointer to the type of the value.

value Specifies a pointer used to store the value in converted form for use in
“PESetNthParameterField” on page 423.
Crystal Reports Technical Reference Guide 291

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEConvertVInfoToPFInfo Lib “crpe32.dll” (valueInfo _

As PEValueInfo, ByVal valueType as Integer, ByVal value As Any) As

Integer

Delphi Syntax

function PEConvertVInfoToPFInfo (

var valueInfo: PEValueInfo;

var valueType: Word;

value: Pchar

): Bool stdcall;

PEDeleteNthGroupSortField

Use PEDeleteNthGroupSortField to remove the specified group sort field from the
sort order. This function is used as part of a Custom-Print Link whenever you want
to delete group sort fields that were established for the report at design time. When
you give the user the ability to delete group sort field(s) at print time, your link
must include code to replace sortFieldN with user-generated values.

This function can be used by itself to delete an existing group sort field when the
sort field number is already known or as one of a series of functions
(“PEGetNGroupSortFields” on page 323 called once; “PEGetNthGroupSortField”
on page 335 and “PEGetHandleString” on page 318 called together as many times
as needed to identify the correct sort field; and PEDeleteNthGroupSortField called
once, when the correct sort field is identified). The series can be used in a Custom-
Print Link to identify and then delete an existing group sort field and/or sort order
in response to a user selection at print time.

C Syntax

BOOL CRPE_API PEDeleteNthGroupSortField (

short printJob,

short sortFieldN);

Parameters

printJob Specifies the print job from which you want to delete a group sort field.

sortFieldN Specifies the 0-based number of the sort field that you want to delete. The first
group sort field is field 0. If N = 0, the function will delete the first group sort
field. If the report has N group sort fields, the function can be called with
sortFieldN between 0 and N-1.
292 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448 or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PEDeleteNthGroupSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal SortFieldN As Integer) As Integer

Delphi Syntax

function PEDeleteNthGroupSortField (

printJob: Word;

sortFieldN: integer

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEDeleteNthGroupSortField (CWORD, CWORD) CRPE.DLL

PEDeleteNthParameterDefaultValue

Use to remove a default parameter value for the specified parameter in a report.

C Syntax

BOOL CRPE_API PEDeleteNthParameterDefaultValue (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index);

Parameters

printJob Specifies the print job from which you want to delete a default value.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to a string containing the report name. See Remarks
below.

index Specifies the index number of the default value to be deleted.
Crystal Reports Technical Reference Guide 293

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEDeleteNthParameterDefaultValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer) As Integer

Delphi Syntax

function PEDeleteNthParameterDefaultValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

index: smallint

): BOOL stdcall;

PEDeleteNthSortField

Use PEDeleteNthSortField to remove the specified sort field from the sort order.
This function is used as part of a Custom-Print Link whenever you want to delete
sort fields that were established for the report at design time. When you give the
user the ability to delete sort field(s) at print time, your link must include code to
replace sortFieldN with user-generated values.

This function can be used by itself to delete an existing sort field when the sort field
number is already known or as one of a series of functions (“PEGetNSortFields”
on page 330, called once; “var reportAlertInfo : PEReportAlertInfo) : boolean
stdcall;” on page 343 and “PEGetHandleString” on page 318 called together as
many times as needed to identify the correct sort field; and PEDeleteNthSortField
called once, when the correct sort field is identified). The series can be used in a
Custom-Print Link to identify and then delete an existing sort field and/or sort
order in response to a user selection at print time.

C Syntax

BOOL CRPE_API PEDeleteNthSortField (

short printJob,

short sortFieldN);
294 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448, or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PEDeleteNthSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal SortFieldN As Integer) As Integer

Delphi Syntax

function PEDeleteNthSortField (

printJob: Word;

sortFieldN: integer

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEDeleteNthSortField (CWORD, CWORD) CRPE.DLL

PEDiscardSavedData

Use PEDiscardSavedData to discard the data that was previously saved with the
report. If a report has been saved with data, you can use this function to discard
the saved data, forcing the Crystal Report Engine to retrieve new data the next time
the report is printed.

C Syntax

BOOL CRPE_API PEDiscardSavedData (

short printJob);

Parameter

printJob Specifies the print job from which you want to delete a sort field.

sortFieldN Specifies the 0-based number of the sort field you want to delete. The first sort
field is field 0. If N = 0, the function will delete the first sort field, If the report has
N sort fields, you can call the function with sortFieldN between 0 and N-1.

printJob Specifies the print job for which you want to discard the saved data.
Crystal Reports Technical Reference Guide 295

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448, or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PEDiscardSavedData Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEDiscardSavedData (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEDiscardSavedData (CWORD) CRPE.DLL

PEEnableNthAlert

Use PEEnableNthAlert to enable or disable a Report Alert.

C Syntax

BOOL CRPE_API PEEnableNthAlert (short printJob,

 short alertN,

 BOOL enabled);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to enable or disable Report Alerts.

alertN Specifies the Report Alert to enable.

enabled Specifies wether or not to enable the Report Alert. Set to TRUE to enable, or
set to FALSE to disable.
296 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PEEnableNthAlert Lib "crpe32.dll" (ByVal printJob%,

ByVal alertN%, enabled As Integer) As Integer

Delphi Syntax

function PEEnableNthAlert(

 printJob : Smallint;

 alertN : Smallint;

 enabled : boolean) : boolean stdcall;

PEEnableEvent

Use PEEnableEvent to enable or disable print job events. All events are disabled by
default.

C Syntax

BOOL CRPE_API PEEnableEvent (

short printJob,

PEEnableEventInfo Far *enableEventInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Delphi Syntax

function PEEnableEvent (

printJob: Word;

Var enableEventInfo: PEEnableEventInfo

): Bool stdcall;

PEEnableProgressDialog

Use PEEnableProgressDialog to specify whether the Progress dialog box is
enabled. The Progress dialog box displays the progress of the report when it is
running (records read, records selected, etc.).

C Syntax

BOOL CRPE_API PEEnableProgressDialog (

short printJob,

BOOL enable);

printJob Specifies the print job for which you want to enable or disable events.

enableEventInfo Specifies a pointer to “PEEnableEventInfo” on page 457.
Crystal Reports Technical Reference Guide 297

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This dialog box is enabled by default.

VB Syntax

Declare Function PEEnableProgressDialog Lib “crpe32.dll” (ByVal printJob

_

As Integer, ByVal enable As Integer) As Integer

Delphi Syntax

function PEEnableProgressDialog (

printJob: Word;

enable: Bool

): Bool stdcall;

PEExportPrintWindow

Use PEExportPrintWindow to export the report displayed in the preview window
to disk file or e-mail. This function can be used in a Custom-Print Link to enable
the user to preview the report in the preview window, and then, if everything
looks satisfactory, to export the report to disk file or e-mail in response to a user
event. You can use PEExportPrintWindow to replace the Export button when
“PEShowPrintControls” on page 447, disables the Print Control buttons.

C Syntax

BOOL CRPE_API PEExportPrintWindow (

short printJob,

BOOL toMail,

BOOL waitUntilDone);

printJob Specifies the print job for which you want to enable/disable the progress dialog box.

enable Specifies whether or not the progress dialog box is enabled. If enable is set to TRUE,
the progress dialog box is enabled. If it is set to FALSE, the dialog box is disabled.
298 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEExportPrintWindow Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal ToMail As Integer,

ByVal WaitUntilDone As Integer) As Integer

Delphi Syntax

function PEExportPrintWindow (

printJob: Word;

toMail: Bool;

waitUntilDone: Bool

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEExportPrintWindow (CWORD, CLOGICAL, CLOGICAL) CRPE.DLL

PEExportTo

Use PEExportTo to export a print job using the name, format, and destination
specified in the “PEExportOptions” on page 458. Use this function any time you
want to print a report to a file or export it for use in other programs.

C Syntax

BOOL CRPE_API PEExportTo (

short printJob,

PEExportOptions FAR *options);

Parameters

printJob Specifies the print job that you want to export to a disk file or to e-mail.

toMail Boolean value indicates whether or not the function is to export to e-mail.

waitUntilDone BOOL. Reserved. This parameter must always be set to TRUE.

printJob Specifies the print job that you want to export.

options Specifies a pointer to “PEExportOptions” on page 458.
Crystal Reports Technical Reference Guide 299

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEExportTo Lib “crpe32.dll” (ByVal printJob As

Integer,

ExportOptions As PEExportOptions) As Integer

Note: Visual Basic method PEExportTo will fail unless method
PEGetExportOptions is called.

Delphi Syntax

function PEExportTo (

printJob: Word;

var options: PEExportOptions

): Bool stdcall;

PEFreeDevMode

Use PEFreeDevMode to return the memory associated with the specified
DEVMODE Microsoft Windows structure to the heap. The DEVMODE structure
must have been retrieved from “PESelectPrinter” on page 389, or
“PEGetSelectedPrinter” on page 363.

C Syntax

BOOL CRPE_API PEFreeDevMode (

short printJob,

DEVMODEA FAR *mode);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEFreeDevMode Lib "crpe32.dll" (ByVal printJob As

Integer,

mode As Any) As Integer

printJob Specifies the print job for which you want to release the specified “DEVMODE” on
page 533, Windows API structure.

mode Specifies a pointer to the “DEVMODE” on page 533, Windows API structure that
you want to release.
300 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetAllowPromptDialog

Use PEGetAllowPromptDialog to determine whether prompting for parameter
values is allowed for the specified job during printing.

C Syntax

BOOL CRPE_API PEGetAllowPromptDialog (

short printJob);

Parameter

Returns

� TRUE if prompting for parameter values is allowed.
� FALSE if prompting is not allowed.

VB Syntax

Declare Function PEGetAllowPromptDialog Lib "crpe32.dll" (ByVal printJob

_

As Integer) As Integer

Delphi Syntax

function PEGetAllowPromptDialog (

printJob: Smallint

): Bool stdcall;

PEGetAreaFormat

Use PEGetAreaFormat to retrieve the area format settings for selected areas in the
specified report and supply them as member values for “PESectionOptions” on
page 501. Use this function to update the area formats and pass them back using
“PESetAreaFormat” on page 391.

C Syntax

BOOL CRPE_API PEGetAreaFormat (

short printJob,

short areaCode,

PESectionOptions FAR *options);

printJob Specifies the print job for which you want to determine whether prompting for
parameter values is allowed during printing.
Crystal Reports Technical Reference Guide 301

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetAreaFormat Lib “crpe32.dll” (ByVal printJob As

Integer,

ByVal areaCode As Integer, Options As PESectionOptions) As Integer

Delphi Syntax

function PEGetAreaFormat (

printJob: Word

areaCode: integer;

options: PESectionOptions

): Bool stdcall;

PEGetAreaFormatFormula

Use PEGetAreaFormatFormula to retrieve the text of a conditional area format
formula as a string handle. Use this function in order to update the conditional area
format formula and pass the changes back using “PESetAreaFormatFormula” on
page 392. Use “PEGetHandleString” on page 318, to retrieve the formula text.

C Syntax

BOOL CRPE_API PEGetAreaFormatFormula (

short printJob,

short areaCode,

short formulaName,

HANDLE FAR *textHandle,

short FAR *textLength);

printJob Specifies the print job from which you want to get the area format.

areaCode Specifies the “Section Codes” on page 559, for the area for which you want
to get format information. See “Working with section codes” on page 46.

options Specifies a pointer to “PESectionOptions” on page 501, which will receive
format information for the area.
302 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetAreaFormatFormula Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal areaCode As Integer,

ByVal formulaName As Integer, textHandle As Long,

textLength As Integer) As Integer

Delphi Syntax

function PEGetAreaFormatFormula (

printJob: Word;

areaCode: Word;

formulaName: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

PEGetEnableEventInfo

Use PEGetEnableEventInfo to retrieve event enable information. Use this function
to determine which events are enabled.

C Syntax

BOOL CRPE_API PEGetEnableEventInfo (

short printJob,

PEEnableEventInfo FAR *enableEventInfo);

printJob Specifies the print job from which you want to get the area format formula.

areaCode Specifies the “Section Codes” on page 559, for the area for which you want to
get format information. See “Working with section codes” on page 46.

formulaName Specifies the name of the formatting formula for which you want to supply a
new string. Use one of the PE_FFN_XXX “Area/Section Format Formula
Constants” on page 541.

textHandle Specifies a pointer to the handle of the string containing the formula text.

textLength Specifies a pointer to the length of the formula string (in bytes) including the
terminating byte.
Crystal Reports Technical Reference Guide 303

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Delphi Syntax

function PEGetEnableEventInfo(

printJob: Word;

Var enableEventInfo: PEEnableEventInfo

): Bool stdcall;

PEGetErrorCode

Use PEGetErrorCode to retrieve a number that indicates the status of the most
recent Crystal Report Engine function called. When a call to another function fails,
this call gets the error code that was generated so you can take some action based
on that error code. PEGetErrorCode must be called immediately after the call to the
function which indicated an error.

C Syntax

short CRPE_API PEGetErrorCode (

short printJob);

Parameter

Returns

� Returns the “Error Codes” on page 545, of the most recent error for the given
job if the function was unsuccessful.

� Returns 0 if the function completed without error.

VB Syntax

Declare Function PEGetErrorCode Lib “crpe32.dll” (ByVal printJob As

Integer) _

As Integer

printJob Specifies the print job for which you want to obtain information about
enabled events.

enableEventInfo Specifies a pointer to “PEEnableEventInfo” on page 457.

printJob Specifies the print job from which you want to retrieve an error code. If the most
recent function was called while no print job was open, use 0 for this parameter.
304 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PEGetErrorCode (

printJob: Word

): Smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetErrorCode (CWORD) CRPE.DLL

PEGetErrorText

Use PEGetErrorText to return a string handle describing the status of the most
recent Crystal Report Engine function called. This function is used with
“PEGetHandleString” on page 318. These functions can be used in a Custom-Print
Link to display the error string as part of an error message.

C Syntax

BOOL CRPE_API PEGetErrorText (

short printJob,

HANDLE FAR *textHandle,

short Far *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetErrorText Lib “crpe32.dll” (ByVal printJob As

Integer, _

TextHandle As Long, TextLength As Integer) As Integer

Delphi Syntax

function PEGetErrorText (

printJob: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

printJob Specifies the print job from which you want to retrieve an error string. If the most
recent function was called while no print job was open, use 0 this parameter.

textHandle Specifies a pointer to the handle of the string containing the error text.

textLength Specifies a pointer to the length of the error string (in bytes) including the
terminating byte.
Crystal Reports Technical Reference Guide 305

Print Engine Functions
PEGetExportOptions

Use PEGetExportOptions to retrieve export options from the user before exporting
the report. PEGetExportOptions can be used to present a series of dialog boxes that
retrieve export options from your users. These options are used by the Crystal
Report Engine to fill in “PEExportOptions” on page 458. Function “PEExportTo”
on page 299, can then be used to set the print job destination using the information
in “PEExportOptions” on page 458.

C Syntax

BOOL CRPE_API PEGetExportOptions (

short printJob,

PEEXportOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetExportOptions Lib “crpe32.dll” (

ByVal printJob As Integer, ExportOptions As PEExportOptions) As

Integer

Delphi Syntax

function PEGetExportOptions (

printJob: Word;

var options: PEExportOptions

): Bool stdcall;

PEGetFieldMappingType

Use PEGetFieldMappingType to retrieve the field mapping type code for the
specified report.

C Syntax

BOOL CRPE_API PEGetFieldMappingType (

short printJob,

WORD FAR *mappingType);

printJob Specifies the print job from which you want to get export options.

options Specifies a pointer to “PEExportOptions” on page 458.
306 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Unmapped report fields will be removed.
� You need to activate the PE_MAPPING_FIELD_EVENT and define a callback

function.

VB Syntax

Declare Function PEGetFieldMappingType Lib "crpe32.dll" (

ByVal printJob As Integer, mappingType As Integer) As Integer

Delphi Syntax

function PEGetFieldMappingType (

printJob: smallint;

var mappingType: Word

): BOOL stdcall;

PEGetFormula

Use PEGetFormula to retrieve the text of the named formula as a string handle.
This function is used with “PEGetHandleString” on page 318. Use
“PESetFormula” on page 405, to pass a formula back. The series can be used in a
Custom-Print Link to identify and then change an existing formula in response to
a user selection at print time.

C Syntax

BOOL CRPE_API PEGetFormula (

short printJob,

const char *formulaName,

HANDLE FAR *textHandle,

short FAR *textLength);

printJob Specifies the print job from which the field mapping type code will be retrieved.

mappingType Specifies a pointer to the appropriate PE_FM_XXX “Field Mapping Type
Constants” on page 551.
Crystal Reports Technical Reference Guide 307

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the named formula does not exist in the report.

VB Syntax

Declare Function PEGetFormula Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal FormulaName As String, TextHandle As Long, TextLength As

Integer) As Integer

Delphi Syntax

function PEGetFormula (

printJob: Word;

formulaName: PChar;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

PEGetFormulaSyntax

Use PEGetFormulaSyntax to retrieve the syntax information associated with the
formula addressed in the last formula API call.

C Syntax

BOOL CRPE_API PEGetFormulaSyntax (

short printJob,

PEFormulaSyntax FAR *formulaSyntax);

Parameters

printJob Specifies the print job from which you want to retrieve the formula string.

formulaName Specifies a pointer to the null-terminated string that contains the name of the
formula for which you want to retrieve the formula string.

textHandle Specifies a pointer to the handle of the string containing the formula text.

textLength Specifies a pointer to the length of the formula string (in bytes) including the
terminating byte.

printJob Specifies the print job for which you want to determine formula syntax.

formulaSyntax Specifies a pointer to “PEFormulaSyntax” on page 466, which will contain the
information that you want to retrieve. See Remarks below.
308 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� If PEGetFormulaSyntax is called before any Formula API is called, then the
default value returned will be PE_UNCHANGED.

� For running total condition formula:
� formulaSyntax[0] is the syntax for the evalFormula.
� formulaSyntax[1] is the syntax for the reset formula.

VB Syntax

Declare Function PEGetFormulaSyntax Lib "crpe32.dll" (

ByVal printJob As Integer, formulaSyntax As PEFormulaSyntax) As

Integer

PEGetGraphAxisInfo

Use PEGetGraphAxisInfo to retrieve the several chart axis options that are
available.

C Syntax

BOOL CRPE_API PEGetGraphAxisInfo (

short printJob,

short sectionN,

short graphN,

PEGraphAxisInfo FAR * graphAxisInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job from which you want to retrieve chart axis information.

sectionN Specifies the section of the report containing the chart for which you want to
retrieve chart axis information.

graphN Specifies for which chart within the section you want to retrieve the chart axis
information. This value is 0-based. Charts are numbered based on their order
of insertion into the report.

graphAxisInfo Specifies a pointer to “PEGraphAxisInfo” on page 468, which will contain the
information retrieved.
Crystal Reports Technical Reference Guide 309

Print Engine Functions
VB Syntax

Declare Function PEGetGraphAxisInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphAxisInfo As PEGraphAxisInfo) As

Integer

Delphi Syntax

function PEGetGraphAxisInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 var graphAxisInfo : PEGraphAxisInfo): Bool; {$ifdef WIN32} stdcall;

{$endif}

PEGetGraphFontInfo

Use PEGetGraphFontInfo to retrieve the font information set for the specified chart.

C Syntax

BOOL CRPE_API PEGetGraphFontInfo (

short printJob,

short sectionN,

short graphN,

WORD titleFontType,

PEFontColorInfo FAR * fontColourInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetGraphFontInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

printJob Specifies the print job for which you want to retrieve chart font information.

sectionN Specifies the number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on
page 328.

graphN Specifies for which chart within the section you want to retrieve the font
information. This value is 0-based. Charts are numbered based on their order
of insertion into the report.

titleFontType Uses one of the PE_GTF_XXX “Graph Text Font Constants” on page 554.

fontColourInfo Specifies a pointer to PEFontColorInfo, which will contain the information
retrieved.
310 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
ByVal graphN As Integer, ByVal titleFontType As Integer,

fontColourInfo As PEFontColorInfo) As Integer

Delphi Syntax

function PEGetGraphFontInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 titleFontType : Word;

 var fontColourInfo : PEFontColorInfo): Bool; {$ifdef WIN32}

stdcall;{$endif}

PEGetGraphOptionInfo

Use PEGetGraphOptionInfo to retrieve display options set for the specified chart.

C Syntax

BOOL CRPE_API PEGetGraphOptionInfo (

short printJob,

short sectionN,

short graphN,

PEGraphOptionInfo FAR * graphOptionInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetGraphOptionInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphOptionInfo As PEGraphOptionInfo) As

Integer

Delphi Syntax

function PEGetGraphOptionInfo (

 printJob : Smallint;

printJob Specifies the print job for which you want to retrieve chart display information.

sectionN Specifies the number of the section in which the chart appears. This parameter
should be within the range obtained by “PEGetNSections” on page 328.

graphN Specifies for which chart within the Charts are numbered based on their order of
insertion into the report.

graphOption
Info

Specifies a pointer to “PEGraphOptionInfo”, which will contain the retrieved
information.
Crystal Reports Technical Reference Guide 311

Print Engine Functions
 sectionN : Smallint;

 graphN : Smallint;

 var graphOptionInfo : PEGraphOptionInfo): Bool;

{$ifdef WIN32} stdcall; {$endif}

PEGetGraphTextDefaultOption

Use PEGetGraphTextDefaultOption to determine whether or not default chart
titles will be displayed.

C Syntax

BOOL CRPE_API PEGetGraphTextDefaultOption (

short printJob,

short sectionN,

short graphN,

WORD titleType,

BOOL FAR *useDefault);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetGraphTextDefaultOption Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, ByVal titleType As Integer,

useDefault As Long) As Integer

PEGetGraphTextInfo

Use PEGetGraphTextInfo to retrieve the title text information set for the specified
chart. This function is used with “PEGetHandleString” on page 318.

printJob Specifies the print job for which you want to retrieve chart title default option
information.

sectionN Specifies the 0-based index number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on
page 328.

graphN Specifies the 0-based index number of the chart for which you want to retrieve the
chart title default option information. Charts are numbered based on their order
of insertion into the report.

titleType Specifies the title type. Use one of the PE_GTT_XXX “Graph Title Type
Constants” on page 555.

useDefault Specifies a pointer to the Boolean value indicating whether or not to default chart
title will be displayed.
312 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

BOOL CRPE_API PEGetGraphTextInfo (

short printJob,

short sectionN,

short graphN,

WORD titleType,

HANDLE FAR *title,

short FAR *titleLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetGraphTextInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, ByVal titleType As Integer,

title As Long, titleLength As Integer) As Integer

Delphi Syntax

function PEGetGraphTextInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 titleType : Word;

 var title : Hwnd;

 var titleLength : Smallint): Bool; {$ifdef WIN32} stdcall; {$endif}

PEGetGraphTypeInfo

Use PEGetGraphTypeInfo to retrieve information about the type of the specified chart.

printJob Specifies the print job for which you want to retrieve title text information.

sectionN Specifies the number of the section in which the chart appears. This parameter
should be within the range obtained by “PEGetNSections” on page 328.

graphN Specifies the 0-based index number of the chart for which you want to retrieve the
title text information. Charts are numbered based on their order of insertion into
the report.

titleType Specifies the title type. Use one of the PE_GTT_XXX “Graph Title Type Constants”
on page 555.

title Specifies a pointer to the handle of the title.

titleLength Specifies a pointer to the length of the title.
Crystal Reports Technical Reference Guide 313

Print Engine Functions
C Syntax

BOOL CRPE_API PEGetGraphTypeInfo (

short printJob,

short sectionN,

short graphN,

PEGraphTypeInfo FAR * graphTypeInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetGraphTypeInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphTypeInfo As PEGraphTypeInfo) As

Integer

Delphi Syntax

function PEGetGraphTypeInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 var graphTypeInfo : PEGraphTypeInfo): Bool; {$ifdef WIN32} stdcall;

{$endif}

printJob Specifies the print job for which you want to retrieve chart type information.

sectionN Specifies the number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on
page 328.

graphN Specifies for which chart within the section you want to retrieve the type. This
value is 0-based. Charts are numbered based on their order of insertion into
the report.

graphTypeInfo Specifies a pointer to “PEGraphTypeInfo” on page 473, which will contain
the retrieved information.
314 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetGroupCondition

Use PEGetGroupCondition to determine the group condition information for a
selected group section in the specified report. Use this function to retrieve the
group condition for a group section and use “PESetGroupCondition” on page 413,
to change the group condition once it is known.

C Syntax
BOOL CRPE_API PEGetGroupCondition (

short printJob,

short sectionCode,

HANDLE FAR *conditionFieldHandle,

short FAR *conditionFieldLength,

short FAR *condition,

short FAR *sortDirection);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

The condition parameter returns a value that encodes both the condition and the
type of the condition field. You need to apply a condition mask
(PE_GC_CONDITIONMASK) or a type mask (PE_GC_TYPEMASK) against this
value using a bitwise AND to determine the condition or type respectively. For
example:
short result;

result = *condition & PE_GC_TYPEMASK;

if (result == PE_GC_TYPEDATE)

{

//what you want it to do

}

printJob Specifies the print job that you want to query to determine the group
conditions for a selected group.

sectionCode Specifies the “Section Codes” on page 559, for the report section for which you
want to get the group condition. See “Working with section codes” on page 46.

conditionField
Handle

Specifies a pointer to the handle of the condition field for the selected group
section.

conditionField
Length

Specifies a pointer to the length of the condition field for the selected group
section.

condition Specifies a pointer to the condition setting for the selected group section. See
Remarks below.

sortDirection Specifies a pointer to the sort direction setting for the selected group section.
Uses one of the PE_SF_XXX “Sort Order Constants” on page 560.
Crystal Reports Technical Reference Guide 315

Print Engine Functions
Type can be any of the following PE_GC_TYPEXXX constants:
� PE_GC_TYPEOTHER -- Any data type other than date or Boolean.
� PE_GC_TYPEDATE -- Date data type.
� PE_GC_TYPEBOOLEAN -- Boolean data type.
� PE_GC_TYPETIME -- Time data type

VB Syntax

Declare Function PEGetGroupCondition Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal sectionCode As Integer, ConditionFieldHandle As Long,

ConditionFieldLength As Integer, Condition As Integer, SortDirection As

Integer) As Integer

Delphi Syntax

function PEGetGroupCondition (

printJob: Word;

sectionCode: integer;

var conditionFieldHandle: Hwnd;

var conditionFieldLength: Word;

var condition: Word;

var sortDirection: Word

): Bool stdcall;

PEGetGroupOptions

Use PEGetGroupOptions to retrieve the current settings for specified groups in
your report.

C Syntax

BOOL CRPE_API PEGetGroupOptions (

short printJob,

short groupN,

PEGroupOptions FAR *groupOptions);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to obtain information about the
group options settings.

groupN Specifies the 0-based group number.

groupOptions Specifies a pointer to “PEGroupOptions” on page 474.
316 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

This function gets all the information retrieved with “PEGetGroupCondition” on
page 315, plus additional group options such as repeat group header, keep group
together, and top/bottom n group sorting.

VB Syntax

Declare Function PEGetGroupOptions Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal groupN As Integer, groupOptions As PEGroupOptions) As

Integer

Delphi Syntax

function PEGetGroupOptions

printJob: Word;

groupN: smallint;

var groupOptions: PEGroupOptions

): integer stdcall;

PEGetGroupSelectionFormula

Use PEGetGroupSelectionFormula to retrieve the string handle for the group
selection formula used in the specified report. This function is used with
“PEGetHandleString” on page 318. Use “PESetGroupSelectionFormula” on
page 415, to pass back a formula. This series can be used in a Custom-Print Link to
identify and then change an existing group selection formula in response to a user
selection at print time.

C Syntax

BOOL CRPE_API PEGetGroupSelectionFormula (

short printJob,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to retrieve the group selection formula
string.

textHandle Specifies a pointer to the handle of the string containing the formula text.

textLength Specifies a pointer to the length of the formula string (in bytes) including the
terminating byte.
Crystal Reports Technical Reference Guide 317

Print Engine Functions
VB Syntax

Declare Function PEGetGroupSelectionFormula Lib “crpe32.dll” (ByVal

printJob As Integer, TextHandle As Long, TextLength As Integer) As

Integer

Delphi Syntax

function PEGetGroupSelectionFormula (

printJob: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

PEGetHandleString

Use PEGetHandleString to retrieve the text to which the string handle is pointing.
The buffer will obtain the actual text. This function is used in conjunction with
functions that return variable length strings. After your program allocates a buffer
of sufficient size, this function moves the string from the string handle to the
buffer.

C Syntax

BOOL CRPE_API PEGetHandleString (

HANDLE textHandle,

char FAR *buffer,

short bufferLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� When you call the function that produces the string, it returns a length that
includes a provision for the null byte at the end of the string. A buffer set to
that length will hold the entire string including the terminating null byte.

� PEGetHandleString will copy, at most, the number of bytes indicated by
bufferLength, ensuring that the string in the buffer is NULL-terminated.

textHandle Specifies the handle of the string containing the text of interest. This handle is
obtained from a variable length string function.

buffer Specifies a pointer to the buffer into which you want the string copied.

bufferLength Specifies the length of the buffer in bytes, including the terminating null byte.
This value should be identical to the length of the string obtained by the variable
length string function.
318 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
� You can only use this call once with a given string handle because the string
handle is discarded once the function is called. If you expect to use the string
later, you will need to save it.

VB Syntax

Declare Function PEGetHandleString Lib "crpe32.dll" (ByVal textHandle _

 As Long, ByVal Buffer As String, ByVal BufferLength As Integer) As

Integer

Delphi Syntax

function PEGetHandleString (

textHandle: HWnd;

buffer: PChar;

bufferLength: integer

): Bool stdcall;

PEGetJobStatus

Use PEGetJobStatus to determine the status of a print job. You can use this function
in a number of programming situations, for example:
� to trigger error messages, such as when a print job fails (due to insufficient

memory, insufficient disk space, etc.);
� to trigger screen displays (hourglass, series of graphics, etc.) that confirm to

the user that work is in progress; or
� to find out whether a job was cancelled by the user after “PEStartPrintJob” on

page 448, returns.

C Syntax

short CRPE_API PEGetJobStatus (

short printJob,

PEJobInfo FAR *jobInfo);

Parameters

Returns

� Returns 0 if PEOpenEngine or PEOpenPrintJob has not been called
successfully.

� Otherwise, returns the “Job Status Constants” on page 558 for the specified
print job.

printJob Specifies the print job for which you want to determine printing status.

jobInfo Specifies a pointer to “PEJobInfo” on page 478, which will contain the information
this function retrieves.
Crystal Reports Technical Reference Guide 319

Print Engine Functions
VB Syntax

Function PEGetJobStatus(ByVal job As Integer, info As PEJobInfo) As

Integer

' To work around the problem of 4 - byte alignment the PEGetJobStatus

' call has been re-declared here. When your application calls

PEGetJobStatus

' it is calling this function which in turn calls CRPE32.DLL.

Delphi Syntax

function PEGetJobStatus (

printJob: Word;

var jobInfo: PEJobInfo

): smallint stdcall;

PEGetMargins

Use PEGetMargins to retrieve the page margin settings for the specified report.
Use this function to retrieve the report margins and “PESetMargins” on page 416,
to set the report margins.

C Syntax

BOOL CRPE_API PEGetMargins (

short printJob,

short FAR *left,

short FAR *right,

short FAR *top,

short FAR *bottom);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetMargins Lib “crpe32.dll” (ByVal printJob As

Integer,

LeftMargin As Integer, RightMargin As Integer,

TopMargin As Integer, BottomMargin As Integer) As Integer

printJob Specifies the print job that you want to query to retrieve margin information.

left Specifies a pointer to the value of the left margin.

right Specifies a pointer to the value of the right margin.

top Specifies a pointer to the value of the top margin.

bottom Specifies a pointer to the value of the bottom margin.
320 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PEGetMargins (

printJob: Word;

var left: Word;

var right: Word;

var top: Word;

var bottom: Word

): Bool stdcall;

PEGetNDetailCopies

Use PEGetNDetailCopies to retrieve the number of copies of each Details section
in the report that are to be printed. Use this function to find out how many times
each Details section of the report will be printed. To change the number of times
each Details section is printed, use “PESetNDetailCopies” on page 417.

C Syntax

BOOL CRPE_API PEGetNDetailCopies (

short printJob,

short FAR *nDetailCopies);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetNDetailCopies Lib “crpe32.dll” (

ByVal printJob As Integer, nDetailCopies As Integer) As Integer

Delphi Syntax

function PEGetNDetailCopies(

printJob: Word;

var nDetailCopies: integer

): Bool stdcall;

printJob Specifies the print job that you want to query to determine how many times
each Details section is to be printed.

nDetailCopies Specifies a pointer to the number of copies of the Details section to be printed.
Crystal Reports Technical Reference Guide 321

Print Engine Functions
PEGetNFormulas

Use PEGetNFormulas to determine the number of formulas in the specified report.
To retrieve the formula by number, use “PEGetNthFormula” on page 334.

C Syntax

short CRPE_API PEGetNFormulas (

short printJob);

Parameter

Returns

� Returns the number of formulas in the report.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNFormulas Lib “crpe32.dll” (ByVal printJob As

Integer) As Integer

Delphi Syntax

function PEGetNFormulas(

printJob: Word

): Smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetNFormulas (CWORD) CRPE.DLL

PEGetNGroups

Use PEGetNGroups to determine the number of groups in the specified report.

C Syntax

short CRPE_API PEGetNGroups (

short printJob);

Parameter

printJob Specifies the print job that you want to query to determine the number of formulas
it contains.

printJob Specifies the print job that you want to query to determine the number of groups.
322 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� Returns the number of groups in the report.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNGroups Lib “crpe32.dll” (ByVal printJob As

Integer) As Integer

Delphi Syntax

function PEGetNGroups (

printJob: Word

): smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetNGroups (CWORD) CRPE.DLL

PEGetNGroupSortFields

Use PEGetNGroupSortFields to retrieve the number of group sort fields in the
specified report. This function is typically used as one of a series of functions
(PEGetNGroupSortFields called once; “PEGetNthGroupSortField” on page 335
and “PEGetHandleString” on page 318 called as many times as needed to identify
the correct group sort field; and “PESetNthAlertConditionFormula” on page 418
called once, when the correct group sort field is identified. The series can be used
in a Custom-Print Link to identify and then change an existing group sort field
and/or sort order in response to a user selection at print time.

C Syntax

short CRPE_API PEGetNGroupSortFields (

short printJob);

Parameter

Returns

� Returns the number of group sort fields.
� Returns 0 if there are no group sort fields defined.
� Returns -1 if an error occurs.

printJob Specifies the print job for which you want to determine the number of contained
sort fields.
Crystal Reports Technical Reference Guide 323

Print Engine Functions
VB Syntax

Declare Function PEGetNGroupSortFields Lib “crpe32.dll” (_

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEGetNGroupSortFields (

printJob: Word

): Smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetNGroupSortFields (CWORD) CRPE.DLL

PEGetNPages

Use PEGetNPages to retrieve the number of pages in the report. This information
can be used to allow the user to display a specific page in a preview window using
PEShowNthPage (“PEShow...Page” on page 446), for example.

C Syntax

short CRPE_API PEGetNPages (

short printJob);

Parameter

Returns

� Returns the number of pages in the report if the call is successful.
� Returns -1 if an error occurs

VB Syntax

Declare Function PEGetNPages Lib “crpe32.dll” (ByVal printJob As

Integer) As Integer

Delphi Syntax

function PEGetNPages (

printJob: Word

): Smallint stdcall;

printJob Specifies the print job for which you want to determine the number of pages.
324 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetNParameterCurrentRanges

Use PEGetNParameterCurrentRanges to retrieve the number of value ranges
currently associated with the specified parameter field in a report. See “Working
with Parameter Values and Ranges” on page 45.

C Syntax

short CRPE_API PEGetNParameterCurrentRanges (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName);

Parameters

Returns

� Returns the number of value ranges associated with the specified parameter
field.

� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNParameterCurrentRanges Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String) As Integer

Delphi Syntax

procedure PEGetNParameterCurrentRanges (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

): WORD stdcall;

PEGetNParameterCurrentValues

Use PEGetNParameterCurrentValues to determine the number of values currently
stored in the specified parameter field of a report. See “Working with Parameter
Values and Ranges” on page 45.

printJob Specifies the print job for which you want to retrieve parameter current
range information.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.
Crystal Reports Technical Reference Guide 325

Print Engine Functions
C Syntax

short CRPE_API PEGetNParameterCurrentValues (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName);

Parameters

Returns

� Returns the number of values currently stored in the parameter field.
� Returns -1 if an error occurs.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNParameterCurrentValues Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String) As Integer

Delphi Syntax

function PEGetNParameterCurrentValues

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar

): Word stdcall;

PEGetNParameterDefaultValues

Use PEGetNParameterDefaultValues to determine the number of default values
associated with the specified parameter in a report.

C Syntax

short CRPE_API PEGetNParameterDefaultValues (

short printJob

const char FAR *parameterFieldName

const char FAR *reportName);

printJob Specifies the print job for which you want to determine the number of
parameter current values.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See
Remarks below.
326 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� Returns the number of parameter default values.
� Returns -1 if an error occurs.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNParameterDefaultValues Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String) As Integer

Delphi Syntax

function PEGetNParameterDefaultValues (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar

): Smallint stdcall;

PEGetNParameterFields

Use PEGetNParameterFields to determine the number of parameter fields used in
a report, including the parameter fields in all subreports.

C Syntax

short CRPE_API PEGetNParameterFields (

short printJob);

Parameter

printJob Specifies the print job for which you want to determine the number of
parameter default values.

parameterField
Name

Specifies a pointer to the string containing the name of the parameter field.

reportName Specifies a pointer to the string containing the name of the report. See
Remarks below.

printJob Specifies the print job from which you want to retrieve a parameter field count.
Crystal Reports Technical Reference Guide 327

Print Engine Functions
Returns

� The number of parameter fields in the report.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNParameterFields Lib “crpe32.dll” (ByVal printJob

As Integer) As Integer

Delphi Syntax

function PEGetNParameterFields (

printJob: Word

): Smallint stdcall;

PEGetNReportAlerts

Use PEGetNReportAlerts to get the number of Report Alerts in the report
associated with the job handle.

C Syntax

short CRPE_API PEGetNReportAlerts (short printJob);

Parameters

Returns

� The number of Report Alerts if the call is successful.
� -1 if the call fails.

VB Syntax

Declare Function PEGetNReportAlerts Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Delphi Syntax

ffunction PEGetNReportAlerts (printJob : Smallint) : Smallint stdcall;

PEGetNSections

Use PEGetNSections to retrieve the number of sections in the specified report. By
default, each report has five areas, each containing one section (Report Header, Page
Header, Details, Report Footer, and Page Footer). Thus, if this function were applied
to a default report, five (5) would be returned. As you add groups to your report or
you add sections to one or more areas, the number of sections in the report increases.

printJob Specifies the print job from which you want to get the number of Report
Alerts.
328 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

short CRPE_API PEGetNSections (

short printJob);

Parameter

Returns

� Returns the number of sections in the report.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNSections Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEGetNSections (

printJob: Word

): Smallint stdcall;

PEGetNSectionsInArea

Use PEGetNSectionsInArea to retrieve the number of sections contained in the
specified area of the specified report.

C Syntax

short CRPE_API PEGetNSectionsInArea (

short printJob,

short areaCode);

Parameters

Returns

� Returns the number of sections in the specified area of the specified report if
the call is successful.

� Returns -1 if the call fails.

VB Syntax

Declare Function PEGetNSectionsInArea Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal areaCode As Integer) As Integer

printJob Specifies the print job from which you want to get a section count.

printJob Specifies the print job for which you want to determine the number of sections in
the specified area.

areaCode Specifies the area for which you want to retrieve the section count.
Crystal Reports Technical Reference Guide 329

Print Engine Functions
PEGetNSortFields

Use PEGetNSortFields to retrieve the number of sort fields in the specified report.
This function is typically used as one of a series of functions (PEGetNSortFields
called once; “var reportAlertInfo : PEReportAlertInfo) : boolean stdcall;” on
page 343 and “PEGetHandleString” on page 318 called together as many times as
needed to identify the correct sort field; and “PESetNthSortField” on page 425
called once when the correct sort field is identified). The series can be used in a
Custom-Print Link to identify and then change an existing sort field and/or sort
order in response to a user selection at print time.

C Syntax

short CRPE_API PEGetNSortFields (

short printJob);

Parameter

Returns

� Returns the number of sort fields.
� Returns 0 if there are no sort fields defined.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNSortFields Lib “crpe32.dll” (_

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEGetNSortFields (

printJob: Word

): smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetNSortFields (CWORD) CRPE.DLL

PEGetNSQLExpressions

Use PEGetNSQLExpressions to retrieve the number of SQL expressions in the
specified report.

C Syntax

short CRPE_API PEGetNSQLExpressions (

short printJob);

printJob Specifies the print job for which you want to determine the number of sort fields
contained.
330 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameter

Returns

� Returns the number of SQL expressions in the report.
� Returns -1 if an error occurs.

VB Syntax

Declare Function PEGetNSQLExpressions Lib "crpe32.dll" (ByVal printJob

As Integer) As Integer

Delphi Syntax

function PEGetNSQLExpressions (

printJob: smallint

): smallint stdcall;

PEGetNSubreportsInSection

Use PEGetNSubreportsInSection to determines the number of subreports in the
specified section.

C Syntax

short CRPE_API PEGetNSubreportsInSection (

short printJob,

short sectionCode);

Parameters

Returns

� Returns the number of subreports in the specified section.
� Returns -1 if an error occurs.

Remarks

sectionCode can be retrieved using “PEGetSectionCode” on page 360.

VB Syntax

Declare Function PEGetNSubreportsInSection Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer) As Integer

print job Specifies the print job for which you want to determine the number of SQL
expressions.

print job Specifies the primary report from which you want to retrieve information about
the number of subreports in a section.

sectionCode Specifies the “Section Codes” on page 559, of the section for which you want a
subreport count. See “Working with section codes” on page 46.
Crystal Reports Technical Reference Guide 331

Print Engine Functions
Delphi Syntax

function PEGetNSubreportsInSection (

printJob: Word;

sectionCode: Smallint

): Smallint stdcall;

PEGetNTables

Use PEGetNTables to retrieve the number of tables in the open report. It counts both
PC and SQL databases. This function is one of a series of functions that enable you
to retrieve and update database information in an opened report so that the report
can be printed using different server, database, user, and/or table location settings.

C Syntax

short CRPE_API PEGetNTables (

short printJob);

Parameter

Returns

� Returns the number of tables used in the report (1 = 1 table, 2 = 2 tables, etc.).
� Returns -1 if an error occurs.

Remarks

� This function can be used with all compatible PC databases (for example,
Paradox, Xbase) as well as SQL databases (for example, SQL Server, Oracle,
Netware).

� PEGetNTables must be called after PEOpenPrintJob and before
PEStartPrintJob.

VB Syntax

Declare Function PEGetNTables Lib “crpe32.dll” (ByVal printJob As

Integer _

) As Integer

Delphi Syntax

function PEGetNTables (

printJob: Word

): smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetNTables (CWORD) CRPE.DLL

printJob Specifies the print job from which you want to retrieve a table count.
332 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetNthAlertInstanceInfo

Use PEGetNthAlertInstanceInfo to retrieve the PEAlertInstanceInfo structure
associated with the specified Report Alert instance. The PEAlertInstanceInfo
structure contains information on a specified instance of a Report Alert.

C Syntax

BOOL CRPE_API PEGetNthAlertInstanceInfo (short printJob,

 short alertN,

 DWORD instanceN,

 PEAlertInstanceInfo FAR *

 alertInstanceInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Currently there is no function to get the number of Report Alert instances created
when a report is alert is triggered. This functionality will be implemented in a
future version.

In the present build only the first instance of the Report Alert is created at runtime.
This limitation will be addressed in a future release.

VB Syntax

Declare Function PEGetNthAlertInstanceInfo Lib "crpe32.dll" (ByVal

printJob%, ByVal alertN%, ByVal instanceN As Long, alertInstanceInfo As

PEAlertInstanceInfo) As Integer

Delphi Syntax

function PEGetNthAlertInstanceInfo(

 printJob : Smallint;

 alertN : Smallint;

 instanceN : DWord;

 var alertInstanceInfo : PEAlertInstanceInfo) : boolean stdcall;

printJob Specifies the print job from which you want to get the number of Report
Alerts.

alertN Specifies the Report Alert from which you want to get the alert instance
information.

instanceN Specifies the instance of the Report Alert from which you want to get the
alert instance information.

alertInstanceInfo Specifies a pointer to “PEAlertInstanceInfo”
Crystal Reports Technical Reference Guide 333

Print Engine Functions
PEGetNthFormula
Use PEGetNthFormula to retrieve information about a specific formula in the
report. Use this function to obtain the formula name and formula text of a specific
formula in the report. This function can be used to retrieve the formula text to
allow the user to edit the formula. You can then change the formula text with
“PESetFormula” on page 405.

C Syntax
BOOL CRPE_API PEGetNthFormula (

short printJob,

short formulaN,

HANDLE FAR *nameHandle,

short FAR *nameLength,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Edit|Formula

VB Syntax
Declare Function PEGetNthFormula Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal FormulaN As Integer, NameHandle As Long, NameLength As

Integer, TextHandle As Long, TextLength As Integer) As Integer

Delphi Syntax
function PEGetNthFormula (

printJob: Word;

formulaN: integer;

var nameHandle: Hwnd;

var nameLength: Word;

var textHandle: Hwnd;

var textLength: Word

): Bool stdcall;

printJob Specifies the print job from which you want to gather formula information.

formulaN Specifies the 0-based number of the formula about which you want to gather
information.

nameHandle Specifies a pointer to the handle of the string containing the formula name.

nameLength Specifies a pointer to the length of the formula name string (in bytes) including
the terminating byte.

textHandle Specifies a pointer to the handle of the string containing the formula text.

textLength Specifies a pointer to the length of the formula string (in bytes) including the
terminating byte.
334 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetNthGroupSortField

Use PEGetNthGroupSortField to retrieve information about one of the group sort
fields in the specified report. This function is used with “PEGetHandleString” on
page 318. PEGetNthGroupSortField returns the name of the field and the direction
(ascending or descending) of the sort. See “Crystal Report Engine API variable
length strings” on page 51 for additional information.

This function is typically used as one of a series of functions
(“PEGetNGroupSortFields” on page 323) called once; PEGetNthGroupSortField
and “PEGetHandleString” on page 318 called as many times as needed to identify
the correct group sort field; and “PESetNthAlertConditionFormula” on page 418
called once when the correct sort field is identified. The series can be used in a
Custom-Print Link to identify and then change an existing group sort field and/or
sort order in response to a user selection at print time.

C Syntax

BOOL CRPE_API PEGetNthGroupSortField (

short printJob,

short sortFieldN,

HANDLE FAR *nameHandle,

short FAR *nameLength,

short FAR *direction);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

To find out top/bottom n group sort information, use “PEGetGroupOptions” on
page 316.

printJob Specifies the print job from which you want to gather group sort field
information.

sortFieldN Specifies the 0-based number of the group sort field that you want to retrieve.
The first group sort field is field 0. If the report has N sort fields, the function can
be called with sortFieldN between 0 and N-1.

nameHandle Specifies a pointer to the handle of the string containing the sort field name.

nameLength Specifies a pointer to the length of the field name string (in bytes) including the
terminating byte.

direction Specifies a pointer to the sort direction. Uses one of the PE_SF_XXX “Sort Order
Constants” on page 560.
Crystal Reports Technical Reference Guide 335

Print Engine Functions
VB Syntax

Declare Function PEGetNthGroupSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal SortFieldN As Integer, _

NameHandle As Long, NameLength As Integer, Direction As Integer _

) As Integer

Delphi Syntax

function PEGetNthGroupSortField (

printJob: Word;

 sortFieldN: integer;

 var nameHandle: HWnd;

 var nameLength: Word;

 var direction: Word

): Bool stdcall;

PEGetNthParameterCurrentRange

Use PEGetNthParameterCurrentRange to retrieve a value range from the specified
parameter field in a report. Use “PEGetNParameterCurrentRanges” on page 325,
to get the number of value ranges currently associated with the parameter field.
See “Working with Parameter Values and Ranges” on page 45.

C Syntax

BOOL CRPE_API PEGetNthParameterCurrentRange (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index,

PEValueInfo FAR *rangeStart,

PEValueInfo FAR *rangeEnd,

short FAR *rangeInfo);

Parameters

printJob Specifies the print job for which you want to retrieve the parameter
current range.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

index Specifies the index number of the value range to be retrieved.

rangeStart Specifies a pointer to “PEValueInfo” on page 516, in which the beginning
value in the range is returned.

rangeEnd Specifies a pointer to “PEValueInfo” on page 516, in which the final
value in the range is returned.

rangeInfo Use this bitwise value to indicate whether the upper and/or lower
bound(s) in the range should be retrieved. Use one or more of the “Range
Info Constants” on page 559.
336 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call succeeds.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNthParameterCurrentRange Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

rangeStart As PEValueInfo, rangeEnd As PEValueInfo, _

ByVal rangeInfo As Integer) As Integer

Delphi Syntax

procedure PEGetNthParameterCurrentRange (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

index: smallint;

var rangeStart: PEValueInfo;

var rangeEnd: PEValueInfo;

rangeInfo: smallint

): BOOL stdcall;

PEGetNthParameterCurrentValue

Use to retrieve a value from the specified parameter field of a report. Use
“PEGetNParameterCurrentValues” on page 325, to determine the number of
values currently held in the parameter field. See “Working with Parameter Values
and Ranges” on page 45.

C Syntax

BOOL CRPE_API PEGetNthParameterCurrentValue (

short printJob,

const char FAR *parameter FieldName,

const char FAR *reportName,

short index,

PEValueInfo FAR *currentValue);
Crystal Reports Technical Reference Guide 337

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNthParameterCurrentValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

currentValue As PEValueInfo) As Integer

Delphi Syntax

function PEGetNthParameterCurrentValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

index: smallint;

var currentValue: PEValueInfo

): BOOL stdcall;

PEGetNthParameterDefaultValue

Use PEGetNthParameterDefaultValue to retrieve a default value for a specified
parameter field in a report. Use “PEGetNParameterDefaultValues” on page 326, to
retrieve the number of default values for the parameter field.

printJob Specifies the print job for which you want to determine the parameter
current value.

parameterFieldName Specifies a pointer to a string containing the parameter field name.

reportName Specifies a pointer to a string containing the report name. See Remarks
below.

index Specifies the index number of the value to be retrieved.

currentValue Specifies a pointer to “PEValueInfo” on page 516, in which the value
will be returned. If it contains no value then it will be set to the constant
PE_VI_NOVALUE rather than NULL.
338 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

BOOL CRPE_API PEGetNthParameterDefaultValue (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index,

PEValueInfo FAR *valueInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNthParameterDefaultValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

valueInfo As PEValueInfo) As Integer

Delphi Syntax

function PEGetNthParameterDefaultValue(

printJob: smallint;

const parameterFieldName: PChar;

index: smallint;

var valueInfo: PEValueInfo

): BOOL stdcall;

printJob Specifies the print job from which you want to gather parameter default
value information.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

index Specifies the index number of the default value to be retrieved.

valueInfo Specifies a pointer to “PEValueInfo” on page 516, containing
information about requested default value.
Crystal Reports Technical Reference Guide 339

Print Engine Functions
PEGetNthParameterField

Use PEGetNthParameterField to retrieve information about one of the parameter
fields in the specified report. For new development, see Remarks below. This
function returns the name of the field, the data type, and information about the value
set for the field. The name of the parameter field is returned as a string handle. This
function is typically used as one of a series of functions (“PEGetNParameterFields”
on page 327, (called once); PEGetNthParameterField (called as many times as
needed to identify the correct parameter field); and “PESetNthParameterField” on
page 423, (called once when the correct parameter field is identified). The series can
be used in a Custom-Print Link to identify and then change an existing parameter
field value in response to a user selection at print time.

C Syntax

BOOL CRPE_API PEGetNthParameterField (

short printJob,

short parameterN,

PEParameterFieldInfo FAR *parameterInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� For new development, the Default/CurrentValueSet members of
PEParameterFieldInfo must be set to FALSE and the following new calls used
to access default and current value lists.
� “PEGetNParameterCurrentRanges” on page 325
� “PEGetNParameterCurrentValues” on page 325
� “PEGetNParameterDefaultValues” on page 326
� “PEGetNthParameterCurrentRange” on page 336
� “PEGetNthParameterCurrentValue” on page 337
� “PEGetNthParameterDefaultValue” on page 338

� The CurrentValue member of the returned structure, “PEParameterFieldInfo”
on page 484, will be set to CRWNULL. if the parameter is NULL.

printJob Specifies the print job that contains the parameter field about which you want
to retrieve information.

parameterN Specifies the number of the parameter field about which you want to retrieve
information.

parameterInfo Specifies a pointer to “PEParameterFieldInfo” on page 484, which is used to
store the information you retrieve. See Remarks below.
340 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PEGetNthParameterField Lib "crpe32.dll" (ByVal printJob

As Integer, ByVal varN As Integer, varInfo As PEParameterFieldInfo) As

Integer

Delphi Syntax

function PEGetNthParameterField (

printJob: Word;

varN: Smallint;

var varInfo: PEParameterFieldInfo

): Bool stdcall;

PEGetNthParameterType

Use PEGetNthParameterType to retrieve the type (or origin) of a specified
parameter.

C Syntax

short CRPE_API PEGetNthParameterType (

short printJob,

short index);

Parameters

Returns

Returns one of the following PE_PO_XXX Constants or -1 if the index is invalid.

VB Syntax

Declare Function PEGetNthParameterType Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal index As Integer) As Integer

Delphi Syntax

function PEGetNthParameterType (

printJob: smallint;

index: smallint

): smallint stdcall;

printJob Specifies the print job from which you want to gather parameter type information.

index Specifies the index number of the parameter field.

PE_PO_REPORT Report.

PE_PO_STOREDPROC Stored Procedure.

PE_PO_QUERY Query.
Crystal Reports Technical Reference Guide 341

Print Engine Functions
PEGetNthParameterValueDescription

Use PEGetNthParameterValueDescription to retrieve the description of the value
set for a parameter.

C Syntax

BOOL CRPE_API PEGetNthParameterValueDescription (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index,

HANDLE FAR *valueDesc,

short FAR *valueDescLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetNthParameterValueDescription Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

valueDesc As Long, valueDescLength As Integer) As Integer

printJob Specifies the print job from which you want to gather parameter value
description information.

parameterFieldName Specifies a pointer to the parameterFieldName for which you want to
retrieve the parameter value description.

reportName Specifies a pointer to the report name. See Remarks below.

index Specifies the index.

valueDesc Specifies a pointer to the handle of the value description to be retrieved.

valueDescLength Specifies a pointer to the length of the value description.
342 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PEGetNthParameterValueDescription (

 printJob : Smallint;

 parameterFieldName : PChar;

 reportName : PChar;

 index : Smallint;

 var valueDesc : HWnd;

 var valueDescLength : Smallint): Bool; {$ifdef WIN32} stdcall; {$endif}

PEGetNthReportAlert

Use PEGetNthReportAlert to retrieve the PEReportAlertInfo structure from the
report associated with the job handle. The PEReportAlertInfo structure contains
information on a specified Report Alert.

C Syntax

BOOL CRPE_API PEGetNthReportAlert (short printJob,

 short alertN,

 PEReportAlertInfo FAR *

reportAlertInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetNthReportAlert Lib "crpe32.dll" (ByVal printJob%,

ByVal alertN%, reportAlertInfo As PEReportAlertInfo) As Integer

Delphi Syntax

function PEGetNthReportAlert(

 printJob : Smallint;

 alertN : Smallint;

 var reportAlertInfo : PEReportAlertInfo) : boolean stdcall;

printJob Specifies the print job from which you want to get the number of Report Alerts.

alertN Specifies the Report Alert from which you want to get the alert instance
information.

reportalertInfo Specifies a pointer to “PEAlertInstanceInfo” on page 453
Crystal Reports Technical Reference Guide 343

Print Engine Functions
PEGetNthSortField

Use PEGetNthSortField to return information about one of the sort fields in the
specified report. This function returns the name of the field and the direction
(ascending or descending) of the sort. The name of the sort field is returned as a
string handle. This function is typically used as one of a series of functions
(“PEGetNSortFields” on page 330 called once; PEGetNthSortField and
“PEGetHandleString” on page 318 called together as many times as needed to
identify the correct sort field; and “PESetNthSortField” on page 425 called once
when the correct sort field is identified). The series can be used in a Custom-Print
Link to identify and then change an existing sort field and/or sort order in
response to a user selection at print time.

C Syntax

BOOL CRPE_API PEGetNthSortField (

short printJob,

short sortFieldN,

HANDLE FAR *nameHandle,

short FAR *nameLength,

short FAR *direction);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetNthSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal SortNumber As Integer, _

NameHandle As Long, NameLength As Integer, Direction As Integer _

) As Integer

printJob Specifies the print job from which you want to retrieve sort field information.

sortFieldN Specifies the0-based number of the sort field you want to retrieve. The first sort
field is field 0. If the report has N sort fields, the function can be called with
sortFieldN between 0 and N-1.

nameHandle Specifies a pointer to the handle of the string containing the sort field name.

nameLength Specifies a pointer to the length of the field name string (in bytes) including the
terminating byte.

direction Specifies a pointer to the sort direction. Uses one of the PE_SF_XXX “Sort Order
Constants” on page 560.
344 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PEGetNthSortField (

printJob: Word;

sortFieldN: integer;

var nameHandle: HWnd;

var nameLength: Word;

var direction: Word

): Bool stdcall;

PEGetNthSQLExpression

Use PEGetNthSQLExpression to retrieve one of the SQL expressions associated
with a report. Use this function with “PEGetHandleString” on page 318. Use
“PEGetNSQLExpressions” on page 330, to determine the number of SQL
expressions in the report.

C Syntax

BOOL CRPE_API PEGetNthSQLExpression (

short printJob,

short expressionN,

HANDLE FAR *nameHandle,

short FAR *nameLength,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetNthSQLExpression Lib "crpe32.dll" (ByVal printJob

As Integer, ByVal expressionN As Integer, nameHandle As Long, nameLength

As Integer, textHandle As Long, textLength As Integer) As Integer

printJob Specifies the print job from which you want to gather SQL expression
information.

expressionN Specifies the numeric value indicating which expression to retrieve.

nameHandle Specifies a pointer to the handle of the string containing the expression name.

nameLength Specifies a pointer to the length of name string.

textHandle Specifies a pointer to the handle of the string containing the SQL expression.

textLength Specifies a pointer to the length of the expression string.
Crystal Reports Technical Reference Guide 345

Print Engine Functions
Delphi Syntax

function PEGetNthSQLExpression (

printJob: smallint;

expressionN: Smallint;

var nameHandle: Hwnd;

var nameLength: Smallint;

var textHandle: Hwnd;

var textLength: Smallint

): Bool stdcall;

PEGetNthSubreportInSection

Use PEGetNthSubreportInSection to retrieve a handle that is required to retrieve
the name of a subreport.

Syntax

DWORD CRPE_API PEGetNthSubreportInSection (

short printJob,

short sectionCode,

short subreportN);

Parameters

Returns

Returns a handle that is used to retrieve the name of the specified subreport.

Remarks

Use “PEGetSubreportInfo” on page 367, to retrieve information about the
subreport by passing the subreport handle returned by
PEGetNthSubreportInSection.

VB Syntax

Declare Function PEGetNthSubreportInSection Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer,

ByVal subreportN As Integer) As Long

Delphi Syntax

function PEGetNthSubreportInSection (

printJob: Word;

printJob Specifies the primary report.

sectionCode Specifies the “Section Codes” on page 559, for the report section that contains
the subreport. See “Working with section codes” on page 46.

subreportN Specifies the number of the subreport in the specified section. subreportN is zero
based. The first report in the section will be 0, the second will be 1, etc. If there
are no subreports in the section, the function will return 0.
346 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
sectionCode: Smallint;

subreportN: Smallint

): DWORD stdcall;

PEGetNthTableLocation

Use PEGetNthTableLocation to determine the location of a selected table used in
the specified print job. This function is typically combined with
“PESetNthTableLocation” on page 426 to identify the location of a table and then
to change it.

C Syntax

BOOL CRPE_API PEGetNthTableLocation (

short printJob,

short tableN,

PETableLocation FAR *location);

Parameters

Returns

� TRUE if the call is successful0.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetNthTableLocation Lib "crpe32.dll" (ByVal printJob

As Integer, ByVal TableN As Integer, Location As PETableLocation) As

Integer

Delphi Syntax

function PEGetNthTableLocation(

printJob: Word;

tableN: integer;

var location: PETableLocation

): Bool stdcall;

PEGetNthTableLogOnInfo

Use PEGetNthTableLogOnInfo to retrieve log on information required by a report.

printJob Specifies the print job from which you want to retrieve information about a table’s
location.

tableN Specifies the 0-based number of the table for which you want to retrieve table location
information. The first table is table 0. The last table is N-1.

location Specifies the pointer to “PETableLocation” on page 510. The format of the string will
be depend on the type of database specified.
Crystal Reports Technical Reference Guide 347

Print Engine Functions
C Syntax

BOOL CRPE_API PEGetNthTableLogOnInfo (

short printJob,

short tableN,

PELogOnInfo FAR *logOnInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� This function must be called after “PEOpenPrintJob” on page 378 (so you have
the job handle), and before “PEStartPrintJob” on page 448 (which needs the
password set to print the report).

� The password in “PELogOnInfo” on page 479 will always be an empty string
when using this function.

VB Syntax

Declare Function PEGetNthTableLogOnInfo Lib "crpe32.dll" (ByVal

printJob As Integer, ByVal TableN As Integer, LogOnInfo As PELogOnInfo)

As Integer

Delphi Syntax

function PEGetNthTableLogOnInfo (

printJob: Word;

tableN: integer;

var logOnInfo: PELogOnInfo

): Bool stdcall;

printJob Specifies the print job for which you want to get table log on information.

tableN Specifies the 0-based number of the table for which you want to retrieve table log
on information. The first table is table 0. The last table is N-1.

logOnInfo Specifies the pointer to “PELogOnInfo” on page 479.
348 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetNthTablePrivateInfo

Retrieves information for using data objects such as ADO, RDO, or CDO with the
Active Data Driver (PS2MON.DLL).

C Syntax

BOOL CRPE_API PEGetNthTablePrivateInfo (

short printJob,

short tableN,

PETablePrivateInfo FAR *privateInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Delphi Syntax

 function PESetNthTablePrivateInfo (

 printJob: Smallint;

 tableN: Smallint;

 var privateInfo: PETablePrivateInfo

) :Bool; {$ifdef WIN32} stdcall; {$endif}

PEGetNthTableSessionInfo

Use PEGetNthTableSessionInfo to set the session information for a Microsoft
Access table being used in your report. Many MS Access database tables require
that a session be opened before the information in the table can be used. Use
PEGetNthTableSessionInfo to obtain the session information (User ID, Password,
and Session Handle) for a particular table.

C Syntax

BOOL CRPE_API PEGetNthTableSessionInfo (

short printJob,

short tableN,

PESessionInfo FAR *sessionInfo);

printJob Identifies the print job which uses the table for which you want to retrieve the
session information.

tableN Specifies the 0-based number of the table for which you want to retrieve table
private information. The first table is table 0. The last table is N-1.

privateInfo Specifies the pointer to “PETablePrivateInfo” on page 511.
Crystal Reports Technical Reference Guide 349

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� This function is only applicable for MS Access databases which require a
session to be opened before the database is accessed.

� The password in “PESessionInfo” on page 503 will always be an empty string
when using this function.

VB Syntax

Declare Function PEGetNthTableSessionInfo Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal TableN As Integer, _

SessionInfo As PESessionInfo) As Integer

Delphi Syntax

function PEGetNthTableSessionInfo (

printJob: Word;

tableN: Integer;

var sessionInfo: PESessionInfo

): Bool stdcall;

PEGetNthTableType

Use PEGetNthTableType to determine the type of each table. This function is one
of a series of functions that enable you to retrieve and update database information
in an opened report so that the report can be printed using different server,
database, user, and/or table location settings.

Syntax

BOOL CRPE_API PEGetNthTableType (

short printJob,

short tableN,

PETableType FAR *tableType);

printJob Identifies the print job that uses the table for which you want to retrieve the
session information.

tableN Specifies the 0-based number of the table for which you want to retrieve session
information. The first table is table 0. The last table is N-1.

sessionInfo Specifies a pointer to “PESessionInfo” on page 503.
350 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� The application can test DBType in “PETableType” on page 512 or test the
database DLL name used to create the report. DBType is the structure returned
by PEGetNthTableType.
� DLL names have the following naming convention:
PDB*.DLL for standard (non-SQL) databases.
PDS*.DLL for SQL/ODBC databases.
� In the case of ODBC (PDSODBC.DLL) the DescriptiveName includes the

ODBC data source name.
� PEGetNthTableType must be called after PEOpenPrintJob and before

PEStartPrintJob.

VB Syntax

Declare Function PEGetNthTableType Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal TableN As Integer, _

TableType As PETableType) As Integer

Delphi Syntax

function PEGetNthTableType (

printJob: Word;

tableN: Integer;

var tableType: PETableType

): Bool stdcall;

PEGetParameterMinMaxValue

Use PEGetParameterMinMaxValue to retrieve the minimum and/or maximum
possible values for a specified parameter in a report.

C Syntax

BOOL CRPE_API PEGetParameterMinMaxValue (

short printJob,

printJob Specifies the print job for which you want to determine a table type.

tableN Specifies the 0-based number of the table for which you want to determine the
type. Table numbers start at 0. For example, if PEGetNTables returns 2, call
PEGetNthTableType twice with table numbers of 0 and 1.

tableType Specifies a pointer to “PETableType” on page 512.
Crystal Reports Technical Reference Guide 351

Print Engine Functions
const char FAR *parameterFieldName,

const char FAR *reportName,

PEValueInfo FAR *valueMin,

PEValueInfo FAR *valueMax);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.
� Regarding parameters valueMin and valueMax:

� Set valueMin to NULL to retrieve maximum value only; must be non-
NULL if valueMax is NULL.

� Set valueMax to NULL to retrieve minimum value only; must be non-
NULL if valueMin is NULL.

VB Syntax

Declare Function PEGetParameterMinMaxValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, valueMin As PEValueInfo, _

valueMax As PEValueInfo) As Integer

Delphi Syntax

function PEGetParameterMinMaxValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

printJob Specifies the print job for which you want to retrieve the parameter
min/max values.

parameterFieldName Specifies a pointer to the string containing the parameter name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

valueMin Specifies a pointer to “PEValueInfo” on page 516, in which information
about the minimum parameter value will be returned. See Remarks
below.

valueMax Specifies a pointer to “PEValueInfo” on page 516, in which information
about the maximum parameter value will be returned. See Remarks
below.
352 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
var valueMin: PEValueInfo;

var valueMax: PEValueInfo }

): BOOL stdcall;

PEGetParameterPickListOption

Use PEGetParameterPickListOption to retrieve the parameter pick list options set
for a report. This function retrieves the values in “PEParameterPickListOption” on
page 487.

C Syntax

BOOL CRPE_API PEGetParameterPickListOption (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEParameterPickListOption FAR *pickListOption);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated stringand name of the subreport as a NULL-terminated string.

printJob Specifies the print job from which you want to retrieve the parameter
pick list options.

parameterFieldName Specifies a pointer to the parameterFieldName for which you want to
retrieve pick list options.

reportName Specifies a pointer to the report name. See Remarks below.

pickListOption Specifies a pointer to “PEParameterPickListOption” on page 487,
which will contain the information retrieved.
Crystal Reports Technical Reference Guide 353

Print Engine Functions
VB Syntax

Declare Function PEGetParameterPickListOption Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, pickListOption As

PEParameterPickListOption _

) As Integer

Delphi Syntax

function PEGetParameterPickListOption (

 printJob : Smallint;

 parameterFieldName : PChar;

 reportName : PChar;

 var pickListOption : PEParameterPickListOption): Bool; {$ifdef WIN32}

stdcall; {$endif}

PEGetParameterValueInfo
Use PEGetParameterValueInfo to retrieve the “PEParameterValueInfo” on
page 488, structure associated with the specified parameter field in a report. This
structure contains information (for example, editing possible, nullable field,
multiple values, etc.) about the values which can be stored in this field. See
“Working with Parameter Values and Ranges” on page 45.

C Syntax

BOOL CRPE_API PEGetParameterValueInfo (

short printJob,

const char FAR *paramterFieldName,

const char FAR *reportName,

PEParameterValueInfo FAR *valueInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job from which you want to gather parameter value
information.

parameterField
Name

Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

valueInfo Specifies a pointer to “PEParameterValueInfo” on page 488, in which the
parameter value information will be returned. See “Working with
Parameter Values and Ranges” on page 45.
354 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PEGetParameterValueInfo Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, valueInfo As PEParameterValueInfo) As

Integer

Delphi Syntax

function PEGetParameterValueInfo (

printJob : smallint;

const parameterFieldName : PChar;

const reportNam : PChar;

var valueInfo : PEParameterValueInfo

): BOOL stdcall;

PEGetPrintDate

Use PEGetPrintDate to determine the print date (if any) that was specified with the
report. Use this function to retrieve the print date and pass it back using
“PESetPrintDate” on page 434.

C Syntax

BOOL CRPE_API PEGetPrintDate (

short printJob,

short FAR *year,

short FAR *month,

short FAR *day);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to retrieve the print date setting.

year Specifies a pointer to the year component of the print date.

month Specifies a pointer to the month component of the print date.

day Specifies a pointer to the day component of the print date.
Crystal Reports Technical Reference Guide 355

Print Engine Functions
Remarks

You change the print date, typically, when you want to run the report today yet
have it appear to have been run on a different date. An example would be, if you
were out of town on the last day of the previous month and you later want to run
a report for that month and make it appear as if it were run on the last day of the
month rather than the current date.

VB Syntax

Declare Function PEGetPrintDate Lib “crpe32.dll” (ByVal printJob As

Integer, Date_Year As Integer, Date_Month As Integer, Date_Day As

Integer) As Integer

Delphi Syntax

function PEGetPrintDate (

printJob: Word;

var year: Word;

var month: Word;

var day: Word

): Bool stdcall;

PEGetPrintOptions

Use PEGetPrintOptions to retrieve the print options specified for the report (the
options that are set in the Print common dialog box) and use them to fill in
“PEPrintOptions” on page 489. Use this function to retrieve print options from the
report in order to update them and pass back using “PESetPrintOptions” on
page 435.

C Syntax

BOOL CRPE_API PEGetPrintOptions (

short printJob,

PEPrintOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job that you want to query to determine which print options have
been set using the Print common dialog box.

options Specifies a pointer to “PEPrintOptions” on page 489.
356 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PEGetPrintOptions Lib “crpe32.dll” (

ByVal printJob As Integer, Options As PEPrintOptions) As Integer

Delphi Syntax

function PEGetPrintOptions (

printJob: Word;

var options: PEPrintOptions

): Bool stdcall;

PEGetReportOptions

Use PEGetReportOptions to retrieve the report options associated with a specified
print job.

C Syntax

BOOL CRPE_API PEGetReportOptions (

short printJob,

PEReportOptions FAR *reportOptions);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetReportOptions Lib "crpe32.dll" (ByVal printJob _

As Integer, reportOptions As PEReportOptions) As Integer

Delphi Syntax

function PEGetReportOptions (

printJob: smallint;

var reportOptions: PEReportOptions

): Bool stdcall;

printJob Specifies the print job for which you want to determine report options.

reportOptions Specifies a pointer to “PEReportAlertInfo” on page 494, which contains report
options for the specified print job.
Crystal Reports Technical Reference Guide 357

Print Engine Functions
PEGetReportSummaryInfo

Use PEGetReportSummaryInfo to retrieve summary information about the report
(for example, report title, author, and comments).

C Syntax

BOOL CRPE_API PEGetReportSummaryInfo (

 short printJob,

 PEReportSummaryInfo FAR *summaryInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetReportSummaryInfo Lib “crpe32.dll” (

ByVal printJob As Integer, summaryInfo As PEReportSummaryInfo) As

Integer

Delphi Syntax

function PEGetReportSummaryInfo (

printJob: integer;

var summaryInfo: PEReportSummaryInfo

): Bool stdcall;

PEGetReportTitle

Use PEGetReportTitle to retrieve the handle of the report title string in the report
summary information. If the job is a subreport, it returns the handle of the
subreport name. Use this function with “PEGetHandleString” on page 318. Use
“PESetReportTitle” on page 437, to pass back a report title. The series can be used
in Custom-Print Links to identify and change an existing report title in response to
a user selection at print time.

C Syntax

BOOL CRPE_API PEGetReportTitle (

short printJob,

HANDLE FAR *titleHandle,

short FAR *titleLength);

printJob Specifies the print job for which you want to get the report summary
information.

summaryInfo Specifies a pointer to “PEReportSummaryInfo” on page 499.
358 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine

printJ

pVers
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.l

VB Syntax

Declare Function PEGetReportTitle Lib “crpe32.dll” (

ByVal printJob As Integer, TitleHandle As Long, TitleLength As

Integer

) As Integer

Delphi Syntax

function PEGetReportTitle (

printJob: Word;

var titleHandle: HWnd;

var titleLength: Word

): Bool stdcall;

PEGetReportVersion

Use PEGetReportVersion to retrieve the PEVersionInfo structure associated with
the print job. The PEVersionInfo structure contains the reports version
information.

C Syntax

BOOL CRPE_API PEGetReportVersion(short printJob,

 PEVersionInfo FAR* pVersionInfo)

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to get the report title.

titleHandle Specifies a pointer to the handle of the title string.

titleLength Specifies a pointer to the length of the title string (in bytes) including the
terminating byte.

ob Specifies the print job from which you want to get the report version info.

ionInfo Specifies a pointer to “PEVersionInfo” on page 518
Crystal Reports Technical Reference Guide 359

Print Engine Functions
VB Syntax

Declare Function PEGetReportVersion Lib "crpe32.dll" (ByVal printJob%,

pVersionInfo As PEVersionInfo) As Integer

Delphi Syntax

function PEGetReportVersion(

 printJob : Smallint;

 var pVersionInfo : PEVersionInfo): Bool stdcall;

PEGetSectionCode

Use PEGetSectionCode to retrieve the section code for the specified section. A
section code indicates the section type (Page Header, Details, etc.). If there are
multiple group sections it also identifies the group number, and if there are
multiple sections in an area it identifies the section number. See “Working with
section codes” on page 46.

C Syntax

short CRPE_API PEGetSectionCode (

short printJob,

short sectionN);

Parameters

Returns

� Returns the “Section Codes” on page 559, for the specified section.
� Returns 0 if the call fails.

VB Syntax

Declare Function PEGetSectionCode Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionN As Integer) As Integer

Delphi Syntax

function PEGetSectionCode (

printJob: Word;

sectionN: Smallint

): Smallint stdcall;

printJob Specifies the print job from which you want to retrieve a section code.

sectionN Specifies the number of the section for which you want the section code. This
parameter should be within the range obtained by “PEGetNSections” on page 328.
360 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetSectionFormat

Use PEGetSectionFormat to retrieve the section format settings for selected
sections in the specified report and supply them as member values for
“PESectionOptions” on page 501. Use this function in order to update the section
formats and pass them back using “PESetSectionFormat” on page 438.

C Syntax

BOOL CRPE_API PEGetSectionFormat (

short printJob,

short sectionCode,

PESectionOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetSectionFormat Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer,

Options As PESectionOptions) As Integer

Delphi Syntax

function PEGetSectionFormat (

printJob: Word;

sectionCode: integer;

var options: PESectionOptions

): Bool stdcall;

PEGetSectionFormatFormula

Use PEGetSectionFormatFormula to retrieve the current format formula for the
specified section of the report. Use this function with “PEGetHandleString” on
page 318.

printJob Specifies the print job that you want to query to determine what report section
options have been set using the Format Section dialog box.

sectionCode Specifies the“Section Codes” on page 559, for the report section(s) for which you
want to get section format information. See “Working with section codes” on
page 46.

options Specifies a pointer to “PESectionOptions” on page 501.
Crystal Reports Technical Reference Guide 361

Print Engine Functions
C Syntax

BOOL CRPE_API PEGetSectionFormatFormula (

short printJob,

short sectionCode,

short formulaName,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Not all formula names apply to all sections.
� Use the value returned by textLength to allocate memory for a buffer. Use

“PEGetHandleString” on page 318, to fill the buffer with the actual text of the
formula.

VB Syntax

Declare Function PEGetSectionFormatFormula Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer,

ByVal formulaName As Integer, textHandle As Long,

textLength As Integer) As Integer

Delphi Syntax

function PEGetSectionFormatFormula (

printJob: Word;

sectionCode: Word;

formulaName: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

printJob Specifies the print job for which you want to retrieve the section format formula.

sectionCode Specifies the “Section Codes” on page 559, for the report section(s) for which
you want to get section format information. See “Working with section codes”
on page 46.

formulaName Specifies the name of the section format formula. Use one of the PE_FFN_XXX
“Area/Section Format Formula Constants” on page 541.

textHandle Specifies a pointer to the handle of the text of the actual formula.

textLength Specifies a pointer to the length of the text string. Use this value to allocate a
buffer for the text.
362 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetSectionHeight

Use PEGetSectionHeight to retrieve the section height information for the
specified section. This is the replacement API Call for PEGetMinimumSectionHeight
and should be used for all new development.

C Syntax

BOOL CRPE_API PEGetSectionHeight (

short printJob,

short sectionCode,

short FAR *height);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetSectionHeight Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionCode As Integer,

height As Integer) As Integer

Delphi Syntax

function PEGetSectionHeight (

printJob: Smallint;

sectionCode: Smallint;

Height: Smallint (*in twips*)

): Bool stdcall;

PEGetSelectedPrinter

Use PEGetSelectedPrinter to obtain information about the printer currently
selected for the report. If a printer has been specified in Crystal Reports using the
File|Printer Setup|Specific printer option, this call will return information about
that printer. If the File|Printer Setup|Default printer option has been selected for
the report, and custom options for the Default printer have been specified (Default
Properties is toggled off in the Print Setup dialog box), information about the
default printer specified under Windows Control Panel|Printers will be returned.
If Default Properties is toggled on for the Default printer, this function will return
a successful result, but the string handles will point to NULL strings.

printJob Specifies the print job that you want to query to retrieve section height information.

section
Code

Specifies the “Section Codes” on page 559, for the report sections for which you
want to retrieve information. See “Working with section codes” on page 46.

height Specifies a pointer to the section height (in twips).
Crystal Reports Technical Reference Guide 363

Print Engine Functions
C Syntax

BOOL CRPE_API PEGetSelectedPrinter (

short printJob,

HANDLE FAR *driverHandle,

short FAR *driverLength,

HANDLE FAR *printerHandle,

short FAR *printerLength,

HANDLE FAR *portHandle,

short FAR *portLength,

#if defined (WIN32)

DEVMODEA FAR * FAR *mode

#else

DEVMODE FAR * FAR *mode

#endif

);

Parameters
l

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Use “PEGetHandleString” on page 318, to obtain the actual strings pointed to
by the string handles returned.

VB Syntax

Declare Function PEGetSelectedPrinter Lib "crpe32.dll" (

ByVal printJob As Integer, DriverHandle As Long, DriverLength As

Integer,

PrinterHandle As Long, PrinterLength As Integer, PortHandle As Long,

PortLength As Integer, DevMode As Any) As Integer

printJob Specifies the print job that you want to query to get information on the non-
default printer that has been selected with the report.

driverHandle Specifies a pointer to the handle of the printer driver for the printer that is
selected with the print job.

driverLength Specifies a pointer to the length of the printer driver name.

printerHandle Specifies a pointer to the handle of the printer that is selected with the print job.

printerLength Specifies a pointer to the length of the printer name.

portHandle Specifies a pointer to the handle of the port to which the selected printer is
connected.

portLength Specifies a pointer to the length of the port name.

mode Specifies a pointer to the “DEVMODE” on page 533, or DEVMODE Windows
API structure.
364 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PEGetSelectedPrinter (

printJob: Word;

var driverHandle: Hwnd;

var driverLength: Word;

var printerHandle: Hwnd;

var printerLength: Word;

var portHandle: Hwnd;

var portLength: Word;

var mode: PDeviceModeA

): Bool stdcall;

PEGetSelectionFormula
Use PEGetSelectionFormula to retrieve the string handle for the selection formula
used in the specified report. Use this function with “PEGetHandleString” on
page 318. Use “PESetSelectionFormula” on page 441, to pass back the selection
formula. The series can be used in a Custom-Print Link to identify and then change
an existing record selection formula in response to a user selection at print time.

C Syntax

BOOL CRPE_API PEGetSelectionFormula (

short printJob,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetSelectionFormula Lib “crpe32.dll” (ByVal printJob

As Integer, TextHandle As Long, TextLength As Integer) As Integer

Delphi Syntax

function PEGetSelectionFormula (

printJob: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

printJob Specifies the print job for which you want to retrieve the selection formula string.

textHandle Specifies a pointer to the handle of the string containing the formula text.

textLength Specifies a pointer to the length of the formula string (in bytes) including the
terminating byte.
Crystal Reports Technical Reference Guide 365

Print Engine Functions
PEGetSQLExpression

Use PEGetSQLExpression to retrieve a specified SQL expression in the specified
report. Use this function with “PEGetHandleString” on page 318.

C Syntax

BOOL CRPE_API PEGetSQLExpression (

short printJob,

const char FAR *expressionName,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetSQLExpression Lib "crpe32.dll" (ByVal printJob As

Integer, ByVal expressionName As String, textHandle As Long, textLength

As Integer) As Integer

Delphi Syntax

function PEGetSQLExpression (

printJob: Smallint;

const expressionName: PChar;

var textHandle: Hwnd;

var textLength: Smallint

): Bool stdcall;

PEGetSQLQuery

Use PEGetSQLQuery to retrieve the same query that appears in the Show SQL
Query dialog box in Crystal Reports, in a syntax that’s specific to the database
driver you’re using. Use this function with “PEGetHandleString” on page 318. Use
“PESetSQLQuery” on page 443, to update the query. See Remarks below.

printJob Specifies the print job for which you want to retrieve the SQL expression
string.

expressionName Specifies a pointer to the expression name.

textHandle Specifies a pointer to the handle of the expression string.

textLength Specifies a pointer to the length of the expression string.
366 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

BOOL CRPE_API PEGetSQLQuery (

short printJob,

HANDLE FAR *textHandle,

short FAR *textLength);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

The report must be logged on before the call to PEGetSQLQuery is made.

VB Syntax

Declare Function PEGetSQLQuery Lib “crpe32.dll” (ByVal printJob As

Integer, TextHandle As Long, TextLength As Integer) As Integer

Delphi Syntax

function PEGetSQLQuery (

printJob: Word;

var textHandle: HWnd;

var textLength: Word

): Bool stdcall;

PEGetSubreportInfo

Use PEGetSubreportInfo to retrieve information about the specified subreport.

C Syntax

BOOL CRPE_API PEGetSubreportInfo (

short printJob,

DWORD subreportHandle,

PESubreportInfo FAR *subreportInfo);

printJob Specifies the print job from which you want to retrieve the SQL query.

textHandle Specifies a pointer to the handle of the string containing the SQL query string.

textLength Specifies a pointer to the length of the SQL query string (in bytes) including the
terminating byte.
Crystal Reports Technical Reference Guide 367

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEGetSubreportInfo Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal subreportHandle As Long,

subreportInfo As PESubreportInfo) As Integer

Delphi Syntax

function PEGetSubreportInfo (

printJob: Word;

subreportHandle: DWORD;

var subreportInfo: PESubreportInfo

): Bool stdcall;

PEGetTrackCursorInfo

Use PEGetTrackCursorInfo to track cursors. Different cursors can be specified for
different report areas and report objects in the preview window. This function
retrieves cursor information for a specified job.

C Syntax

BOOL CRPE_API PEGetTrackCursorInfo (

short printJob,

PETrackCursorInfo FAR *cursorInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the primary report that contains the subreport about which you
want to retrieve information.

subreportHandle Specifies the handle of the subreport about which you want to retrieve
information.

subreportInfo Specifies a pointer to “PESubreportInfo” on page 507, which will be used for
holding the information once it is retrieved.

printJob Specifies the print job for which you want to retrieve track cursor information.

cursorInfo Specifies a pointer to “PETrackCursorInfo” on page 514, which will contain the
track cursor information.
368 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax
function PEGetTrackCursorInfo (

printJob: smallint;

var cursorInfo: PETrackCursorInfo

): Bool stdcall;

PEGetVersion
Use PEGetVersion to retrieve the version number of the DLL or the Crystal Report
Engine. The high-order byte is the major version number and the low-order byte is
the minor version number. This function can be used whenever you build
functionality into a report that may not be available in earlier versions of the Crystal
Report Engine and you need to verify the version number first. The function can be
a handy safeguard for users who have more than one version of the Crystal Report
Engine with the older version earlier in the path than the new version.

C Syntax
short CRPE_API PEGetVersion (

short versionRequested);

Parameter

Returns

Returns the version number of the DLL or the Crystal Report Engine.

VB Syntax
Declare Function PEGetVersion Lib “crpe32.dll” (ByVal version As

Integer)

As Integer

The following simplifies the PEGetVersion call in Visual Basic.
Function PEVBGetVersion (ByVal component As Integer) As Single

 Dim version As Integer

 Dim major As Integer

 Dim minor As Integer

 version = PEGetVersion(component)

 If version = 0 Then

 PEVBGetVersion = 0

 Else

 major = version / 256

 minor = version Mod 256

 PEVBGetVersion = major + (minor / 10)

 End If

End Function

versionRequested Specifies whether the DLL or Crystal Report Engine version is being
requested. Use one of the following PE_GV_XXX constants.

Constant Description

PE_GV_DLL Returns the version of the DLL (CRPE/CRPE32).

PE_GV_ENGINE Returns the version of the Crystal Report Engine.
Crystal Reports Technical Reference Guide 369

Print Engine Functions
Delphi Syntax

function PEGetVersion (

versionRequested: integer

): Smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEGetVersion (CWORD) CRPE.DLL

PEGetWindowHandle

Use PEGetWindowHandle to retrieve the handle of the preview window. This
function can be used in a Custom-Print Link if you want to do something with the
preview window (move it, change its size, etc.). PEGetWindowHandle can also be
used to determine if the user has already closed the preview window.

C Syntax

HWND CRPE_API PEGetWindowHandle (

short printJob);

Parameter

Returns

� Returns the preview window handle if the call is successful.
� Returns 0 if an error occurs or if the preview window has already been closed.

Remarks

This function can be used after “PEStartPrintJob” on page 448, and then, only if
you have created a preview window.

VB Syntax

Declare Function PEGetWindowHandle Lib “crpe32.dll” (

ByVal printJob As Integer) As Long

Delphi Syntax

function PEGetWindowHandle (

pr6intJob: Word

): HWnd stdcall;

dBASE for Windows Syntax

EXTERN CHANDLE PEGetWindowHandle (CWORD) CRPE.DLL

printJob Specifies the print job for which you want to retrieve the preview window
handle. If two or more preview windows are open, this function applies only
to the most recently created preview window.
370 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEGetWindowOptions

Use PEGetWindowOptions to configure the preview window look and
functionality. You can also determine whether the preview window has a group
tree window; whether it can be drill down if there are hidden groups; and whether
the close button, refresh button, and print setup button are shown, for example.
This function returns the current report preview window configuration.

C Syntax

BOOL CRPE_API PEGetWindowOptions (

short printJob,

PEWindowOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

When hasGroupTree is True, it does not mean there will be a group tree in the
preview window. The hasGroupTree option and the report option (Create Group
Tree in Crystal Reports) together determine the group tree visibility in the preview
window. Both options must be True for the group tree to be shown.

VB Syntax

Declare Function PEGetWindowOptions Lib “crpe32.dll” (

ByVal printJob As Integer, Options As PEWindowOptions) As Integer

Delphi Syntax

function PEGetWindowOptions (

printJob: Word;

var options: PEWindowOptions

):Bool stdcall;

printJob Specifies the print job from which you want to retrieve the preview
window options. If two or more preview windows are open, this
function applies only to the most recently created preview window.

PEWindowOptions Specifies a pointer to “PEWindowOptions” on page 519, which will
contain the retrieved information.
Crystal Reports Technical Reference Guide 371

Print Engine Functions
PEHasSavedData

Use PEHasSavedData to determine if the specified report has data saved with it in
memory. With this information, you can determine whether or not the data needs
to be refreshed before the report is printed. See Remarks below.

C Syntax

BOOL CRPE_API PEHasSavedData (

short printJob,

BOOL FAR *hasSavedData);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� A report may or may not have saved data when a print job is first opened from
a report file. Since data is saved during a print, however, a report will always
have saved data immediately after it is printed.

� The default behavior is for a report to use its saved data rather than refresh its
data from the database when printing a report.

� Use “PEDiscardSavedData” on page 295, to release the saved data associated
with a report. The next time the report is printed, it will get current data from
the database.

VB Syntax

Declare Function PEHasSavedData Lib “crpe32.dll” (

ByVal printJob As Integer, HasSavedData As Long) As Integer

Delphi Syntax

function PEHasSavedData(

printJob: Word;

var hasSavedData: Bool

): Bool stdcall;

printJob Specifies the handle of the print job you want to query to determine if it has
saved data with it.

hasSavedData Specifies a pointer to a Boolean value that indicates whether or not there is data
saved with the report.
372 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEIsPrintJobFinished

Use PEIsPrintJobFinished to monitor the print job to see if it is finished or still in
progress. You can use this function any time you have a call that is contingent on
a print job being finished.

C Syntax

BOOL CRPE_API PEIsPrintJobFinished (

short printJob);

Parameter

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

PEIsPrintJobFinished will return TRUE immediately after the report has been
displayed in the preview window, even if that preview window is still open.

VB Syntax

Declare Function PEIsPrintJobFinished Lib “crpe32.dll” (ByVal printJob _

As Integer) As Integer

Delphi Syntax

function PEIsPrintJobFinished (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEIsPrintJobFinished (CWORD) CRPE.DLL

PELogOffServer

Use PELogOffServer to Log off the specified server. Use this call any time you have
to log off a specified server.

C Syntax

BOOL CRPE_API PELogOffServer (

const char FAR *dllName,

PELogOnInfo FAR *logOnInfo);

printJob Specifies the print job that you want to query to determine if it has finished printing.
Crystal Reports Technical Reference Guide 373

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� “PELogOnServer” on page 374, and PELogOffServer can be called at any time
to log on and off a database server. These functions are not required if the
function “PESetNthTableLogOnInfo” on page 427, was already used to logon
to a table.

� This function requires a database DLL name which can be retrieved using
“PEGetNthTableType” on page 350.

VB Syntax

Declare Function PELogOffServer Lib "crpe32.dll" (ByVal DLLName As

String, LogOnInfo As PELogOnInfo) As Integer

Delphi Syntax

function PELogOffServer(

dllName: PChar;

var logOnInfo: PELogOnInfo

): Bool stdcall;

PELogOnServer
Use PELogOnServer to logon to the specified server.

C Syntax

BOOL CRPE_API PELogOnServer (

const char FAR *dllName,

PELogOnInfo FAR *logOnInfo);

Parameters

dllName Specifies a pointer to the name of the Crystal Reports DLL for the datasource from
which you want to log off (for example, “PDSODBC.DLL”). Note that the dllName
must be enclosed in quotes. DLL names have the following naming convention:
PDB*.DLL for standard (non-SQL) databases and PDS*.DLL for SQL/ODBC databases.

logOnInfo Specifies a pointer to “PELogOnInfo” on page 479.

dllName Specifies a pointer to the name of the Crystal Reports DLL for the server or
password protected non-SQL table to which you want to logon. (for example,
“PDSODBC.DLL”). Note that the dllName must be enclosed in quotes. DLL
names have the following naming convention: PDB*.DLL for standard (non-SQL)
databases and PDS*.DLL for SQL/ODBC databases.

logOnInfo Specifies a pointer to “PELogOnInfo” on page 479.
374 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� PELogOnServer and “PELogOffServer” on page 373, can be called at any time
to log on and off a database server. These functions are not required if
“PESetNthTableLogOnInfo” on page 427, was already used to set the
password for a table.

� This function requires a database DLL name, which can be retrieved using
“PEGetNthTableType” on page 350.

� This function can also be used for non-SQL tables, such as password-protected
Paradox tables. Call this function to set the password for the Paradox DLL
before beginning printing.

� When printing using “PEStartPrintJob” on page 448, the ServerName passed
in PELogOnServer does not need to agree exactly with the server name stored
in the report. PELogOnServer can be used to switch to a different server or
datasource at runtime.

� The following points need to be considered when deciding whether to use
PELogOnServer or PESetNthTableLogOnInfo.
� PELogOnServer is easier to call than “PESetNthTableLogOnInfo” on

page 427, and it can be called at any time. However, you must know the
database DLL name to make this call.

� PESetNthTableLogOnInfo is more flexible than PELogOnServer. It allows
you to override any of the logon parameters. PESetNthTableLogOnInfo
must be called after “PEOpenPrintJob” on page 378.

VB Syntax

Declare Function PELogOnServer Lib "crpe32.dll" (ByVal DLLName As

String, LogOnInfo As PELogOnInfo) As Integer

Delphi Syntax

function PELogOnServer(

dllName: PChar;

var logOnInfo: PELogOnInfo

): Bool stdcall;

PELogOnSQLServerWithPrivateInfo
Use PELogOnSQLServerWithPrivateInfo to enable the Crystal Report Engine to
“piggyback” your application’s existing connection to a Server. If you are already
logged on, this function lowers the number of connections established by a
workstation, thus reducing application time and network traffic. It also prevents a
Crystal Reports Log Off call from disconnecting an application’s existing
connection to the Server.
Crystal Reports Technical Reference Guide 375

Print Engine Functions
C Syntax

BOOL CRPE_API PELogOnSQLServerWithPrivateInfo (

const char FAR *dllName,

void FAR *privateInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

If the application uses ODBC to connect, get the ODBC HDBC by using the
following function calls. Also, see the ODBC documentation for more information.
SQLAllocEnv

«Initializes the ODBC call level interface and allocates memory for an

environment handle.»

SQLAllocConnect

«Returns an ODBC HDBC.»

VB Syntax

Declare Function PELogOnSQLServerWithPrivateInfo Lib “crpe32.dll” (

ByVal DLLName As String, ByVal PrivateInfo As Long) As Integer

Delphi Syntax

function PELogOnSQLServerWithPrivateInfo (

dllName: PChar;

privateInfo: Pointer

): Bool stdcall;

dllName Specifies a pointer to the name of the Crystal Reports DLL that was used in
establishing the connection to the server when the report was first created. For
example, if a report was created using an ODBC datasource, the Crystal Reports
DLL is PDSODBC.DLL.

privateInfo In the application, a connection to the server has to have been established and
this in turn generates a Handle to a Database Connection (HDBC). This
parameter specifies the application’s handle to the connection. This makes
Crystal Reports aware of the existing connection so it can use it instead of
establishing a new one. Since the reports with which this function works are
based on ODBC, this parameter is actually an ODBC HDBC.
376 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PENextPrintWindowMagnification

Use PENextPrintWindowMagnification to change the preview window
magnification to the next magnification level in sequence. Use this function to cycle
through the three levels of preview window magnification (Full Page, Fit One Side,
Fit Both Sides, Full Page, Fit One Side, etc.) whenever the report has been printed
to a preview window.

C Syntax

BOOL CRPE_API PENextPrintWindowMagnification (

short printJob);

Parameter

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PENextPrintWindowMagnification Lib “crpe32.dll” (ByVal

printJob As Integer) As Integer

Delphi Syntax

function PENextPrintWindowMagnification (

printJob: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PENextPrintWindowMagnification (CWORD) CRPE.DLL

PEOpenEngine

Use PEOpenEngine to prepare the Crystal Report Engine (in single-thread mode)
for requests. This function is a necessary part of any Custom-Print Link. It is also
required for any Print-Only Link in which you want the report to print to a
window that is to remain visible after the report is printed. It is not necessary to
use this function with a Print-Only Link if the report is directed to a printer.

C Syntax

BOOL CRPE_API PEOpenEngine (void);

printJob Specifies the print job displayed in the preview window for which you want to step
the magnification level.
Crystal Reports Technical Reference Guide 377

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� This function must be called before any other Crystal Report Engine function.
If an error occurs in the PEOpenEngine function call, “PEGetErrorCode” on
page 304, can be passed a print job value of zero to obtain error information.

� PEOpenEngine opens the print engine in single-thread mode by default.

VB Syntax

Declare Function PEOpenEngine Lib “crpe32.dll” () As Integer

Delphi Syntax

function PEOpenEngine

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEOpenEngineEx () CRPE.DLL

PEOpenPrintJob

Use PEOpenPrintJob to prepare to print a report and return a handle which
identifies that particular print job. The handle returned must be used in all
subsequent calls related to that print job which require that information. This
function is used as a mandatory part of a Custom-Print Link to retrieve the print
job handle which is then used when required as parameter printJob in each
additional Custom-Print Link function call.

C Syntax

short PEOpenPrintJob (

const char *reportFilePath);

Parameter

Returns

� Returns the job number.
� Returns 0 if the report file does not exist or if an error occurs.

reportFilePath Specifies the file name and path of the report that you want to open. You must
enclose this parameter in quotes.
378 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

� This function must be called before most other Crystal Report Engine
functions are used.

� Only one print job can be configured at a time.
� “PEClosePrintJob” on page 288, must be called later to close the job.
� Report Path\Filename must be enclosed in quotes.

� For example, PEOpenPrintJob (“C:\CRW\REPORT1.RPT”);
� Note: In C or C++, the slashes (\) in the string must be entered as double

slashes (\\).
� This function opens the print job with the printer selected in the report (via the

File|Printer Setup menu command) or the default printer (if no replacement
printer has been selected in the report).

VB Syntax

Declare Function PEOpenPrintJob Lib “crpe32.dll” (ByVal RptName As

String) _

As Integer

Delphi Syntax

function PEOpenPrintJob (

reportFilePath: PChar

): Smallint stdcall;

dBASE for Windows Syntax

EXTERN CWORD PEOpenPrintJob (CSTRING) CRPE.DLL

PEOpenSubreport

Use PEOpenSubreport to open the named subreport and return a number that
identifies that subreport.
The number returned must be used in all subsequent calls related to the subreport
(where a print job handle is required).

C Syntax

short CRPE_API PEOpenSubreport (

short parentJob,

char FAR *subreportName);

Parameters

parentJob Specifies the primary report (the report that contains the subreport). This is
the handle returned from PEOpenPrintJob.

subreportName Specifies a pointer to the name of the subreport that you want to open. This is
retrieved using “PEGetSubreportInfo” on page 367.
Crystal Reports Technical Reference Guide 379

Print Engine Functions
Returns

� Returns the job number of the subreport.
� Returns 0 if the subreport does not exist or if an error occurs.

Remarks

� This function must be called before any other Crystal Report Engine functions
related to the subreport.

� PECloseSubreport must be called later to close the job.

VB Syntax

Declare Function PEOpenSubreport Lib “crpe32.dll” (

ByVal parentJob As Integer, ByVal subreportName As String) As

Integer

Delphi Syntax

function PEOpenSubreport (

parentJob: Word;

subreportName: PChar

): Word stdcall;

PEOutputToPrinter

Use PEOutputToPrinter to direct output to a printer. See Remarks below.

C Syntax

BOOL CRPE_API PEOutputToPrinter (

short printJob,

short nCopies);

Parameters

Returns

� TRUE if the output can be sent to the printer successfully.
� FALSE if the output cannot be sent to the printer.

Remarks

� If a printer has been specified via “PESelectPrinter” on page 389, output will
be sent to that printer.

� If there is no PESelectPrinter selection but there is a printer specified in the report
via the Print|Select Printer menu command, output will be sent to that printer.

printJob Specifies the print job that you want to send to a printer.

nCopies Specifies the number of report copies that you want to print. Pass 0 to preserve the
existing setting.
380 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
� If there is no PESelectPrinter selection and there is no printer specified in the
report, output will be to the Windows default printer.

� “PEOpenPrintJob” on page 378, opens the print job with the printer specified
in the report (if there is one) or with the Windows default printer (if no printer
is specified in the report).

� The sequence of calls that follows may help to explain printer output concepts
as well as potential problems. Assume that a printer is specified in the report
via the Print|Select Printer menu command. Make certain to sequence your
function calls to get the output desired.
� PEOpenPrintJob
// Opens the job with printer specified in report, or, if none

// is specified, the Windows default printer. The printer the

// job opens with is Printer #1.

� PEOutputToWindow
// Directs the output to the preview window.

� PEStartPrintJob
// Report is printed in the preview window based on Printer #1.

� PEOutputToPrinter
// Directs output to the printer.

� PESelectPrinter
// Specifies 2nd printer, Printer #2. This overrides Printer #1.

� PEStartPrintJob
// Report is printed on Printer #2. Window output and printer

// output are based on two different printers and may cause

// confusion.

� PEClosePrintJob
� If one printer is set for landscape output, for example, and the other for

portrait output, the sequence of calls above will print an entirely different
report in the preview window than what actually appears on paper.

� This function supersedes PEOutputToDefaultPrinter which was available in
earlier versions of the Crystal Report Engine.

VB Syntax

Declare Function PEOutputToPrinter Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal nCopies As Integer) As Integer

Delphi Syntax

function PEOutputToPrinter (

printJob: Word;

nCopies: integer

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEOutputToPrinter (CWORD, CWORD) CRPE.DLL
Crystal Reports Technical Reference Guide 381

Print Engine Functions
PEOutputToWindow
Use PEOutputToWindow to direct printed output to a preview window. This
function is used as part of a Custom-Print Link whenever you want the report
printed to the preview window instead of to the printer.

C Syntax

BOOL CRPE_API PEOutputToWindow (

short printJob,

const char FAR *title,

int left,

int top,

int width,

int height,

DWORD style,

HWND parentWindow);

Parameters

printJob Specifies the print job you want to print in the preview window.
title Specifies a pointer to the null-terminated string that contains the title that you

want to appear in the preview window title bar.
left Specifies the x coordinate of the upper left corner of the preview window, in

pixels. See Remarks below.
top Specifies the y coordinate of the upper left corner of the preview window, in

pixels. See Remarks below.
width Specifies the width of the preview window, in pixels.
height Specifies the height of the preview window, in pixels.
style Specifies the style of the window being created. Style settings can be combined

using the bitwise “OR” operator. You can specify any of the following window
styles. Also, see Remarks below.

Constant Value Description

WS_MINIMIZE 536870912 Make a window of minimum size.
WS_VISIBLE 268435456 Make a window that is visible when it

first appears (for overlapping and
pop-up windows).

WS_DISABLED 134217728 Make a window that is disabled when
it first appears.

WS_CLIPSIBLINGS 67108864 Clip child windows with respect to
one another.

WS_CLIPCHILDREN 33554432 Exclude the area occupied by child
windows when drawing inside the
parent window.

WS_MAXIMIZE 16777216 Make a window of maximum size.
WS_CAPTION 12582912 Make a window that includes a title bar.
WS_BORDER 8388608 Make a window that includes a

border.
382 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� For a top-level preview window, the top left corner is relative to the origin of
the screen. For an MDI child preview window, the top left corner is relative to
the origin of the frame window’s client area. For a child preview window, the
top left corner is relative to the origin of the parent window’s client area.

� If parentWindow is NULL, the preview window is a top-level window (that is,
not a child of any other window). For a top-level preview window, the top left
corner is relative to the origin of the screen. Left and top can be
CW_USDEFAULT to put the window at a default location. Width and height
can also be CW_USEDEFAULT to give the window a default size.

� If the MDI frame window parent handle is specified, the report preview
window will show up in the client area of the MDI parent. If the MDI frame
window child window handle is specified (child window must be created) the
report preview window will show up in the child window.

� If parentWindow is the handle of some other window, the preview window is
a child of that window. For a child preview window, the top left corner is
relative to the origin of the parent window's client area.

� If the preview window is a top-level window or an MDI child window and
style is 0, the following style is used instead.
(WS_VISIBLE | WS_THICKFRAME | WS_SYSMENU | WS_MAXIMIZEBOX |

WS_MINIMIZEBOX)

WS_DLGFRAME 4194304 Make a window that has a double
border but no title.

WS_VSCROLL 2097152 Make a window that includes a
vertical scroll bar.

WS_HSCROLL 1048576 Make a window that includes a
horizontal scroll bar.

WS_SYSMENU 524288 Include the system menu box.
WS_THICKFRAME 262144 Include the thick frame that can be

used to size the window.
WS_MINIMIZEBOX 131072 Include the minimize box.
WS_MAXIMIZEBOX 65536 Include the maximize box.
CW_USEDFAULT -32768 Assign the child window the default

horizontal and vertical position, and
the default height and width.

parentWindow Specifies the handle of the parentWindow if the preview window is a child of
that window.
Crystal Reports Technical Reference Guide 383

Print Engine Functions
� That is, the default window is a visible window with a thick frame that can
be used for sizing the window. The window includes a system menu box,
and a maximize and minimize box.

� The preview window is created when “PEStartPrintJob” on page 448, is called.

VB Syntax

Declare Function PEOutputToWindow Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal Title As String, ByVal Left As Long, ByVal Top As Long,

ByVal Width As Long, ByVal Height As Long, ByVal style As Long, ByVal

PWindow As Long) As Integer

Visual Basic developers can cut and paste a declaration for CW_USEDEFAULT
into their application.
� For VB 4, cut the declaration from c:\vb\winapi\win32api.txt
� For VB 3, cut the declaration from c:\vb\winapi\win30api.txt

Delphi Syntax

function PEOutputToWindow (

printJob: Word;

title: PChar;

left: longint;

top: longint;

width: longint;

height: longint;

style: longint;

parentWindow: HWnd

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEOutputToWindow (CWORD, CSTRING, CWORD, CWORD, CWORD,

CWORD, CLONG, CHANDLE) CRPE.DLL

PEPrintControlsShowing
Use PEPrintControlsShowing to determine if the print controls are displayed in the
preview window. Use this function to retrieve the visible print controls and pass
back using “PEShowPrintControls” on page 447.

C Syntax

BOOL CRPE_API PEPrintControlsShowing (

short printJob,

BOOL FAR *controlsShowing);
384 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEPrintControlsShowing Lib “crpe32.dll” (

ByVal printJob As Integer, ControlsShowing As Long) As Integer

Delphi Syntax

function PEPrintControlsShowing (

printJob: Word;

var controlsShowing: Bool

): Bool stdcall;

PEPrintReport

Use PEPrintReport to print the specified report to either the printer or to a preview
window. This function establishes a Print-Only Link where changes made during
runtime by other PE calls are ignored. Use PEPrintReport any time that you simply
want to print a report from an application without giving the user the ability to
customize the report.

C Syntax

short CRPE_API PEPrintReport (

const char FAR *reportFilePath,

BOOL toDefaultPrinter,

BOOL toWindow,

const char FAR *title,

int left,

int top,

int width,

int height,

DWORD style,

HWND parentWindow);

printJob Specifies the print job for which you want to determine whether or not the
print controls will be displayed when the job is sent to a preview window.

controlsShowing Specifies a pointer to a TRUE value if the print controls will be shown or
FALSE value if they will be hidden.
Crystal Reports Technical Reference Guide 385

Print Engine Functions
Parameters

Returns

� Returns PE_ERR_NOERROR if the call was successful.
� Returns another “Error Codes” on page 545, if the call failed.

VB Syntax

Declare Function PEPrintReport Lib “crpe32.dll” (ByVal RptName As

String, ByVal Printer As Integer, ByVal Window As Integer, ByVal Title As

String, ByVal Lft As Long, ByVal Top As Long, ByVal Wdth As Long, ByVal

Height As Long, ByVal Style As Long, ByVal PWindow As Long) As Integer

Delphi Syntax

function PEPrintReport (

reportFilePath: PChar;

toDefaultPrinter: Bool;

toWindow: Bool;

title: PChar;

left: integer;

top: integer;

width: integer;

height: integer;

style: longint;

parentWindow: HWnd

): Smallint stdcall;

reportFilePath Specifies a pointer to the NULL-terminated string that contains the name
and path of the report that you want to print.

toDefaultPrinter Specifies whether or not the report is to be sent to the default printer.

toWindow Specifies whether or not the report is to be displayed in the preview
window.

title Specifies a pointer to the NULL-terminated string that contains the title you
want to appear on the title bar if you are printing the report to a window.

left Specifies the x coordinate of the upper left hand corner of the preview
window, in pixels.

top Specifies the y coordinate of the upper left hand corner of the preview
window, in pixels.

width Specifies the width of the preview window, in pixels.

height Specifies the height of the preview window, in pixels.

style Specifies the style of the window being created. Style settings can be
combined using the bitwise “OR” operator. Select your style from the list
that appears with “PEOutputToWindow” on page 382.

parentWindow Specifies the handle of the parent window if the preview window is a child
of that window.
386 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
dBASE for Windows Syntax

EXTERN CWORD PEPrintReport (CSTRING, CLOGICAL, CLOGICAL, CSTRING, CWORD,

CWORD, CWORD, CWORD, CLONG, CHANDLE) CRPE.DLL

PEPrintWindow

Use PEPrintWindow to print the report that is displayed in the preview window.
This function can be used in a Custom-Print Link to enable the user to preview the
report in the preview window, and then, if everything looks satisfactory, to print
the report to the printer in response to a user event.

C Syntax

BOOL CRPE_API PEPrintWindow (

short printJob,

BOOL waitUntilDone);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEPrintWindow Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal WaitNoWait As Integer) As Integer

Delphi Syntax

function PEPrintWindow (

printJob: Word;

waitUntilDone: Bool

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEPrintWindow (CWORD, CLOGICAL) CRPE.DLL

printJob Specifies the print job displayed in the preview window that you want to print.

waitUntilDone BOOL. Reserved. This parameter must always be set to TRUE.
Crystal Reports Technical Reference Guide 387

Print Engine Functions
PEReimportSubreport

Use PEReimportSubreport to reimport a subreport into the specified main report.

C Syntax

BOOL CRPE_API PEReimportSubreport (

short printJob,

DWORD subreportHandle,

BOOL FAR *linkChanged,

BOOL FAR *reimported);

Parameters

Returns

� TRUE if the call is successful and the subreport is up-to-date or was
reimported with fixed or
missing links.

� FALSE if the call fails, the subreport path is invalid, or the reimport failed. The
specific error that occurred can be retrieved with “PEGetErrorCode” on
page 304.

Remarks

� Parameter linkChanged
� will be set to FALSE if the subreport is reloaded and the links are fixed.
� will be set to TRUE if the subreport is reloaded but missing links.

� Parameter reimported
� will be set to FALSE if the subreport is up-to-date, or if the reimport failed

due to an invalid path or other error.
� will be set to TRUE if the subreport was reloaded with links fixed or

missing.

VB Syntax

Declare Function PEReimportSubreport Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal subreportHandle As Long,

linkChanged As Long, reimported As Long) As Integer

printJob Specifies the print job for which you want to reimport a subreport.

subreportHandle Specifies the handle of the subreport that you want to reimport.

linkChanged Specifies a pointer to a Boolean value indicating whether or not the link
has changed. See Remarks below.

reimported Specifies a pointer to a Boolean value indicating whether or not the
subreport has been reimported. See Remarks below.
388 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESelectPrinter

Use PESelectPrinter to specify a printer other than the default printer as the print
destination for the specified print job. You can use this function to enable the user
to select a printer other than the default printer at print time. One way of doing this
is to have your application call the Print Setup common dialog box.

C Syntax

BOOL CRPE_API PESelectPrinter (

short printJob,

const char FAR *driverName,

const char FAR *printerName,

const char FAR *portName,

DEVMODEA FAR *mode);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� The PRINTDLG structure returned by the Windows API PrintDlg function
contains handles to DEVMODEA and DEVNAMES structures. This
information can be used to obtain driverName, printerName, portName, and
mode values for PESelectPrinter.

� Your code must parse the return from the dialog box selection and insert the
returned Printer Driver Name, Printer Name, and Port Name as parameters in
the call.

� After selecting the printer with this call, you can direct the output to that
printer (using “PEOutputToPrinter” on page 380) or to the preview window
(using “PEOutputToWindow” on page 382).

� This call will override a printer selection that you built into the report at design
time via the Crystal Reports Select Printer menu command.

printJob Specifies the print job for which you want to select a printer.

driverName Specifies a pointer to a null-terminated string that contains the name of the
printer driver for the selected printer.

printerName Specifies a pointer to a null-terminated string that contains the printer name for
the selected printer.

portName Specifies a pointer to a null-terminated string that contains the port name for the
port to which the selected printer is attached.

mode Specifies a pointer to the “DEVMODE” on page 533, Windows API structure.
Crystal Reports Technical Reference Guide 389

Print Engine Functions
� If you follow this call with the call “PEOutputToWindow” on page 382, the
report appears in the
preview window.

� To revert to the default printer, pass 0 for each parameter.
� The driver name and printer name must exist on your machine.
� You can specify a different printer port than that assigned to the selected

printer on your machine.
� For parameter mode, use 0 for the default mode or create a “DEVMODE” on

page 533, structure to customize (if your development tool supports such a
structure).

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

VB Syntax

Declare Function PESelectPrinter Lib "crpe32.dll" (ByVal printJob As

Integer,

ByVal PrinterDriver As String, ByVal PrinterName As String,

ByVal PortName As String, DevMode As Any) As Integer

Delphi Syntax

function PESelectPrinter(

printJob: Word;

driverName: PChar;

printerName: PChar;

portName: PChar;

mode: PDeviceModeA

): Bool stdcall;

PESetAllowPromptDialog

Use PESetAllowPromptDialogto specify whether prompting for parameter values
is allowed during printing.

C Syntax

BOOL CRPE_API PESetAllowPromptDialog (

short printJob,

BOOL showPromptDialog);

Parameters

printJob Specifies the print job.

showPromptDialog If TRUE, then prompting is allowed.
390 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetAllowPromptDialog Lib "crpe32.dll" (ByVal _

printJob As Integer, ByVal showPromptDialog As Integer) As Integer

Delphi Syntax

function PESetAllowPromptDialog (

printJob: Smallint;

showPromptDialog: Bool

): Bool stdcall;

PESetAreaFormat

Use PESetAreaFormat to set the area format settings for selected areas in the
specified report to the values in “PESectionOptions” on page 501. This function
can be used to provide specialized formatting for printing invoices, form letters,
printing to pre-printed forms, etc. It allows you to hide an area, insert a page break
either before or after an area begins, reset the page number to 1 after a group value
prints, prevent page breaks from spreading data from a single record over two
pages, and to print group values only at the bottom of a page.

C Syntax

BOOL CRPE_API PESetAreaFormat (

short printJob,

short areaCode,

PESectionOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set area formatting options.

areaCode Specifies the “Section Codes” on page 559 for the report area for which you
want to set formatting options. See the information on area codes in “Working
with section codes” on page 46.

options Specifies a pointer to “PESectionOptions” on page 501. Use this structure to set
your section options.
Crystal Reports Technical Reference Guide 391

Print Engine Functions
Remarks

This function should be called before “PEStartPrintJob” on page 448, or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PESetAreaFormat Lib “crpe32.dll” (ByVal printJob As

Integer,

ByVal areaCode As Integer, Options As PESectionOptions) As Integer

Delphi Syntax

function PESetAreaFormat (

printJob: Word;

areaCode: Integer;

var options: PESectionOptions

): Bool stdcall;

PESetAreaFormatFormula

Use PESetAreaFormatFormula to change the specified area format formula to the
formula string you supply as a parameter. This function will only change the text of a
formula which already exists in the report; you cannot use it to add a formula. When
you give the user the ability to change the formula at print time, your link must include
code to replace the formulaString parameter with a user-generated value.

C Syntax

BOOL CRPE_API PESetAreaFormatFormula (

short printJob,

short areaCode,

short formulaName,

const char FAR *formulaString);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.
� Error code PE_ERR_BADFORMULANAME if the formula does not exist.

printJob Specifies the print job for which you want to set a new format formula string.

areaCode Specifies the “Section Codes” on page 559 for the report area for which you
want to set formatting options. See “Working with section codes” on page 46.

formulaName Specifies the name of the formatting formula for which you want to supply a
new string. Use one of the PE_FFN_XXX “Area/Section Format Formula
Constants” on page 541.

formulaString Specifies a pointer to the null-terminated string that you want to assign to the
format formula.
392 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
� Error code PE_ERR_BADFORMULATEXT if there is an error in the formula.

Remarks

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

� Not all parameters apply to all areas.

VB Syntax

Declare Function PESetAreaFormatFormula Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal areaCode As Integer,

ByVal formulaName As Integer, ByVal formulaString As String) As

Integer

Delphi Syntax

function PESetAreaFormatFormula(

printJob: Word;

areaCode: Word;

formulaName: Word;

formulaString: Pchar

): Bool stdcall;

PESetDialogParentWindow

Use PESetDialogParentWindow to set the handle for the parent window of CRPE
dialog boxes (that is, Print Progress dialog box).

C Syntax

BOOL CRPE_API PESetDialogParentWindow (

short printJob,

HWND parentWindow);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetDialogParentWindow Lib “crpe32.dll” (ByVal

printJob _

As Integer, ByVal parentWindow As Long) As Integer

printJob Specifies the print job for which you want to specify a parent window.

parentWindow Specifies the handle of the parent window.
Crystal Reports Technical Reference Guide 393

Print Engine Functions
Delphi Syntax

function PESetDialogParentWindow (

printJob: Word;

parentWindow: HWnd

): Bool stdcall;

PESetEventCallback

Use PESetEventCallback to set the event callback function for the specified job.
CRPE can fire certain events when something happens inside CRPE. CRPE will call
the callback function and notify what kind of event has or is about to occur. Within
callbackProc, the user can interpret the event ID and perform the proper process.

C Syntax

BOOL CRPE_API PESetEventCallback (

short printJob,

BOOL (CALLBACK *callbackProc)

(short eventID, void *param, void *userData)

void *userData);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Each job can have only one callback function.
� The Event procedure functions passed in the callbackProc parameter should be

a standard Windows CALLBACK procedure. Refer to documentation on the
Windows API for information on creating CALLBACK procedures.

� If you need to pass data to callbackProc using the userData parameter of
callbackProc, be sure the memory allocated for the data does not fall out of scope
or gets deallocated before the callbackProc is called by Windows. If this happens,
the data will be unavailable and errors may occur in your application.

� For a complete example of how to use this function, see “Handling preview
window events” on page 59.

printJob Specifies the print job for which you want to create an Event callback procedure.

callbackProc The CALLBACK procedure that will handle your Crystal Report Engine events.
This should be a pointer to a standard Windows CALLBACK procedure. Refer to
the Windows SDK for information on creating CALLBACK procedures.

userData Specifies a pointer to any information you want to pass to the Event handling
CALLBACK procedure. The pointer will be available in the userData member of
the procedure. This value can be 0.
394 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
� If callbackProc returns TRUE, a CRPE default action will be provided. If
callbackProc returns FALSE, a CRPE default action will not be used. The user
should be responsible for providing default behavior. For some events, the
callbackProc return value is ignored. The following list gives the description of
different events supported by CRPE.

PE_ACTIVATE_PRINT_WINDOW_EVENT

� Called
Before the preview window becomes active.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
Ignored.

PE_CANCEL_BUTTON_CLICKED_EVENT

� Called
After clicking the cancel button; before canceling the printing or reading the
database.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_CLOSE_BUTTON_CLICKED_EVENT

� Called
After clicking the close button; before closing the preview window.

� Parameter
Pointer to “PECloseButtonClickedEventInfo” on page 454.

� Return
TRUE to use the default action; FALSE to cancel the default action.

� Remarks
If FALSE is returned before actually closing the preview window, a
PE_CLOSE_PRINT_WINDOW_EVENT is fired.

PE_CLOSE_PRINT_WINDOW_EVENT

� Called
Before the preview window is closed.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.
Crystal Reports Technical Reference Guide 395

Print Engine Functions
PE_DEACTIVATE_PRINT_WINDOW_EVENT

� Called
Before the preview window becomes in active.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
Ignored.

PE_DRILL_ON_DETAIL_EVENT

� Called
After double-clicking one of the detail areas in the preview window.

� Parameter
Pointer to “PEDrillOnDetailEventInfo” on page 454.

� Return
Ignored.

PE_DRILL_ON_GROUP_EVENT

� Called
After clicking on one of the group tree nodes, double-clicking or Ctrl-clicking a
node with the magnify glass cursor, or double-clicking one of the groups in the
preview window; before showing the group. This event also applies to drilling
on a graph.

� Parameter
Pointer to “PEDrillOnGroupEventInfo” on page 455.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_DRILL_ON_HYPERLINK_EVENT

� Called
Whenever the user double-clicked on an object with a hyperlink (and the
hyperlink is about to be executed).

� Parameter
Pointer to“PEHyperlinkEventInfo” on page 477.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_EXPORT_BUTTON_CLICKED_EVENT

� Called
After Export button is clicked; before export process starts.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.
396 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PE_FIRST_PAGE_BUTTON_CLICKED_EVENT

� Called
After clicking the first page button; before going to the first page.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_GROUP_TREE_BUTTON_CLICKED_EVENT

� Called
After clicking the group tree button; before showing or hiding the group tree.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
Ignored.

PE_LAST_PAGE_BUTTON_CLICKED_EVENT

� Called
After clicking the last page button; before going to the last page.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_LAUNCH_SEAGATE_ANALYSIS_EVENT

� Called
Whenever the Launch Seagate Analysis toolbar button is clicked.

Note: Seagate Analysis is now known as Crystal Analysis.
� Parameter

Pointer to“PELaunchSeagateAnalysisEventInfo” on page 479.
� Return

TRUE to use the default action; FALSE to cancel the default action.

PE_LEFT_CLICK_EVENT

� Called
Whenever the left mouse button has been clicked over the preview window.

� Parameter
Pointer to“PEMouseClickEventInfo” on page 481.

� Return
TRUE to use the default action; FALSE to cancel the default action.
Crystal Reports Technical Reference Guide 397

Print Engine Functions
PE_MAPPING_FIELD_EVENT

� Called
Whenever the user calls PEVerifyDatabase and the field mapping method has
been set to PE_FM_EVENT_DEFINED_FLD_MAP. The field mapping method
can be retrieved and set with “PEGetFieldMappingType” on page 306, and
“PESetFieldMappingType” on page 401.

� Parameter
Pointer to“PEFieldMappingEventInfo” on page 462.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_MIDDLE_CLICK_EVENT

� Called
Whenever the middle mouse button has been clicked over the preview
window.

� Parameter
Pointer to“PEMouseClickEventInfo” on page 481.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_NEXT_PAGE_BUTTON_CLICKED_EVENT

� Called
After clicking the next page button, before going to the next page.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_PREVIOUS_PAGE_BUTTON_CLICKED_EVENT

� Called
After clicking the previous page button; before going to the previous page.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_PRINT_BUTTON_CLICKED_EVENT

� Called
After the Print button is clicked; before printing process starts.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.
398 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PE_PRINT_SETUP_BUTTON_CLICKED_EVENT

� Called
After clicking Print Setup button; before showing the Print Setup dialog box.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_READING_RECORDS_EVENT

� Called
This event is fired during a reading database or regenerating saved data
process. It is fired after a specified amount of time, not aver reading every
record.

� Parameter
Pointer to “PEReadingRecordsEventInfo” on page 491.

� Return
Ignored.

PE_REFRESH_BUTTON_CLICKED_EVENT

� Called
After clicking the Refresh button; before refreshing the data.

� Parameter
Pointer to “PEGeneralPrintWindowEventInfo” on page 467.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_RIGHT_CLICK_EVENT

� Called
Whenever the right mouse button has been clicked over the preview window.

� Parameter
Pointer to“PEMouseClickEventInfo” on page 481.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_SEARCH_BUTTON_CLICKED_EVENT

� Called
After the search button is clicked; before the search starts.

� Parameter
Pointer to “PESearchButtonClickedEventInfo” on page 500.

� Return
TRUE to use the default action; FALSE to cancel the default action.
Crystal Reports Technical Reference Guide 399

Print Engine Functions
PE_SHOW_GROUP_EVENT

� Called
After clicking one of the group tree nodes; before showing that group.

� Parameter
Pointer to “PEShowGroupEventInfo” on page 505.

� Return
TRUE to use the default action. FALSE to cancel the default action.

PE_START_EVENT

� Called
Before the Report Engine starts a process. A process can be printing to printer,
exporting, printing to a window, or generating pages when navigating
through the preview window.

� Parameter
Pointer to“PEStartEventInfo” on page 506.

� Return
TRUE to use the default action; FALSE to cancel the default action.

PE_STOP_EVENT

� Called
Whenever a process has finished. Used in conjunction with
PE_START_EVENT.

� Parameter
Pointer to“PEStopEventInfo” on page 506.

� Return
Ignored.

PE_ZOOM_LEVEL_CHANGING_EVENT

� Called
After changing zoom control; before changing preview zoom level.

� Parameter
Pointer to “PEZoomLevelChangingEventInfo” on page 521.

� Return
Ignored.

Delphi Syntax

function PESetEventCallback(

printJob: Word;

callbackProc: pointer

{Callback Function should be of form:

Function callbacProc(eventID: smallint;

param: pointer;

userData: pointer)}

): Bool stdcall;
400 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetFieldMappingType
Use PESetFieldMappingType to set the field mapping type code for the specified
report.

C Syntax

BOOL CRPE_API PESetFieldMappingType

short printJob,

WORD mappingType);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Unmapped report fields will be removed.
� If mappingType = PE_FM_EVENT_DEFINED_FLD_MAP, you need to

activate the PE_MAPPING_FIELD_EVENT and define a callback function.

VB Syntax

Declare Function PESetFieldMappingType Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal mappingType As Integer) As Integer

Delphi Syntax

function PESetFieldMappingType (

printJob: smallint;

mappingType: Word

): BOOL stdcall;

PESetFont

Use PESetFont to set the font for field and/or text characters in the report section(s)
specified. Use this call any time you need to change a default font at runtime in
response to user input or to specify a built-in printer font.

printJob Specifies the print job for which you want to set the field mapping type code.

mappingType The field mapping type code that you want to set. Use one of the PE_FM_XXX
“Field Mapping Type Constants” on page 551.
Crystal Reports Technical Reference Guide 401

Print Engine Functions
C Syntax

BOOL CRPE_API PESetFont (

short printJob,

short sectionCode,

short scopeCode,

const char FAR *faceName,

short fontFamily,

short fontPitch,

short charSet,

short pointSize,

short isItalic,

short isUnderlined,

short isStruckOut,

short weight);

Parameters

printJob Specifies the print job for which you want to select a font.

sectionCode Specifies the “Section Codes” on page 559 for the report section(s) for which
you want to select a font. See “Working with section codes” on page 46.

scopeCode Specifies whether the font selected is to apply to fields only, to text only, or to
both fields and text. To specify both fields and text, use the OR operator. Use
one of the following codes.

Constant Description

PE_FIELDS Sets the default font for all field values in the report
section specified.

PE_TEXT Sets the default font for all text (that has not been entered
as a field value) in the report section specified.

faceName Specifies a pointer to the actual face name of the font you want to use. The face
name you pass can typically come from a Font dialog box, be hard coded in the
application or be chosen by the application from the fonts supported on the
printer. Example: “Times New Roman”. Pass 0 for no change.

fontFamily Specifies the font family for the font you want to use. Use one of the following
FF_XXX constants.

Constant Description

FF_DONTCARE No change.

FF_ROMAN Variable pitch font with serifs.

FF_SWISS Fixed pitch font without serifs.

FF_MODERN Fixed-pitch font, with or without serifs.

FF_SCRIPT Handwriting-like font.

FF_DECORATIVE Fancy display font.

fontPitch Specifies the font pitch you wish to use. Use a constant value for the font pitch
as defined in WINDOWS.H. Use DEFAULT_PITCH if you wish to retain the
current default.
402 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Constant Description

DEFAULT_PITCH 0X00

FIXED_PITCH 0X01

VARIABLE_PITCH 0X02

charSet Specifies the character set you wish to use. Use a constant value for the
character set as defined in WINDOWS.H. Use DEFAULT_CHARSET if you
wish to retain the current default.

Constant Value

ANSI_CHARSET 0

DEFAULT_
CHARSET

1

SYMBOL_
CHARSET

2

SHIFTJIS_
CHARSET

128

HANGEUL_
CHARSET

129

CHINESEBIG5_
CHARSET

136

OEM_CHARSET 255

pointSize Specifies the desired point size for the selected font. Pass 0 for no change.

isItalic Specifies whether the font selected should be italicized. Pass TRUE for Italic
font, FALSE for non-Italic font, or PE_UNCHANGED to use the current default
setting.

isUnderlined Specifies whether the font selected should be underlined. Pass TRUE for
Underline, FALSE for no Underline, or PE_UNCHANGED to use the current
default setting.

isStruckOut Specifies whether the font selected should be struck out. Pass TRUE for
StrickOut, FALSE for no StrickOut, or PE_UNCHANGED to use the current
default setting.

weight Specifies the weight of the font. Use a constant value from the weight values
defined in WINDOWS.H. Pass 0 for no change.

Constant Value

FW_DONTCARE 0

FW_THIN 100

FW_EXTRALIGHT 200

FW_LIGHT 300

FW_NORMAL 400

FW_MEDIUM 500

FW_SEMIBOLD 600
Crystal Reports Technical Reference Guide 403

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This command includes a number of parameters:
� For the fontFamily, fontPitch, charSet, and weight parameters, use constant values

from the font family, pitch, character set, and width defined in WINDOWS.H. Use
0 for each parameter that is not to be changed from the current default.

� For the faceName parameter, enter the actual name of the font. Enter 0 for no
change.

� faceName, fontFamily, fontPitch, and charSet should all be specified whenever
one of these parameters is specified. Use fontFamily = FF_DONTCARE,
fontPitch = DEFAULT_PITCH, or charSet = DEFAULT_CHARSET to leave the
default values unchanged.

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

VB Syntax

Declare Function PESetFont Lib “crpe32.dll” (ByVal printJob As Integer,

ByVal sectionCode As Integer, ByVal ScopeCode As Integer,

ByVal FaceName As String, ByVal FontFamily As Integer,

ByVal FontPitch As Integer, ByVal CharSet As Integer,

ByVal PointSize As Integer, ByVal isItalic As Integer,

ByVal isUnderlined As Integer, ByVal isStruckOut As Integer,

ByVal Weight As Integer) As Integer

FW_BOLD 700

FW_EXTRABOLD 800

FW_HEAVY 900

FW_ULTRALIGHT FW_EXTRALIGHT

FW_REGULAR FW_NORMAL

FW_DEMIBOLD FW_SEMIBOLD

FW_ULTRABOLD FW_EXTRABOLD

FW_BLACK FW_HEAVY
404 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delpli Syntax

function PESetFont(

printJob: Word;

sectionCode: integer;

scopeCode: integer;

faceName: PChar;

fontFamily: integer;

fontPitch: integer;

charSet: integer;

pointSize: integer;

isItalic: integer;

isUnderlined: integer;

isStruckOut: integer;

weight: integer

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetFont (CWORD, CWORD, CWORD, CSTRING, CWORD, CWORD,

CWORD, CWORD, CWORD, CWORD, CWORD, CWORD) CRPE.DLL

PESetFormula

Use PESetFormula to change the specified formula to the formula string you
supply as a parameter. This function will only change the text of a formula which
already exists in the report; you cannot use it to add a new formula. This function
can be used by itself to replace the formula string for a known formula.

This function can also be used as one of a series of functions (“PEGetFormula” on
page 307; “PEGetHandleString” on page 318; and PESetFormula). The series can
be used in a Custom-Print Link to identify and then change an existing formula at
print time in response to a user selection. When you give the user the ability to
change the formula at print time, your link must include code to replace
formulaString with a user-generated value.

C Syntax

BOOL CRPE_API PESetFormula (

short printJob,

const char *formulaName,

const char FAR *formulaString);

Parameters

printJob Specifies the print job for which you want to set a new formula string.

formulaName Specifies a pointer to the null-terminated string that contains the name of the
formula for which you want to set a new formula string.

formulaString Specifies a pointer to the null-terminated string that you want to replace the
existing formula string.
Crystal Reports Technical Reference Guide 405

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the named formula does not exist.
� Error code PE_ERR_BADFORMULANAME if the formula does not exist.
� Error code PE_ERR_BADFORMULATEXT if there is an error in the formula.

Remarks

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

� You cannot use this function to set conditional formulas.

VB Syntax

Declare Function PESetFormula Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal FormulaName As String, ByVal FormulaString As String) As

Integer

Delphi Syntax

function PESetFormula (

printJob: Word;

formulaName: PChar;

formulaString: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetFormula (CWORD, CSTRING, CSTRING) CRPE.DLL

PESetFormulaSyntax

Use PESetFormulaSyntax to set the formula syntax information to use for the next
and all subsequent formula API call.

C Syntax

BOOL CRPE_API PESetFormulaSyntax (

short printJob,

PEFormulaSyntax FAR *formulaSyntax);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set formula syntax.

formulaSyntax Specifies a pointer to “PEFormulaSyntax” on page 466, which will contain the
information that you want to set.
406 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

� If any Formula API is called before PESetFormulaSyntax is called, then the
default PE_FST_CRYSTAL is assumed.

� For running total condition formula:
� formulaSyntax[0] is the syntax for the evalFormula.
� formulaSyntax[1] is the syntax for the reset formula.

VB Syntax

Declare Function PESetFormulaSyntax Lib "crpe32.dll" (

ByVal printJob As Integer, formulaSyntax As PEFormulaSyntax) As

Integer

PESetGraphAxisInfo

Use PESetGraphAxisInfo to set the several chart axis options that are available.

C Syntax

BOOL CRPE_API PESetGraphAxisInfo (

short printJob,

short sectionN,

short graphN,

PEGraphAxisInfo FAR * graphAxisInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphAxisInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphAxisInfo As PEGraphAxisInfo) As

Integer

printJob Specifies the print job for which you want to set chart axis information.

sectionN Specifies the section of the report containing the chart for which you want to
set chart axis information.

graphN Specifies for which chart within the section you want to set the chart axis
information. This value is 0-based. Charts are numbered based on their order
of insertion into the report.

graphAxisInfo Specifies a pointer to “PEGraphAxisInfo” on page 468, which will contain the
new information.
Crystal Reports Technical Reference Guide 407

Print Engine Functions
Delphi Syntax

function PESetGraphAxisInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 var graphAxisInfo : PEGraphAxisInfo): Bool; {$ifdef WIN32} stdcall;

{$endif}

PESetGraphFontInfo

Use PESetGraphFontInfo to set the font information for the specified chart.

C Syntax

BOOL CRPE_API PESetGraphFontInfo (

short printJob,

short sectionN,

short graphN,

WORD titleFontType,

PEFontColorInfo FAR *fontColourInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphFontInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, ByVal titleFontType As Integer,

fontColourInfo As PEFontColorInfo) As Integer

printJob Specifies the print job for which you want to set chart font information.

sectionN Specifies the number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on
page 328.

graphN Specifies for which chart within the section you want to set the font
information. This value is 0-based. Charts are numbered based on their
order of insertion into the report.

titleFontType Uses one of the PE_GTF_XXX “Graph Text Font Constants” on page 554

fontColourInfo Specifies a pointer to PEFontColorInfo,which will contain the new
information.
408 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PESetGraphFontInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 titleFontType : Word;

 var fontColourInfo : PEFontColorInfo): Bool; {$ifdef WIN32}

stdcall;{$endif}

PESetGraphOptionInfo

Use PESetGraphOptionInfo to set display options for the specified chart.

C Syntax

BOOL CRPE_API PESetGraphOptionInfo (

short printJob,

short sectionN,

short graphN,

PEGraphOptionInfo FAR *graphOptionInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphOptionInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphOptionInfo As PEGraphOptionInfo) As

Integer

printJob Specifies the print job for which you want to set chart display
information.

sectionN Specifies the number of the section in which the chart appears. This
parameter should be within the range obtained by PEGetNSections.

graphN Specifies for which chart within the section you want to set the chart
display information. This value is 0-based. Charts are numbered based
on their order of insertion into the report.

graphOptionInfo Specifies a pointer to “PEGraphOptionInfo” on page 471, which will
contain the new information.
Crystal Reports Technical Reference Guide 409

Print Engine Functions
Delphi Syntax

function PESetGraphOptionInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 var graphOptionInfo : PEGraphOptionInfo): Bool; {$ifdef WIN32}

 stdcall; {$endif}

PESetGraphTextDefaultOption

Use PESetGraphTextDefaultInfo to enable or disable chart title defaults.

C Syntax

BOOL CRPE_API PESetGraphTextDefaultOption (

short printJob,

short sectionN,

short graphN,

WORD titleType,

BOOL useDefault);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphTextDefaultOption Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, ByVal titleType As Integer,

ByVal useDefault As Long) As Integer

printJob Specifies the print job for which you want to enable/disable chart title default
option information.

sectionN Specifies the 0-based index number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on page 328.

graphN Specifies the 0-based index number of the chart for which you want to enable/
disable the chart text default option information. Charts are numbered based on
their order of insertion into the report.

titleType Specifies the title type. Use one of the PE_GTT_XXX “Graph Title Type Constants”
on page 555.

useDefault Specifies the Boolean value indicating whether or not chart title defaults are
enabled.
410 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetGraphTextInfo

Use PESetGraphTextInfo to set the title text information for the specified chart.

C Syntax

BOOL CRPE_API PESetGraphTextInfo (

short printJob,

short sectionN,

short graphN,

WORD titleType,

LPCSTR title);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphTextInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, ByVal titleType As Integer,

ByVal title As String) As Integer

Delphi Syntax

function PESetGraphTextInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 titleType : Word;

 title : PChar): Bool; {$ifdef WIN32} stdcall; {$endif}

printJob Specifies the print job for which you want to set title text information.

sectionN Specifies the 0-based index number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on page 328.

graphN Specifies the 0-based index number of the chart for which you want to set the title
text information. Charts are numbered based on their order of insertion into the
report.

titleType Specifies the title type. Use one of the PE_GTT_XXX “Graph Title Type Constants”
on page 555.

title Specifies a pointer to the string containing the title text.
Crystal Reports Technical Reference Guide 411

Print Engine Functions
PESetGraphTypeInfo

Use PESetGraphTypeInfo to set the type of the specified chart.

C Syntax

BOOL CRPE_API PESetGraphTypeInfo (

short printJob,

short sectionN,

short graphN,

PEGraphTypeInfo FAR *graphTypeInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetGraphTypeInfo Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionN As Integer,

ByVal graphN As Integer, graphTypeInfo As PEGraphTypeInfo) As

Integer

Delphi Syntax

function PESetGraphTypeInfo (

 printJob : Smallint;

 sectionN : Smallint;

 graphN : Smallint;

 var graphTypeInfo : PEGraphTypeInfo): Bool; {$ifdef WIN32} stdcall;

{$endif}

printJob Specifies the print job for which you want to set chart type information.

sectionN Specifies the number of the section in which the chart appears. This
parameter should be within the range obtained by “PEGetNSections” on
page 328.

graphN Specifies for which chart within the section you want to set the type. This
value is 0-based. Charts are numbered based on their order of insertion into
the report.

graphTypeInfo Specifies a pointer to “PEGraphTypeInfo” on page 473, which will contain the
new information.
412 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetGroupCondition

Use PESetGroupCondition to change the group condition for a group section. Use
this function whenever you want to change the grouping at print time, for
example, to print one report grouped in several different ways.

C Syntax

BOOL CRPE_API PESetGroupCondition (

short printJob,

short sectionCode,

const char FAR *conditionField,

short condition,

short sortDirection);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� No default values are allowed. You must specify a value for all parameters
when using this function.

� If you have a formula that references a summary field and you change the
condition on the summary field without fixing the formula, you will get an
error.

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

printJob Specifies the print job for which you want to change the group condition for a
group section.

sectionCode Specifies the code for the report section for which you want to set the group
condition. See “Working with section codes” on page 46.

conditionField Specifies a pointer to the name of the field that triggers a summary whenever
its value changes. This parameter is a result of calling “PEGetHandleString”
on page 318, with conditionFieldHandle and conditionFieldLength, returned
by “PEGetGroupCondition” on page 315.

condition Specifies the condition that will trigger a summary. Use one of the
PE_GC_XXX “Group Condition Constants” on page 556. Note that the
constants available are different for different field types.

sortDirection Use one of the PE_SF_XXX “Sort Order Constants” on page 560.
Crystal Reports Technical Reference Guide 413

Print Engine Functions
VB Syntax

Declare Function PESetGroupCondition Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal sectionCode As Integer, ByVal ConditionField As String,

ByVal Condition As Integer, ByVal SortDirection As Integer) As Integer

Delphi Syntax

function PESetGroupCondition (

printJob: Word;

sectionCode: smallint;

conditionField: PChar;

condition: smallint;

sortDirection: smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetGroupCondition (CWORD, CWORD, CSTRING, CWORD, CWORD)

CRPE.DLL

PESetGroupOptions

Use PESetGroupOptions to set grouping options for the specified group.

C Syntax

BOOL CRPE_API PESetGroupOptions (

short printJob,

short groupN,

PEGroupOptions FAR *groupOptions);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

� If you are using PESetGroupOptions to set the top/bottom N sort field, all the
group sort fields related to the group will be deleted and a new one specified
by the group options will be added.

printJob Specifies the print job for which you wish to set grouping options.

groupN Specifies the 0-based group level number.

groupOptions Specifies a pointer to “PEGroupOptions” on page 474.
414 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PESetGroupOptions Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal groupN As Integer, groupOptions As PEGroupOptions) As

Integer

Delphi Syntax

function PESetGroupOptions (

printJob: Word;

groupN: smallint;

var groupOptions: PEGroupOptions

): Bool; stdcall;

PESetGroupSelectionFormula
Use PESetGroupSelectionFormula to change the group selection formula to the
formula string you supply as a parameter. This function can be used by itself to
replace an existing group selection formula and also as one of a series of functions
(“PEGetGroupSelectionFormula” on page 317; “PEGetHandleString” on page 318;
and PESetGroupSelectionFormula). The series can be used in a Custom-Print Link
to identify and then change an existing group selection formula at print time in
response to a user selection. When you give the user the ability to change the group
selection formula at print time, your link must include code to replace
formulaString with a user-generated value.

C Syntax

BOOL CRPE_API PESetGroupSelectionFormula (

short printJob,

const char FAR *formulaString);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails due to an internal error (for example, the connection to

the database fails).

Remarks

� Immediately after setting the new formula with PESetGroupSelectionFormula,
the new formula should be verified with “PECheckGroupSelectionFormula”
on page 283.

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

printJob Specifies the print job for which you want to set a new group selection formula.

formulaString Specifies a pointer to the null-terminated string you want to assign to the
group selection formula.
Crystal Reports Technical Reference Guide 415

Print Engine Functions
VB Syntax

Declare Function PESetGroupSelectionFormula Lib “crpe32.dll” (ByVal printJob

As Integer, ByVal formulaString As String) As Integer

Delphi Syntax

function PESetGroupSelectionFormula (

printJob: Word;

formulaString: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetGroupSelectionFormula (CWORD, CSTRING) CRPE.DLL

PESetMargins

Use PESetMargins to set the page margins for the specified report to the values you
supply as parameters. Use this function any time you want to set the printer
margins at runtime in response to user specifications.

C Syntax

BOOL CRPE_API PESetMargins (

short printJob,

short left,

short right,

short top,

short bottom);

Parameters

For each margin parameter, specify the margin in twips or PM_SM_DEFAULT to
use the corresponding default margin for the currently selected printer. See
Remarks below.

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set new margins.

left Specifies the left margin.

right Specifies the right margin.

top Specifies the top margin.

bottom Specifies the bottom margin.
416 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

� A twip is 1/1440 of an inch; there are 20 twips in a point. To set .5" margins, for
example, you would enter the value 720.

VB Syntax

Declare Function PESetMargins Lib “crpe32.dll” (ByVal printJob As

Integer,

ByVal LeftMargin As Integer, ByVal RightMargin As Integer,

ByVal TopMargin As Integer, ByVal BottomMargin As Integer) As

Integer

Delphi Syntax

function PESetMargins (

printJob: Word;

left: Word;

right: Word;

top: Word;

bottom: Word

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetMargins (CWORD, CWORD, CWORD, CWORD, CWORD)

CRPE.DLL

PESetNDetailCopies

Use PESetNDetailCopies to print multiple copies of the Details section of the
report. For example, you can use this function to print multiple copies of labels for
a customer, multiple copies of a purchase order, or multiple copies of anything set
up in the Details section of your report. To retrieve the number of times each
Details section is to be printed, use “PEGetNDetailCopies” on page 321.

C Syntax

BOOL CRPE_API PESetNDetailCopies (

short printJob,

short nDetailCopies);

Parameters

printJob Specifies the print job for which you want set the number of copies to print.

nDetailCopies Specifies the number of report copies you want to print.
Crystal Reports Technical Reference Guide 417

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

� To change top/bottom N group sorting order, use “PESetGroupOptions” on
page 414.

VB Syntax

Declare Function PESetNDetailCopies Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal nDetailCopies As Integer) As

Integer

Delphi Syntax

function PESetNDetailCopies(

printJob: Word;

nDetailCopies: smallint;

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetNDetailCopies (CWORD, CWORD) CRPE.DLL

PESetNthAlertConditionFormula

Use PESetNthAlertConditionFormula to set the condition formula for the
specified Report Alert associated with the print job.

C Syntax

BOOL CRPE_API PESetNthAlertConditionFormula (short printJob,

 short alertN,

 constant char FAR * formula);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set the Report Alert condition formula.

alertN Specifies the Report Alert for which you want to set the Report Alert condition formula.

formula Specifies a pointer to the string containing the condition formula to set for the Report
Alert.
418 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

The condition formula can be based on recurring records or on summary fields, but
cannot be based on print-time fields, such as running totals or print time formulas.
Condition formulas cannot have shared variables.

VB Syntax

Declare Function PESetNthAlertConditionFormula Lib "crpe32.dll" (ByVal

printJob%, ByVal alertN%, formula As String) As Integer

Delphi Syntax

function PESetNthAlertConditionFormula(

 printJob : Smallint;

 alertN : Smallint;

 const formula : PCHAR) : boolean stdcall;

PESetNthAlertDefaultMessage

Use PESetNthAlertDefaultMessage to set the default message for the specified
Report Alert associated with the print job.

C Syntax

BOOL CRPE_API PESetNthDefaultMessage (short printJob,

 short alertN,

 constant char FAR * text);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetNthAlertDefaultMessage Lib "crpe32.dll" (ByVal

printJob%, ByVal alertN%, text As String) As Integer

Delphi Syntax

function PESetNthAlertDefaultMessage(

 printJob : Smallint;

 alertN : Smallint;

 const text : PCHAR) : boolean stdcall;

printJob Specifies the print job for which you want to set the Report Alerts default message.

alertN Specifies the Report Alert for which you want to set the default message.

text Specifies a pointer to the string containing the default message for the Report Alert.
Crystal Reports Technical Reference Guide 419

Print Engine Functions
PESetNthAlertMessageFormula

Use PESetNthAlertMessageFormula to set the message formula for the specified
Report Alert associated with the print job.

C Syntax

BOOL CRPE_API PESetNthAlertMessageFormula (short printJob,

 short alertN,

 const char FAR *formula);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

The result of the formula must be a string. If PESetNthAlertMessageFormula is set
it will override the value set for the Report Alerts default message.

VB Syntax

Declare Function PESetNthAlertMessageFormula Lib "crpe32.dll" (ByVal

printJob%, ByVal alertN%, formula As String) As Integer

Delphi Syntax

function PESetNthAlertMessageFormula(

 printJob : Smallint;

 alertN : Smallint;

 const formula : PCHAR) : boolean stdcall;

PESetNthGroupSortField

Use PESetNthGroupSortField to set one of the group sort fields in the specified
report. This function can only be used to modify an existing sort field and direction
when the sort field number, name, and direction are known.

Note: Note: PESetNthGroupSortField cannot be used to create a new sort field.

The function can also be used as one of a series of functions
(“PEGetNGroupSortFields” on page 323, called once; “PEGetNthGroupSortField”
on page 335, or “PEGetHandleString” on page 318, called as many times as needed
to identify the correct group sort field; and PESetNthGroupSortField called once,

printJob Specifies the print job for which you want to set the Report Alert’s message.formula.

alertN Specifies the Report Alert for which you want to set the message.formula.

formula Specifies a pointer to the string containing the message.formula for the Report Alert.
420 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
when the correct group sort field is identified). The series can be used in a Custom-
Print Link to identify and then change an existing group sort field and/or sort
order in response to a user selection at print time. When you give the user the
ability to specify group sort field(s) and/or direction at print time, your link must
include code to replace name and/or direction with user-generated values.

C Syntax

BOOL CRPE_API PESetNthGroupSortField (

short printJob,

short sortFieldN,

const char FAR *name,

short direction);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448, or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PESetNthGroupSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal sortFieldN As Integer, _

ByVal SortGroupName As String, ByVal Direction As Integer) As

Integer

Delphi Syntax

function PESetNthGroupSortField (

printJob: Word;

sortFieldN: smallint;

 name: PChar;

 direction: smallint

): Bool stdcall;

printJob Specifies the print job for which you want to set a group sort field.

sortFieldN Specifies the 0-based number of the sort field you want to set. The first sort field
is field 0. If the report has N sort fields, the function can be called with sortFieldN
between 0 and N-1. If the report has N sort fields, you can call the function with
sortFieldN = N to add a new sort field to the end of the list of existing sort fields.
If N=0, the function will create the first sort field.

name Specifies a pointer to the null-terminated string that contains the name of the
group sort field.

direction Specifies the sort directions. Use one of the PE_SF_XXX “Sort Order Constants”
on page 560.
Crystal Reports Technical Reference Guide 421

Print Engine Functions
dBASE for Windows Syntax

EXTERN CLOGICAL PESetNthGroupSortField (CWORD, CWORD, CSTRING, CWORD)

CRPE.DLL

PESetNthParameterDefaultValue

Use PESetNthParameterDefaultValue to set a default value for a specified
parameter field in a report. Use “PEGetNParameterDefaultValues” on page 326, to
retrieve the number of default values for the parameter field.

C Syntax

BOOL CRPE_API PESetNthParameterDefaultValue (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index,

PEValueInfo FAR *valueInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare function PESetNthParameterDefaultValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

valueInfo As PEValueInfo) As Integer

printJob Specifies the print job for which you want to set a parameter default value.

parameterField
Name

Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

index Specifies the index number of the default value to be set.

valueInfo Specifies a pointer to “PEValueInfo” on page 516, which will contain the
default value.
422 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Delphi Syntax

function PESetNthParameterDefaultValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

index: smallint;

var valueInfo: PEValueInfo

): BOOL stdcall;

PESetNthParameterField

Use PESetNthParameterField to set a value for the specified parameter field. For
new development, see Remarks below.

C Syntax

BOOL CRPE_API PESetNthParameterField (

short printJob,

short parameterN,

PEParameterFieldInfo FAR *parameterInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� For new development, the Default/CurrentValueSet members of
PEParameterFieldInfo must be set to FALSE and the following new calls used
to access default and current value lists.
� “PEAddParameterCurrentRange” on page 278
� “PEAddParameterCurrentValue” on page 279
� “PEAddParameterDefaultValue” on page 280
� “PESetNthParameterDefaultValue” on page 422

� To if you wish to set the parameter field to NULL then use CRWNULL (for
example, ParameterFieldInfo.currentValue = CRWNULL). It is of Type String
and independent of the data type of the parameter. See “PEParameterFieldInfo”
on page 484.

printJob Specifies the print job for which you want to set a parameter field value.

parameterN Specifies the number of the parameter field in the report.

parameterInfo Specifies a pointer to “PEParameterFieldInfo” on page 484 which is used to
pass the parameter field value information. See Remarks below.
Crystal Reports Technical Reference Guide 423

Print Engine Functions
� To determine if a parameter field is a stored procedure, use
“PEGetNthParameterType” on page 341 or “PEGetNthParameterField” on
page 340 functions.

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

Visual Basic Syntax

Declare Function PESetNthParameterField Lib "crpe32.dll" _

(ByVal printJob As Integer, ByVal varN As Integer, varInfo As _

PEParameterFieldInfo) As Integer

Delphi Syntax

function PESetNthParameterField (

printJob: Word;

varN: Smallint;

var varInfo: PEParameterFieldInfo

): Bool stdcall;

PESetNthParameterValueDescription

Use PESetNthParameterValueDescription to set the description of the value for a
parameter.

C Syntax

BOOL CRPE_API PESetNthParameterValueDescription (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

short index,

char FAR *valueDesc);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set parameter value
description information.

parameterFieldName Specifies a pointer to the parameterFieldName for which you want to
set the parameter value description.

reportName Specifies a pointer to the report name. See Remarks below.

index Specifies the index.

valueDesc Specifies a pointer to the handle of the value description to be set.
424 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

VB Syntax

Declare Function PESetNthParameterValueDescription Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, ByVal index As Integer, _

ByVal valueDesc As String) As Integer

Delphi Syntax

function PESetNthParameterValueDescription (

 printJob : Smallint;

 parameterFieldName : PChar;

 reportName : PChar;

 index : Smallint;

 valueDesc : PChar): Bool; {$ifdef WIN32} stdcall; {$endif}

PESetNthSortField

Use PESetNthSortField to set one of the sort fields in the specified report. This
function can be used by itself to set a sort field/direction when there is not one
already set, or to change a sort field/direction when the number and name of the
sort field are known.

The function can also be used as one of a series of functions (“PEGetNSortFields”
on page 330, called once; “var reportAlertInfo : PEReportAlertInfo) : boolean
stdcall;” on page 343, or “PEGetHandleString” on page 318, called together as
many times as needed to identify the correct sort field; and PESetNthSortField,
called once when the correct sort field is identified). The series can be used in a
Custom-Print Link to identify and then change an existing sort field and/or sort
order in response to a user selection at print time. When you give the user the
ability to specify sort field(s) and/or direction at print time, your link must include
code to replace name and/or sort direction with user-generated values.

C Syntax

BOOL CRPE_API PESetNthSortField (

short printJob,

short sortFieldN,

const char FAR *name,

short direction);
Crystal Reports Technical Reference Guide 425

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448 or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PESetNthSortField Lib “crpe32.dll” (_

ByVal printJob As Integer, ByVal sortNumber As Integer, _

ByVal SortFieldName As String, ByVal Direction As Integer) As

Integer

Delphi Syntax

function PESetNthSortField (

printJob: Word;

sortFieldN: smallint;

name: PChar;

direction: smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetNthSortField (CWORD, CWORD, CSTRING, CWORD) CRPE.DLL

PESetNthTableLocation

Use PESetNthTableLocation to set the location for a selected table in the specified
print job. This function is typically combined with “PEGetNthTableLocation” on
page 347 to identify the location of a table and then to change it.

printJob Specifies the print job for which you want to set sort field information.

sortFieldN Specifies the 0-based number of the sort fields that you want to set. The first sort field
is field 0. If the report has N sort fields, the function can be called with sortFieldN
between 0 and N-1 to replace an existing sort field. If the report has N sort fields, you
can call the function with sortFieldN = N to add a new sort field to the end of the list of
existing sort fields. If N=0, the function will add the first sort field.

name Specifies a pointer to the null-terminated string that contains the name of the sort field.

direction Specifies the sort direction. Use one of the PE_SF_XXX “Sort Order Constants” on
page 560.
426 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

BOOL CRPE_API PESetNthTableLocation (

short printJob,

short tableN,

PETableLocation FAR *location);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetNthTableLocation Lib "crpe32.dll" (ByVal printJob

As Integer, ByVal TableN As Integer, Location As PETableLocation) As

Integer

Delphi Syntax

function PESetNthTableLocation(

printJob: Word;

tableN: smallint;

 var location: PETableLocation

): Bool stdcall;

PESetNthTableLogOnInfo

Use PESetNthTableLogOnInfo to set the log on information for the specified print
job to the values in “PELogOnInfo” on page 479.

C Syntax

BOOL CRPE_API PESetNthTableLogOnInfo (

short printJob,

short tableN,

PELogOnInfo FAR *logOnInfo,

BOOL propagateAcrossTables);

printJob Specifies the handle of the print job for which you want to set a table’s location.

tableN Specifies the 0-based number of the table for which you want to set a new location.
The first table is table 0. The last table is N-1.

location Specifies the pointer to “PETableLocation” on page 510. The format of the string
will be depend on the type of database specified.
Crystal Reports Technical Reference Guide 427

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� See “PELogOnServer” on page 374 for additional comments regarding
“PELogOnInfo” on page 479.

� The program logs on when printing the report, but you must first set the
correct log on information using PESetNthTableLogOnInfo. Logging off is
performed automatically when the print job is closed.

� You must supply at least the password with this function. You can pass empty
strings ("") for the other parameters or, alternatively, you can change the
server, database, and/or user ID by entering the appropriate strings.

� When you create a report from a single database (for example, one .MDB file
with multiple tables), set the propagateAcrossTables parameter to TRUE. This
insures that the changes are made to all tables in the .MDB file (thus avoiding
the necessity to code the changes for each table individually).

� This function can be used to set the location of an Essbase application and
database used by a report. For complete information, see “PELogOnInfo” on
page 479.

VB Syntax

Declare Function PESetNthTableLogOnInfo Lib "crpe32.dll" (ByVal

printJob As Integer, ByVal TableN As Integer, LogOnInfo As PELogOnInfo,

ByVal Propagate As Integer) As Integer

Delphi Syntax

function PESetNthTableLogOnInfo (

printJob: Word;

tableN: smallint;

var logOnInfo: PELogOnInfo;

propagateAcrossTables: Bool

): Bool stdcall;

printJob Specifies the print job for which you want to set table log on
information.

tableN Specifies the 0-based number of the table for which you want to set
log on information. The first table is table 0. The last table is N-1.

logOnInfo Specifies a pointer to the “PELogOnInfo” on page 479.

propagateAcrossTables If set to TRUE, the program will apply the new log on information to
any other tables in the report that had the same original server and
database names as the specified table. If set to FALSE, the program
will apply the new log on information only to the table specified.
428 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetNthTablePrivateInfo

Use PESetNthTablePrivateInfo to set the information needed for using data objects
such as ADO, RDO, or CDO with the Active Data Driver (PS2MON.DLL).

C Syntax

BOOL CRPE_API PESetNthTablePrivateInfo (

short printJob,

short tableN,

PETablePrivateInfo FAR *privateInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails

Remarks

The PESetNthTablePrivateInfo function is used in conjunction with the Crystal
Report Print Engine (Crpe32.dll) in a Visual C++ application. If you are using
Visual Basic see “SetActiveDataSource” on page 604.

Delphi Syntax

 function PESetNthTablePrivateInfo (

 printJob: Smallint;

 tableN: Smallint;

 var privateInfo: PETablePrivateInfo

) :Bool; {$ifdef WIN32} stdcall; {$endif}

PESetNthTableSessionInfo
Use PESetNthTableSessionInfo to set the specified session information when
opening a Microsoft Access table. Many Microsoft Access database tables require
that a session be opened before the table can be used. Use
PESetNthTableSessionInfo to open the session when required.

C Syntax

BOOL CRPE_API PESetNthTableSessionInfo (

short printJob,

short tableN,

PESessionInfo FAR *sessionInfo,

BOOL propagateAcrossTables);

printJob Specifies the print job for which you want to change the MS Access session
information.

tableN Specifies the 0-based number of the table for which you want to set table private
information. The first table is table 0. The last table is N-1.

privateInfo Specifies a pointer to “PETablePrivateInfo” on page 511.
Crystal Reports Technical Reference Guide 429

Print Engine Functions
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

In Microsoft Access 95 and later, an Access database can have session security (also
known as user-level security), database-level security, or both.
� If the Access database contains only session security, simply pass the session

password to the Password member before calling
“PESetNthTableSessionInfo” on page 429.

� If the Access database contains database-level security, use a newline
character, ‘\n’ (ASCII character 10) followed by the database-level password
(for example, “\ndbpassword”).
� If the Access database contains both session security and database-level

security, use the session password followed by the newline character and
the database password (for example, “sesspswd\ndbpassword”).

� Alternately, database-level security can also be handled by assigning the
database-level password to the Password member of “PELogOnInfo” on
page 479 and calling “PESetNthTableLogOnInfo” on page 427.

VB Syntax

Declare Function PESetNthTableSessionInfo Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal TableN As Integer, _

SessionInfo As PESessionInfo, ByVal PropagateAcrossTables _

As Integer) As Integer

Delphi Syntax

function PESetNthTableSessionInfo (

printJob: Word;

tableN: smallint;

var sessionInfo: PESessionInfo;

propagateAcrossTables: Bool

): Bool stdcall;

printJob Specifies the print job for which you want to change the MS Access
session information.

tableN Specifies the 0-based number of the table for which you want to open
the session. The first table is table 0. The last table is N-1.

sessionInfo Specifies a pointer to “PESessionInfo” on page 503.

propagateAcrossTables Boolean value indicating whether the session information should be
used for opening all tables being used in the report.
430 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetParameterMinMaxValue

Use PESetParameterMinMaxValue to set the minimum and/or maximum possible
values for the specified parameter in a report.

C Syntax

BOOL CRPE_API PESetParameterMinMaxValue(

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEValueInfo FAR *valueMin,

PEValueInfo FAR *valueMax);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.
� Regarding parameters valueMin and valueMax:

� Set valueMin to NULL if specifying maximum value only; valueMin must
be non NULL if valueMax is NULL.

� Set valueMax to NULL if specifying minimum value only; valueMax must
be non-NULL if valueMin is NULL.

� If both valueMin and valueMax are specified (that is, non-NULL), then the
valueType field of both structures must be the same or error code
PE_ERR_INCONSISTANTTYPES is returned.

printJob Specifies the print job for which you want to set minimum and/or
maximum parameters values.

parameterFieldName Specifies a pointer to the string containing the parameter name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

valueMin Specifies a pointer to “PEValueInfo” on page 516, which contains
minimum value information. See Remarks below.

valueMax Specifies a pointer to “PEValueInfo” on page 516, which contains
maximum value information. See Remarks below.
Crystal Reports Technical Reference Guide 431

Print Engine Functions
VB Syntax

Declare Function PESetParameterMinMaxValue Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, valueMin As PEValueInfo, _

valueMax As PEValueInfo) As Integer

Delphi Syntax

function PESetParameterMinMaxValue (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

var valueMin: PEValueInfo;

 var valueMax: PEValueInfo): BOOL stdcall;

PESetParameterPickListOption

Use PESetParameterPickListOption to set the parameter pick list options for a
report. This function sets the values in “PEParameterPickListOption” on page 487.

C Syntax

BOOL CRPE_API PESetParameterPickListOption (

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportName,

PEParameterPickListOption FAR *pickListOption);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

printJob Specifies the print job for which you want to set the parameter pick
list options.

parameterFieldName Specifies a pointer to the parameterFieldName for which you want to
set pick list options.

reportName Specifies a pointer to the report name. See Remarks below.

pickListOption Specifies a pointer to “PEParameterPickListOption” on page 487,
which will contain the new information.
432 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
VB Syntax

Declare Function PESetParameterPickListOption Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, pickListOption As

PEParameterPickListOption _

) As Integer

Delphi Syntax

function PESetParameterPickListOption (

 printJob : Smallint;

 parameterFieldName : PChar;

 reportName : PChar;

 var pickListOption : PEParameterPickListOption): Bool; {$ifdef WIN32}

stdcall; {$endif}

PESetParameterValueInfo
Use PESetParameterValueInfo to set information about the values which can be
stored in a specified parameter field. For example, it establishes whether fields are
editable, nullable, or can have multiple values, etc.

C Syntax

BOOL CRPE_API PESetParameterValueInfo(

short printJob,

const char FAR *parameterFieldName,

const char FAR *reportname,

PEParameterValueInfo FAR *valueInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Regarding parameter reportName:
� For the main report, pass an empty string ("").
� For a subreport, pass the file path and name of the subreport as a NULL-

terminated string.

printJob Specifies the print job for which you want to set parameter value
information.

parameterFieldName Specifies a pointer to the string containing the parameter field name.

reportName Specifies a pointer to the string containing the report name. See Remarks
below.

valueInfo Specifies a pointer to “PEParameterValueInfo” on page 488, which
contains the parameter value information.
Crystal Reports Technical Reference Guide 433

Print Engine Functions
VB Syntax

Declare Function PESetParameterValueInfo Lib "crpe32.dll" (_

ByVal printJob As Integer, ByVal parameterFieldName As String, _

ByVal reportName As String, valueInfo As PEParameterValueInfo) As

Integer

Delphi Syntax

function PESetParameterValueInfo (

printJob: smallint;

const parameterFieldName: PChar;

const reportName: PChar;

var valueInfo: PEParameterValueInfo

): BOOL stdcall;

PESetPrintDate

Use PESetPrintDate to set a print date that may be different than the system
calendar date. Use this function any time you want to show a print date (or use a
print date in formulas) other than the actual date of printing.

C Syntax

BOOL CRPE_API PESetPrintDate (

short printJob,

short year,

short month,

short day);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� You change the print date, typically, when you want to run the report today
yet have it appear to have been run on a different date. An example would be,

printJob Specifies the print job for which you want to set the print date.

year Specifies the year component of the print date. Enter a 4 digit year value (1994, 1993,
etc.).

month Specifies the month component of the print date. Months are numbered from 1 to
12, where January = 1 and December = 12. To use July as the print month, for
example, you would enter the value 7.

day Specifies the day component of the print date. Enter the actual day of the month you
want to use (7, 18, 28, etc.).
434 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
if you were out of town on the last day of the previous month and you later
want to run a report for that month and make it appear as if it were run on the
last day of the month.

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

VB Syntax

Declare Function PESetPrintDate Lib “crpe32.dll” (ByVal printJob As

Integer, ByVal Date_Year As Integer, ByVal Date_Month As Integer, ByVal

Date_Day As Integer) As Integer

Delphi Syntax

function PESetPrintDate (

printJob: Word;

year: smallint;

month: smallint;

day: smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetPrintDate (CWORD, CWORD, CWORD, CWORD) CRPE.DLL

PESetPrintOptions

Use PESetPrintOptions to set the print options for the report to the values supplied
in “PEPrintOptions” on page 489. Use this function any time you want to set the
starting page number, the ending page number, the number of report copies, and/
or collation instructions for a print job in response to user specifications at runtime.

C Syntax

BOOL CRPE_API PESetPrintOptions (

short printJob,

PEPrintOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set printing options.

options Specifies a pointer to “PEPrintOptions” on page 489. If this parameter is set to 0
(NULL), the function prompts the user for these options. Using this, you can get the
behavior of the print-to-printer button in the preview window by calling
PESetPrintOptions with a NULL pointer and then calling “PEPrintWindow” on
page 387.
Crystal Reports Technical Reference Guide 435

Print Engine Functions
VB Syntax

Declare Function PESetPrintOptions Lib “crpe32.dll” (ByVal printJob As

Integer, Options As PEPrintOptions) As Integer

Delphi Syntax

function PESetPrintOptions (

printJob: Word;

var options: PEPrintOptions

): Bool stdcall;

PESetReportOptions

Use PESetReportOptions to set various options for the report to the values
supplied in “PEReportAlertInfo” on page 494. Use this function any time you want
to set any of the report options found in the Report|Options dialog box in the
Crystal Reports Designer.

C Syntax

BOOL CRPE_API PESetReportOptions (

short printJob,

PEReportOptions FAR *reportOptions);

Parameters

Returns

� TRUE if the call is successful
� FALSE if the call fails.

VB Syntax

Declare Function PESetReportOptions Lib "crpe32.dll" (ByVal printJob _

As Integer, reportOptions As PEReportOptions) As Integer

Delphi Syntax

function PESetReportOptions (

printJob: smallint;

var reportOptions: PEReportOptions

): Bool stdcall;

printJob Specifies the print job for which you want to set report options.

reportOptions Specifies a pointer to “PEReportAlertInfo” on page 494.
436 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetReportSummaryInfo

Use PESetReportSummaryInfo to set report summary information. Report
summary information corresponds to the Summary Info dialog box found in
Crystal Reports.

C Syntax

BOOL CRPE_API PESetReportSummaryInfo (

short printJob,

PEReportSummaryInfo FAR *summaryInfo);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

This function should be called before “PEStartPrintJob” on page 448, or the results
may be inconsistent or unexpected.

VB Syntax

Declare Function PESetReportSummaryInfo Lib “crpe32.dll” (

ByVal printJob as Integer, summaryInfo as PEReportSummaryInfo) as

Integer

Delphi Syntax

function PESetReportSummaryInfo (

printJob: Word;

var summaryInfo: PEReportSummaryInfo

): Bool; stdcall

PESetReportTitle

Use PESetReportTitle to change the report title in the report summary information.
This function can also be used as one of a series of functions: “PEGetReportTitle”
on page 358; “PEGetHandleString” on page 318; or REFSetReportTitle). This series
can be used in a Custom-Print Link to identify and then change an existing report
title in response to a user selection at print time.

printJob Specifies the print job for which you want to set summary information.

summaryInfo Specifies the pointer to “PEReportSummaryInfo” on page 499.
Crystal Reports Technical Reference Guide 437

Print Engine Functions
C Syntax

BOOL CRPE_API PESetReportTitle (

short printJob,

const char FAR *title);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� When you give the user the ability to change the report title at print time, your
link must include code to replace text with a user-generated value.

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

VB Syntax

Declare Function PESetReportTitle Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal Title As String) As Integer

Delphi Syntax

function PESetReportTitle (

printJob: Word;

title: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetReportTitle (CWORD, CSTRING) CRPE.DLL

PESetSectionFormat

Use PESetSectionFormat to set the section format settings for selected sections in
the specified report to the values in “PESectionOptions” on page 501. This function
can be used to provide specialized formatting for printing invoices, form letters,
printing to pre-printed forms, etc. It allows you to hide a section, insert a page
break either before or after a section begins, reset the page number to 1 after a
group value prints, prevent page breaks from spreading data from a single record
over two pages, and to print group values only at the bottom of a page.

printJob Specifies the print job for which you want to set the report title.

title Specifies a pointer to the null-terminated string containing the new title that you
want to assign to the report.
438 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
C Syntax

BOOL CRPE_API PESetSectionFormat (

short printJob,

short sectionCode,

PESectionOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� There can be multiple sections in an area.
� This function should be called before “PEStartPrintJob” on page 448 or the

results may be inconsistent or unexpected.

VB Syntax

Declare Function PESetSectionFormat Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer,

Options As PESectionOptions) As Integer

Delphi Syntax

function PESetSectionFormat (

printJob: Word;

sectionCode: smallint;

var options: PESectionOptions

): Bool stdcall;

PESetSectionFormatFormula

Use PESetSectionFormatFormula to change the specified section format formula to the
formula string you supply as a parameter. This function will only change the text of a
formula which already exists in the report; you cannot use it to add a formula. When
you give the user the ability to change the formula at print time, your link must include
code to replace the formulaString parameter with a user-generated value.

printJob Specifies the print job for which you want to set section formatting options.

sectionCode Specifies the “Section Codes” on page 559 for the report section(s) for which
you want to set formatting options. See “Working with section codes” on
page 46.

options Specifies a pointer to “PESectionOptions” on page 501. Use this structure to set
your section options.
Crystal Reports Technical Reference Guide 439

Print Engine Functions
C Syntax

BOOL CRPE_API PESetSectionFormatFormula (

short printJob,

short sectionCode,

short formulaName,

const char FAR *formulaString);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.
� Error code PE_ERR_BADFORMULANAME if the formula does not exist.
� Error code PE_ERR_BADFORMULATEXT if there is an error in the formula.

Remarks

� This function should be called before “PEStartPrintJob” on page 448, or the
results may be inconsistent or unexpected.

� Not all formula names can be applied to all sections.

VB Syntax

Declare Function PESetSectionFormatFormula Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal sectionCode As Integer,

ByVal formulaName As Integer, ByVal FormulaString As String) As

Integer

Delphi Syntax

function PESetSectionFormatFormula (

printJob: Word;

sectionCode: smallint;

formulaName: smallint;

formulaString: PChar

): Bool stdcall;

printJob Specifies the print job for which you want to set a new selection formula string.

sectionCode Specifies the “Section Codes” on page 559, for the report section(s) for which
you want to set formatting options. See “Working with section codes” on
page 46.

formulaName Specifies the name of the formatting formula for which you want to supply a
new string. Use one of the PE_FFN_XXX “Area/Section Format Formula
Constants” on page 541.

formulaString Specifies a pointer to the null-terminated string that you want to assign to the
format formula.
440 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PESetSectionHeight

Use PESetSectionHeight to set the section height information for the specified
section. This is the replacement API Call for PESetMinimumSectionHeight and
should be used for all new development.

C Syntax

BOOL CRPE_API PESetSectionHeight(

short printJob,

short sectionCode,

short height);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetSectionHeight Lib "crpe32.dll" (

ByVal printJob As Integer, ByVal sectionCode As Integer,

ByVal height As Integer) As Integer

Delphi Syntax

function PESetSectionHeight (

printJob: Smallint;

sectionCode: Smallint;

Height: Smallint (*in twips*)

): Bool stdcall;

PESetSelectionFormula

Use PESetSelectionFormula to change the selection formula to the formula string
that you supply as a parameter. This function can be used by itself to replace a
known record selection formula and also as one of a series of functions:
“PEGetSelectionFormula” on page 365; “PEGetHandleString” on page 318; or
PESetSelectionFormula). The series can be used in a Custom-Print link to identify
and then change an existing record selection formula at print time in response to a
user selection. When you give the user the ability to change the record selection
formula at print time, your link must include code to replace formulaString with a
user-generated value.

printJob Specifies the print job for which you want to set section height information.

sectionCode Specifies the “Section Codes” on page 559 for the section(s) for which you want to
set section height information. See “Working with section codes” on page 46.

height The section height measured in twips.
Crystal Reports Technical Reference Guide 441

Print Engine Functions
C Syntax

BOOL CRPE_API PESetSelectionFormula (

short printJob,

const char FAR *formulaString);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails due to an internal error (for example, the connection to

the database fails).

Remarks

� Immediately after setting the new formula with PESetSelectionFormula, the
new formula should be verified with “PECheckSelectionFormula” on
page 285.

� This function should be called before “PEStartPrintJob” on page 448 or the
results may be inconsistent or unexpected.

VB Syntax

Declare Function PESetSelectionFormula Lib “crpe32.dll” (ByVal printJob

As Integer, ByVal FormulaString As String) As Integer

Delphi Syntax

function PESetSelectionFormula (

printJob: Word;

formulaString: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetSelectionFormula (CWORD, CSTRING) CRPE.DLL

PESetSQLExpression

Use PESetSQLExpression to enter an SQL expression for a specified report.

C Syntax

BOOL CRPE_API PESetSQLExpression (

short printJob,

const char FAR *expressionName,

const char FAR *expressionString);

printJob Specifies the print job for which you want to set a new selection formula string.

formulaString Specifies a pointer to the null-terminated string that you want to assign to the
selection formula.
442 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PESetSQLExpression Lib "crpe32.dll" (ByVal printJob As

Integer, ByVal expressionName As String, ByVal expressionString As

String) As Integer

Delphi Syntax

function PESetSQLExpression (

printJob: Smallint;

const expressionName: PChar;

const expressionString: PChar

): Bool stdcall;

PESetSQLQuery

Use PESetSQLQuery to change the SQL query to the query string you supply as a
parameter. Use this function to update the SQL query that will be used to print the
specified report, typically to add optimizations to the WHERE clause.

C Syntax

BOOL CRPE_API PESetSQLQuery (

short printJob,

const char FAR *queryString);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set an SQL expression.

expressionName Specifies a pointer to the string containing the expression name.

expressionString Specifies a pointer to the string containing the SQL expression.

printJob Specifies the print job for which you want to modify the SQL query.

queryString Specifies a pointer to the null-terminated string that you want to use to replace
the existing SQL query.
Crystal Reports Technical Reference Guide 443

Print Engine Functions
Remarks

� This function is useful for reports with SQL queries that were explicitly edited
in the Show SQL Query dialog box in Crystal Reports (that is, those reports
that needed database-specific selection criteria or joins). Otherwise it is usually
best to continue using function calls such as “PESetSelectionFormula” on
page 441, and let Crystal Reports build the SQL query automatically.

� PESetSQLQuery has the same restrictions as editing in the Show SQL Query
dialog box. In particular, changes are accepted in the WHERE and ORDER BY
clauses but they are ignored in the SELECT list
of fields.

� This call only applies to reports created against an ODBC source or on a native
SQL database connection.

VB Syntax

Declare Function PESetSQLQuery Lib “crpe32.dll” (ByVal printJob As Integer,

ByVal QueryString As String) As Integer

Delphi Syntax

function PESetSQLQuery (

printJob: Word;

queryString: PChar

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PESetSQLQuery (CWORD, CSTRING) CRPE.DLL

PESetTrackCursorInfo

Use PESetTrackCursorInfo to set information for tracking the position of the mouse
cursor over the preview window. This functions is only valid if the report was sent
to a preview window (see “PEOutputToWindow” on page 382), and if events for
the preview window have been enabled (see “PEEnableEvent” on page 297).

C Syntax

BOOL CRPE_API PESetTrackCursorInfo (

short printJob,

PETrackCursorInfo FAR *cursorInfo);

Parameters

printJob Specifies the print job for which you want to track the mouse cursor.

cursorInfo Specifies a pointer to “PETrackCursorInfo” on page 514.
444 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

� By default, all area’s track cursors are arrow cursors. If the preview window
contains a drill-down field (database field, summary, group name, group
graph), the group area will use a magnify cursor. Group graphs in other areas
will also use the magnify cursor.

� This function can be used to give the user visual feed back especially when
tracking events.

VB Syntax

Declare Function PESetTrackCursorInfo Lib “crpe.dll” (ByVal printJob As

Integer, cursorInfo As PETrackCursorInfo) As Integer

Delphi Syntax

function PESetTrackCursorInfo(

printJob: smallint;

var cursorInfo: PETrackCursorInfo

): smallint stdcall;

PESetWindowOptions

Use PESetWindowOptions to set display options for the preview window,
including which preview window controls are available. This function must be
called after “PEOutputToWindow” on page 382.

C Syntax

BOOL CRPE_API PESetWindowOptions (

short printJob,

PEWindowOptions FAR *options);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to set preview window display options.

options Specifies a pointer to a “PEWindowOptions” on page 519.
Crystal Reports Technical Reference Guide 445

Print Engine Functions
VB Syntax

Declare Function PESetWindowOptions Lib “crpe.dll” (

ByVal printJob As Integer, Options As PEWindowOptions) As Integer

Delphi Syntax

function PESetWindowOptions (

printJob: Word;

var options: PEWindowOptions

): Bool stdcall;

PEShow...Page

Use the PEShow...Page function calls to display the specified page in the preview
window. Use these functions any time you want to display specific pages of a
report in the preview window or give the user the ability to move forward,
backward, or to a specified page in a report in the preview window. Use
“PEGetNPages” on page 324, to determine the number of pages available in the
specified report when using PEShowNthPage, for example.

C Syntax

BOOL CRPE_API PEShowFirstPage (

short printJob);

BOOL CRPE_API PEShowLastPage (

short printJob);

BOOL CRPE_API PEShowNextPage (

short printJob);

BOOL CRPE_API PEShowNthPage (

short printJob,

short pageN);

BOOL CRPE_API PEShowPreviousPage (

short printJob);

Parameter(s)

� The following parameter applies only to PEShowNthPage.

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

printJob Specifies the print job for which you want to indicate the page to be displayed.

pageN Specifies the 1-based number indicating the report page that you want to display
when calling PEShowNthPage. See Remarks below.
446 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Remarks

Using “PEGetJobStatus” on page 319, you can determine how many pages are
contained in the specified report. This information will determine the range
available for parameter pageN when using PEShowNthPage.

VB Syntax

Declare Function PEShowFirstPage Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Declare Function PEShowLastPage Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Declare Function PEShowNextPage Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Declare Function PEShowNthPage Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal pageN As Integer) As Integer

Declare Function PEShowPreviousPage Lib “crpe32.dll” (

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEShowFirstPage (

printJob: Word

): Bool stdcall;

function PEShowLastPage (

printJob: Word

): Bool stdcall;

function PEShowNextPage (

printJob: Word

): Bool stdcall;

function PEShowPreviousPage (

printJob: Word

): Bool stdcall;

function PEShowNthPage (

printJob: Word;

pageN: Smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEShowNextPage (CWORD) CRPE.DLL

EXTERN CLOGICAL PEShowFirstPage (CWORD) CRPE.DLL

EXTERN CLOGICAL PEShowPreviousPage (CWORD) CRPE.DLL

EXTERN CLOGICAL PEShowLastPage (CWORD) CRPE.DLL

PEShowPrintControls

Use PEShowPrintControls to display the print controls (First, Previous, Next, and
Last Page buttons as well as the buttons for Cancel, Close, Export, and Print to
Printer). Use this call any time you want to provide control over whether print
controls are displayed or not.
Crystal Reports Technical Reference Guide 447

Print Engine Functions
C Syntax

BOOL CRPE_API PEShowPrintControls (

short printJob,

BOOL showPrintControls);

Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

Print controls are displayed by default. It is not necessary to use this function
simply to display controls but only if you want the user to control whether or not
the controls are visible.

VB Syntax

Declare Function PEShowPrintControls Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal ShowPrintControls As Integer) As

Integer

Delphi Syntax

function PEShowPrintControls (

printJob: Word;

showPrintControls: Bool

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEShowPrintControls (CWORD, CLOGICAL) CRPE.DLL

PEStartPrintJob

Use PEStartPrintJob to start the printing of a report. This function is used as a
mandatory part of each Custom-Print Link to trigger the printing of a report to the
printer or to the preview window.

C Syntax

BOOL CRPE_API PEStartPrintJob (

short printJob,

BOOL waitUntilDone);

printJob Specifies the print job for which you want to toggle the display of print
controls.

showPrint
Controls

Boolean value indicates whether or not the print controls are displayed. TRUE
will cause the print controls to be displayed; FALSE will hide the print controls.
448 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
Parameters

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

Remarks

A print job can be started only once. Once started, the only function that can be
used is “PEClosePrintJob” on page 288.

VB Syntax

Declare Function PEStartPrintJob Lib “crpe32.dll” (ByVal printJob _

As Integer, ByVal WaitOrNot As Integer) As Integer

Delphi Syntax

function PEStartPrintJob (

printJob: Word;

waitUntilDone: Bool

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEStartPrintJob (CWORD, CLOGICAL) CRPE.DLL

PETestNthTableConnectivity

Use PETestNthTableConnectivity to test whether a database table's settings are
valid and ready to be reported on. This function is typically used if you plan to
print at a later time but you want to test now to make sure everything is in order
for logging on. For example, your application can prompt your user for a password
and then test it before printing begins. See Remarks below.

C Syntax

BOOL CRPE_API PETestNthTableConnectivity (

short printJob,

short tableN);

Parameters

printJob Specifies the print job you want to start.

waitUntilDone BOOL. Reserved. This parameter must always be set to TRUE.

printJob Specifies the print job for which you want to test a table’s connection settings.

tableN Specifies the 0-based number of the table for which you want to test the database
table settings. The first table is table 0. The last table is N-1.
Crystal Reports Technical Reference Guide 449

Print Engine Functions
Returns

� TRUE if the database session, log on, and location information is all correct.
� FALSE if the call fails.

Remarks

� This function may require a significant amount of time to complete, since it
will first open a user session (if required), then log on to the database server (if
required), and then open the appropriate database table (to test that it exists).

� PETestNthTableConnectivity does not read any data.
� PETestNthTableConnectivity closes the table immediately once the connection

has been tested successfully.
� If the connection fails at one of the following steps, the error code set indicates

which function needs to be called to provide updated database information.

� Logging off is performed when the print job is closed.

VB Syntax

Declare Function PETestNthTableConnectivity Lib “crpe32.dll” (ByVal

printJob As Integer, ByVal TableN As Integer) As Integer

Delphi Syntax

function PETestNthTableConnectivity (

printJob: Word;

tableN: smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PETestNthTableConnectivity (CWORD, CWORD) CRPE.DLL

Connection Failure Error Code Update with Function

Unable to begin a
session.

PE_ERR_DATABASESESSION “PESetNthTableSessionInfo”
on page 429

Unable to log on to a
server.

PE_ERR_DATABASELOGON “PESetNthTableLogOnInfo” on
page 427

Unable to open the
table.

PE_ERR_DATABASELOCATION “PESetNthTableLocation” on
page 426
450 Crystal Reports Technical Reference Guide

6 : Crystal Report Engine
PEVerifyDatabase

Use PEVerifyDatabase to verify that a connection to the database(s) specified in a
report are valid.

C Syntax

BOOL CRPE_API PEVerifyDatabase (

short printJob);

Parameter

Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEVerifyDatabase Lib "crpe32.dll" (

ByVal printJob As Integer) As Integer

Delphi Syntax

function PEVerifyDatabase

printJob: smallint

): Bool stdcall;

PEZoomPreviewWindow

Use PEZoomPreviewWindow to change the magnification of the preview window
to a specified level. Use this function when the report has been printed to a preview
window and you want to set the magnification of the preview window to a specific
level (Full Page, Fit One Side, Fit Both Sides, or a specified level).

C Syntax

BOOL CRPE_API PEZoomPreviewWindow (

short printJob,

short level);

Parameters

printJob Specifies the print job for which you want to verify the database connection.

printJob Specifies the print job for which you want to set the magnification level in the
preview window.

level The zoom level at which you want to set the preview window. This value can be a set
to a specific magnification level (%) in the range from 25 to 400, or you can use one of
the “Zoom Level Constants” on page 561.
Crystal Reports Technical Reference Guide 451

Print Engine Functions
Returns

� TRUE if the call is successful.
� FALSE if the call fails.

VB Syntax

Declare Function PEZoomPreviewWindow Lib “crpe32.dll” (

ByVal printJob As Integer, ByVal ZoomLevel As Integer) As Integer

Delphi Syntax

function PEZoomPreviewWindow (

printJob: Word;

level: smallint

): Bool stdcall;

dBASE for Windows Syntax

EXTERN CLOGICAL PEZoomPreviewWindow (CWORD, CWORD)CRPE.DLL
452 Crystal Reports Technical Reference Guide

Crystal report Engine
Print Engine Structures
The print Engine structures are listed alphabetically in this section.

PEAlertInstanceInfo

PEAlertInstanceInfo contains information for a selected instance of a Report Alert.
This information is used by “PEGetNthAlertInstanceInfo” on page 333, to retrieve
information on the selected instance of the Report Alert.

C Syntax

typedef struct PEAlertInstanceInfo

{

WORD StructSize;

short alertMessageLength;

HANDLE alertMessage;

} PEAlertInstanceInfo;

Members

Remarks

In the present build only the first instance of the Report Alert is created at runtime.
This limitation will be addressed in a future release.

VB Type Listing

Type PEAlertInstanceInfo

StructSize As Integer

alertMessageLength As Integer

alertMessage As Long

End Type

Delphi Record Listing

type PEAlertInstanceInfo = record

StructSize : Word;

alertMessageLength : Smallint;

alertMessage : HWND;

end;

StructSize Specifies the size of the PEAlertInstanceInfo structure. Initialize this
member to PE_SIZEOF_ALERT_INSTANCE_INFO.

alsertMessage
Length

Specifies the length of the alert message generated for this instance of the
Report Alert.

alertMessage Specifies a handle to the string containing alert message generated for this
instance of the Report Alert.
Crystal Reports Technical Reference Guide 453

Print Engine Structures
PECloseButtonClickedEventInfo

This structure contains information about a close button clicked event. When the
close button in a preview window is clicked, a callback function will be called with
EventId = PE_CLOSE_BUTTON_CLICKED_EVENT.

C Syntax

typedef struct PECloseButtonClickedEventInfo {

WORD StructSize;

WORD viewIndex;

long windowHandle;

} PECloseButtonClickedEventInfo;

Members

VB Type Listing

Type PECloseButtonClickedEventInfo

StructSize As Integer

viewIndex As Integer

windowHandle As Long

End Type

Delphi Record Listing

type

PECloseButtonClickedEventInfo = record

StructSize: Word;

viewIndex: Word;

windowHandle: HWnd;

end;

PEDrillOnDetailEventInfo

PEDrillOnDetailEventInfo contains information related to callback Event Id =
PE_DRILL_ON_DETAIL_EVENT event information.

C Syntax

typedef struct PEDrillOnDetailEventInfo {

WORD StructSize;

short selectedFieldIndex;

long windowHandle;

struct PEFieldValueInfo **fieldValueList;

short nFieldValue;

} PEDrillOnDetailEventInfo;

StructSize Specifies the size of the PECloseButtonClickedEventInfo structure. Initialize
this number to PE_SIZEOF_CLOSE_BUTTON_CLICKED_EVENT_INFO.

viewIndex Specifies the 0-based index number indicating which view is going to be closed.

windowHandle Specifies the handle for the frame window on which the button is placed.
454 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

Remarks

If the user clicks one of the fields in the Details section, selectedFieldIndex will
point to the field index in fieldValueList. These fields have to be one of database
field, group name field, summary field, formula field. Clicks on text object, graph,
picture, ole, subreport, special var field, or database memo or blob field,
selectedFieldIndex return -1.

Delphi Record Listing

type

PEFieldValueInfoDoublePtr = ^PEFieldValueInfoPtr

PEDrillOnDetailEventInfo = record{

StructSize: Word;

selectedFieldIndex:smallint;

windowHandle: longint;

fieldValueList: PEFieldValueInfoDoublePtr;

nFieldValue: smallint;

end;

PEDrillOnGroupEventInfo

PEDrillOnGroupEventInfo specifies drill on group information when
PE_DRILL_ON_GROUP_EVENT happens.

C Syntax

typedef struct PEDrillOnGroupEventInfo {

WORD StructSize;

WORD drillType;

long windowHandle;

char **groupList;

WORD groupLevel;

} PEDrillOnGroupEventInfo;

StructSize Specifies the size of the PEDrillOnDetailEventInfo structure. Initialize this
number to PE_SIZEOF_DRILL_ON_DETAIL_EVENT_INFO.

selectedFieldIndex The 0-based index indicating which drill-down field was selected.
Contains -1 if no field was selected.

windowHandle Frame window handle where the drill on detail event happens.

fieldValueList Points to an array of PEFieldValue. Memory pointed by fieldValueList is
freed after calling the callback function.

nFieldValue The 1-based index of the value in field value list (for example, if the value
is listed second, the number would be 2).
Crystal Reports Technical Reference Guide 455

Print Engine Structures
Members

Remarks

Member groupList will be freed after the callback function. You will need to make
a copy of the groupList if you want to use it later.

VB Type Listing

Type PEDrillOnGroupEventInfo

StructSize As Integer

drillType As Integer

windowHandle As Long

groupList As String

groupLevel As Integer

End Type

Delphi Record Listing

type

PEPCharPointer = ^PChar

PEDrillOnGroupEventInfo

StructSize: Word;

drillType: Word;

windowHandle: HWnd;

groupList: PEPCharPointer;

groupLevel: Word;

end;

StructSize Specifies the size of the PEDrillOnGroupEventInfo structure. Initialize this
number to PE_SIZEOF_DRILL_ON_GROUP_EVENT_INFO.

drillType Specifies the type of drill down that is used. Use one of the following values.

Constant Description

PE_DE_ON_GROUP Drill-down on a group summary or
subtotal.

PE_DE_ON_GROUPTREE Drill-down a Group Tree node.

PE_DE_ON_GRAPH Drill-down a group graph object.

PE_DE_ON_MAP Drill-down on a map region.

PE_DE_ON_SUBREPORT Drill-down on a subreport.

windowHandle Frame window handle where the event happens.

groupList Specifies an array of pointers to group names in the report when drilling on a
group summary, a Group Tree, a chart, or a map; and a pointer to a single
element array containing the subreport name when drilling on a subreport.
This memory is freed after the callback function is called.

groupLevel The number of the group name in the group list.
456 Crystal Reports Technical Reference Guide

Crystal report Engine
PEEnableEventInfo

Events are grouped in CRPE. PEEnableEventInfo specifies which group event is
enabled or disabled. All events are disabled by default. Use “PEEnableEvent” on
page 297, to enable events.

C Syntax

typedef struct PEEnableEventInfo {

WORD StructSize;

short startStopEvent;

short readingRecordEvent;

short printWindowButtonEvent;

short drillEvent;

short closePrintWindowEvent;

short activatePrintWindowEvent;

short fieldMappingEvent;

short mouseClickEvent;

short hyperlinkEvent;

short launchSeagateAnalysisEvent;

} PEEnableEventInfo;

Members

Each member of type short can be set to TRUE, FALSE, or PE_UNCHANGED for
no change.

StructSize Specifies the size of the PEEnableEventInfo structure. Initialize this
number to PE_SIZEOF_ENABLE_EVENT_INFO.

startStopEvent Boolean value, or PE_UNCHANGED for no change. Start/Stop event.

readingRecordEvent Boolean value, or PE_UNCHANGED for no change. Reading record
event.

printWindowButton
Event

Boolean value, or PE_UNCHANGED for no change. Print window
button event.

drillEvent Boolean value, or PE_UNCHANGED for no change. Drill event.

closePrintWindowEvent Boolean value, or PE_UNCHANGED for no change. Close print
window event.

activatePrintWindow
Event

Boolean value, or PE_UNCHANGED for no change. Activate print
window event.

fieldMappingEvent Boolean value, or PE_UNCHANGED for no change. Field mapping
event.

mouseClickEvent Boolean value, or PE_UNCHANGED for no change. Mouse click event.

hyperlinkEvent Boolean value, or PE_UNCHANGED for no change. Hyperlink event.

launchSeagateAnalysis
Event

Boolean value, or PE_UNCHANGED for no change. Launch Seagate
Analysis event.
Note: Seagate Analysis is now known as Crystal Analysis.
Crystal Reports Technical Reference Guide 457

Print Engine Structures
Remarks

� By default, all events are disabled. Use “PEEnableEvent” on page 297, to
enable the desired event.

� For startStopEvent, readingRecordEvent, printWindowEvent, drillEvent,
closePrintWindowEvent, and activatePrintWindowEvent, use
PE_UNCHANGED for no change.

VB Type Listing
Type PEEnableEventInfo

StructSize As Integer

startStopEngine As Integer

readingRecordEvent As Integer

printWindowButtonEvent As Integer

drillEvent As Integer

closePrintWindowEvent As Integer

activatePrintWindowEvent As Integer

fieldMappingEvent As Integer

mouseClickEvent As Integer

End Type

Delphi Record Listing
type

PEEnableEventInfo = record

StructSize: Word;

startStopEvent: smallint;

readingRecordEvent: smallint;

printWindowButtonEvent: smallint;

drillEvent: smallint;

closePrintWindowEvent: smallint;

activatePrintWindowEvent: smallint;

fieldMappingEvent: smallint;

mouseClickEvent: smallint;

end;

PEExportOptions
PEExportOptions contains file format and output destination information that is
retrieved by “PEGetExportOptions” on page 306, and used “PEExportTo” on
page 299, when exporting reports.

C Syntax
typedef struct PEExportOptions {

WORD StructSize;

char formatDLLName [PE_DLL_NAME_LEN];

DWORD formatType;

void FAR *formatOptions;

char destinationDLLName [PE_DLL_NAME_LEN];

DWORD destinationType;

void FAR *destinationOptions;

WORD nFormatOptionsBytes;

WORD nDestinationOptionsBytes;

} PEExportOptions;
458 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

Visual Basic developers should refer to the VB syntax for specifics of the VB structure.

StructSize Specifies the size of the PEExportOptions structure. Initialize the member to
PE_SIZEOF_EXPORT_OPTIONS.

formatDLLName Specifies a pointer to the null-terminated string that contains the format
DLL name (of length PE_DLL_NAME_LEN = 64). The DLL is selected based
on the format in which you want to export your report. Select the
appropriate DLL name from the table below.

To export in this format Use this DLL

Crystal Reports Format u2fcr.dll

Data Interchange Format u2fwordw.dll

formatType Specifies the type of format you want to use from those types supported by
the selected DLL. Whether the format DLL you select supports only one
format type (for example, uxfcr.dll) or multiple format types (for example,
uxfdoc.dll), you must still fill in this member. Select the format type you
want to use from the table below.

To export a report in this format Use this formatType

Crystal Reports Format UXFCrystalReportType

Data Interchange Format UXFDIFType

Word for Windows Format UXFWordWinType

Word for DOS Format UXFWordDosType

WordPerfect Format UXFWordPerfectType

Quattro Pro 5.0 (WB1) Format UXFQP5Type

Record Style Format (column of
values)

UXFRecordType

Rich Text Format UXFRichTextFormatType

Comma Separated Values Format
(CSV)

UXFCommaSeparatedType

Tab Separated Values Format UXFTabSeparatedType

Character Separated Values Format UXFCharSeparatedType

Text Format (ASCII) UXFTextType

Paginated Text Format (ASCII) UXFPaginatedTextType

Tab Separated Text Format UXFTabbedTextType

Lotus 1-2-3 (WK3) UXFLotusWk3Type

Excel 4.0 UXFXls4Type

Excel 5.0 UXFXls5Type

Excel 5.0 Tabular UXFXlsTypeTab

ODBC UXFODBCType
Crystal Reports Technical Reference Guide 459

Print Engine Structures
HTML UXFHTML3Type

Microsoft Internet Explorer 2 HTML UXFExplorer2Type

Netscape 2 HTML UXFNetscape2Type

formatOptions Specifies a pointer to a structure that supplies date and number information.
This information is used by the PEExportOptions structure when you want
to export in one of the formats that support date and number options and
you want to hard code your options. Select the appropriate structure (if
needed) from the table below. WARNING: This member must be pointing to
a valid address until “PEStartPrintJob” on page 448, is called.

To export a report in this format Use this structure if you want to hard
code formatOptions

Data Interchange Format “UXFDIFOptions” on page 528

Record Style Format (column of
values)

“UXFRecordStyleOptions” on
page 531

Comma Separated Values (CSV) “UXFCommaTabSeparatedOptions
” on page 528

Tab Separated Values “UXFCommaTabSeparatedOptions
” on page 528

Character Separated Values “UXFCharSeparatedOptions” on
page 527

Paginated Text “UXFPaginatedTextOptions” on
page 530

Excel (Tabular)

ODBC Format “UXFODBCOptions” on page 530

HTML Format “UXFHTML3Options” on page 529

destinationDLL
Name

Specifies a pointer to the string (of length PE_DLL_NAME_LEN = 64,
NULL-terminated) that contains the destination DLL name. The DLL used is
determined by the destination to which you want to export your report.
Select the appropriate DLL name from the table below.

To export a report to this destination Use this DLL
name

Use this DLL
name

Disk File uxddisk.dll u2ddisk.dll

E-Mail (MAPI) uxdmapi.dll u2dmapi.dll

E-Mail (VIM) uxdvim.dll u2dvim.dll

Microsoft Exchange uxdpost.dll u2dpost.dll

destinationType Specifies the type of destination you want to use from those types supported
by the selected DLL. Even if the destinationDLL name you select supports
only one destination type, you must still fill in this member. Select the
destination type you want to use from the table below.

To export a report to this destination Use this destinationType

Disk File UXDDiskType
460 Crystal Reports Technical Reference Guide

Crystal report Engine
Remarks

Note that both the formatOptions and destinationOptions members must be
pointing to a valid address until “PEStartPrintJob” on page 448, is called.

VB Type Listing

Type PEExportOptions

StructSize As Integer

FormatDLLName As String * PE_DLL_NAME_LEN

FormatType1 As Integer

FormatType2 As Integer

FormatOptions1 As Integer

FormatOptions2 As Integer

DestinationDLLName As String * PE_DLL_NAME_LEN

DestinationType1 As Integer

DestinationType2 As Integer

DestinationOptions1 As Integer

DestinationOptions2 As Integer

NFormatOptionsBytes As Integer

NDestinationOptionsBytes As Integer

End Type

E-Mail (MAPI) UXDMAPIType

E-Mail (VIM) UXDVIMType

Microsoft Exchange UXDExchFolderType

destination
Options

Specifies a pointer to a structure containing information used by the
PEExportOptions structure. This information is needed to export a report
and hard code the file name (when exporting to Disk File) or e-mail message
information (when exporting to MAPI or VIM destination). Select the
appropriate structure (if needed) from the table below. WARNING: This
member must be pointing to a valid address until “PEStartPrintJob” on
page 448, is called.

To export a report to this destination Use this structure if you want to hard
code destinationOptions

Disk File “UXDDiskOptions” on page 522

E-Mail (MAPI) “UXDMAPIOptions” on page 523

E-Mail (VIM) “UXDVIMOptions” on page 526

Microsoft Exchange “UXDPostFolderOptions” on
page 525

nFormat
OptionsBytes

Set by “PEGetExportOptions” on page 306, and ignored by “PEExportTo”
on page 299.

nDestination
Options-Bytes

Set by “PEGetExportOptions” on page 306, and ignored by “PEExportTo”
on page 299.
Crystal Reports Technical Reference Guide 461

Print Engine Structures
Delphi Record Listing

type

PEDllNameType = array[0..PE_DLL_NAME_LEN-1] or Char;

PEExportOptions = record

StructSize: Word;

formatDLLName: PEDllNameType;

formatType: dWord;

formatOptions: Pointer;

destinationDLLName: PEDllNameType;

destinationType: dWord;

destinationOptions: Pointer;

nFormatOptionsBytes: Word;

nDestinationOptionsBytes: Word;

end;

PEFieldMappingEventInfo

PEFieldMappingEventInfo contains information related to mapped database fields.

C Syntax

typedef struct PEFieldMappingEventInfo {

WORD StructSize;

PEReportFieldMappingInfo **reportFields;

WORD nReportFields;

PEReportFieldMappingInfo **databaseFields;

WORD nDatabaseFields

} PEFieldMappingEventInfo;

Members

Remarks

To map a report field to a database field the member mappingTo of each
“PEReportFieldMappingInfo” on page 492, in the member reportFields array is
assigned the index of the appropriate field in the member databaseFields array.

StructSize Specifies the size of the PEFieldMappingEventInfo structure. Initialize the
member to PE_SIZEOF_FIELDMAPPING_EVENT_INFO.

reportFields A pointer to an array of pointers to “PEReportFieldMappingInfo” on
page 492, containing information about fields in the report.

nReportFields Size of the reportFields array (equivalent to the number of fields in the report).

databaseFields A pointer to an array of pointers to “PEReportFieldMappingInfo” on
page 492 data members containing information about fields in the new
database file.

nDatabaseFields Size of the databaseField array.
462 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

 type

 PEFieldMappingInfoPtr = ^PEReportFieldMappingInfo;

 PEFieldMappingInfoDoublePtr = ^PEFieldMappingInfoPtr;

 type

 PEFieldMappingEventInfo = record

 StructSize : Word;

 reportFields : PEFieldMappingInfoDoublePtr;

 nReportFields : Word;

 databaseFields : PEFieldMappingInfoDoublePtr;

 nDatabaseFields : Word;

 end;

PEFieldValueInfo

Specifies a field value in the fieldValueList of “PEDrillOnDetailEventInfo” on
page 454.

C Syntax

typedef struct PEFieldValueInfo {

WORD StructSize;

WORD ignored;

char fieldName [PE_FIELD_NAME_LEN];

PEValueInfo fieldValue;

} PEFieldValueInfo;

Members

Remarks

A selected Details area corresponds to a database record.

VB Type Listing

Type PEFieldValueInfo

StructSize As Integer

ignored As Integer

fieldName As String

fieldValue As PEValueInfo

End Type

StructSize Specifies the size of the PEFieldValueInfo structure. Initialize the member
to PE_SIZEOF_FIELD_VALUE_INFO.

ignored For 4 byte alignment. Ignore.

fieldName Specifies the formula form of a field name (of length
PE_FIELD_NAME_LEN = 512).

fieldValue Specifies the field value for the selected Details area for the field specified
by the field name.
Crystal Reports Technical Reference Guide 463

Print Engine Structures
Delphi Record Listing

type

PEFieldNameType = array[0..PE_FIELD_NAME_LEN-1] of char;

PEFieldValueInfo = record

StructSize: Word;

ignored: Word;

fieldName: PEFieldNameType;

fieldValue: PEValueInfo;

end;

PEFontColorInfo

PEFontColorInfo contains information regarding chart title text fonts.

C Syntax

typedef struct PEFontColorInfo {

WORD StructSize;

char faceName[PE_FACE_NAME_LEN]; // empty string for no change

short fontFamily;

short fontPitch;

short charSet;

short pointSize;

short isItalic;

short isUnderlined;

short isStruckOut;

short weight;

COLORREF color;

short twipSize;

} PEFontColorInfo;

Members

StructSize Specifies the size of the PEFontColorInfo structure. Initialize this member to
PE_SIZEOF_FONT_COLOR_INFO.

faceName Specifies the actual face name of the font [of length PE_FACE_NAME_LEN = 64].
The face name can typically come from a Font dialog box, be hard coded in the
application or be chosen by the application from the fonts supported on the printer.
For example, “Times New Roman”. Pass an empty string ("") for no change.

fontFamily Specifies the font family for the font. Use one of the following FF_XXX Font
Family Constants.

Constant Description

FF_DONTCARE No change.

FF_ROMAN Variable pitch font with serifs.

FF_SWISS Fixed pitch font without serifs.

FF_MODERN Fixed-pitch font, with or without
serifs.
464 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEFontColorInfo

StructSize As Integer

faceName As String * PE_FACE_NAME_LEN

fontFamily As Integer

fontPitch As Integer

charSet As Integer

pointSize As Integer

isItalic As Integer

isUnderlined As Integer

isStruckOut As Integer

weight As Integer

color As Long

twipSize As Integer

End Type

FF_SCRIPT Handwriting-like font.

FF_DECORATIVE Fancy display font.

fontPitch Specifies the font pitch. Use a constant value for the font pitch as defined in
WINDOWS.H. Use DEFAULT_PITCH for the current default setting.

charSet Specifies the character set. Use a constant value for the character set as defined in
WINDOWS.H. Use DEFAULT_CHARSET for the current default setting.

pointSize Specifies the desired point size for the selected font. Use this member or
member twipSize to specify the font size. If both members are non-zero, then
this member will be ignored and twipSize will be used. Pass 0 for both
twipSize and pointSize for no change.

isItalic Specifies whether the font selected should be italicized. Use TRUE for Italic
font, FALSE for non-Italic font, or PE_UNCHANGED for the current default
setting.

isUnderlined Specifies whether the font selected should be underlined. Use TRUE for
Underline, FALSE for no Underline, or PE_UNCHANGED for the current
default setting.

isStruckOut Specifies whether the font selected should be struck out. Use TRUE for
StruckOut, FALSE for no StruckOut, or PE_UNCHANGED for the current
default setting.

weight Specifies the weight of the font. Use a constant value from the weight values
defined in WINDOWS.H. Use 0 for no change.

color Specifies the RGB color value contained in “COLORREF” on page 533. Use
PE_UNCHANGED_COLOR for the current default setting.

twipSize Specifies the font size, in twips. Use this member or member pointSize to
specify the font size. If both members are non-zero, then this member will be
used and pointSize will be ignored. Pass 0 for both twipSize and pointSize for
no change.
Crystal Reports Technical Reference Guide 465

Print Engine Structures
Delphi Record Listing

type

 PEFaceNameType = array [0..PE_FACE_NAME_LEN-1] of Char;

 PEFontColorInfo = record

 StructSize : Word;

 faceName : PEFaceNameType;

 fontFamily : Smallint;

 fontPitch : Smallint;

 charSet : Smallint;

 pointSize : Smallint;

 isItalic : Smallint;

 isUnderlined : Smallint;

 isStruckOut : Smallint;

 weight : Smallint;

 color : COLORREF;

 end;

PEFormulaSyntax

PEFormulaSyntax is used by “PEGetFormulaSyntax” on page 308, and
“PESetFormulaSyntax” on page 406, to retrieve and set the syntax for the current
and following formula API calls.

C Syntax

#define PE_FS_SIZE 2

typedef struct PEFormulaSyntax {

WORD StructSize;

short formulaSyntax [PE_FS_SIZE];

} PEFormulaSyntax;

Members

VB Syntax

Type PEFormulaSyntax

StructSize As Integer

formulaSyntax (0 To 1) As Integer

End Type

StructSize Specifies the size of the PEFormulaSyntax structure. Initialize this
member to PE_SIZEOF_FORMULA_SYNTAX.

formulaSyntax Specifies the formula syntax. Use one of the PE_FST_XXX “Formula Syntax
Constants” on page 551, or PE_UNCHANGED for no change. Default
value is PE_FST_CRYSTAL.
466 Crystal Reports Technical Reference Guide

Crystal report Engine
PEGeneralPrintWindowEventInfo

PEGeneralPrintWindowEventInfo contains general preview window event
information. This structure is used for multiple events listed below. See Remarks.

C Syntax

typedef struct PEGeneralPrintWindowEventInfo {

WORD StructSize;

WORD ignored

long windowHandle;

} PEGeneralPrintWindowEventInfo;

Members

Remarks

Structure PEGeneralPrintWindowEventInfo is used for the following events.
� PE_CLOSE_PRINT_WINDOW_EVENT
� PE_PRINT_BUTTON_CLICKED_EVENT
� PE_EXPORT_BUTTON_CLICKED_EVENT
� PE_FIRST_PAGE_BUTTON_CLICKED_EVENT
� PE_PREVIOUS_PAGE_BUTTON_CLICKED_EVENT
� PE_NEXT_PAGE_BUTTON_CLICKED_EVENT
� PE_LAST_PAGE_BUTTON_CLICKED_EVENT
� PE_CANCEL_BUTTON_CLICKED_EVENT
� PE_PRINT_SETUP_BUTTON_CLICKED_EVENT
� PE_REFRESH_BUTTON_CLICKED_EVENT
� PE_ACTIVATE_PRINT_WINDOW_EVENT
� PE_DEACTIVATE_PRINT_WINDOW_EVENT

VB Type Listing

Type PEGeneralPrintWindowEventInfo

StructSize As Integer

ignored As Integer

windowHandle As Long

End Type

StructSize Specifies the size of the PEGeneralPrintWindowEventInfo structure.
Initialize this member to
PE_SIZEOF_GENERAL_PRINT_WINDOW_EVENT_INFO.

ignored For 4 byte alignment. Ignore.

windowHandle Frame window handle where the event happens.
Crystal Reports Technical Reference Guide 467

Print Engine Structures
Delphi Record Listing
type

PEGeneralPrintWindowEventInfo = record

StructSize: Word;

ignored: Word;

windowHandle: HWnd;

end;

PEGraphAxisInfo
PEGraphAxisInfo contains information about the gridline options, data ranges
and formats and axis division features for the specified chart.

C Syntax
//axis division method

#define PE_ADM_AUTOMATIC 0

#define PE_ADM_MANUAL 1

typedef struct PEGraphAxisInfo {

WORD StructSize;

short groupAxisGridLine;

short dataAxisYGridLine;

short dataAxisY2GridLine;

short seriesAxisGridline;

double dataAxisYMinValue;

double dataAxisYMaxValue;

double dataAxisY2MinValue;

double dataAxisY2MaxValue;

double seriesAxisMinValue;

double seriesAxisMaxValue;

short dataAxisYNumberFormat;

short dataAxisY2NumberFormat;

short seriesAxisNumberFormat;

short dataAxisYAutoRange;

short dataAxisY2AutoRange;

short seriesAxisAutoRange;

short dataAxisYAutomaticDivision;

//PE_ADM_* or PE_UNCHANGED for no change

short dataAxisY2AutomaticDivision;

//PE_ADM_* or PE_UNCHANED for no change

short seriesAxisAutomaticDivision;

//PE_ADM_* or PE_UNCHANED for no change

long dataAxisYManualDivision;

//if dataAxisYAutomaticDivision is PE_ADM_AUTOMATIC, this field is

ignored

long dataAxisY2ManualDivision;

long seriesAxisManualDivision;

 //if seriesAxisAutomaticDivision is PE_ADM_AUTOMATIC, this field is

ignored

short dataAxisYAutoScale;

short dataAxisY2AutoScale;

short seriesAxisAutoScale;

} PEGraphAxisInfo;
468 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

StructSize Specifies the size of the PEGraphAxisInfo structure. Initialize
this member to PE_SIZEOF_GRAPH_AXIS_INFO.

groupAxisGridLine Specifies GridLine option. Use one of the PE_GGT_XXX
“Chart Gridline Constants” on page 542, or
PE_UNCHANGED for no change.

dataAxisYGridLine Specifies GridLine option. Use one of the PE_GGT_XXX
“Chart Gridline Constants” on page 542, or
PE_UNCHANGED for no change.

dataAxisY2GridLine Specifies GridLine option. Use one of the PE_GGT_XXX
“Chart Gridline Constants” on page 542, or
PE_UNCHANGED for no change.

seriesAxisGridline Specifies GridLine option. Use one of the PE_GGT_XXX
“Chart Gridline Constants” on page 542, or
PE_UNCHANGED for no change.

dataAxisYMinValue Specifies the minimum value for the axis.

dataAxisYMaxValue Specifies the maximum value for the axis.

dataAxisY2MinValue Specifies the minimum value for the axis.

dataAxisY2MaxValue Specifies the maximum value for the axis.

seriesAxisMinValue Specifies the minimum value for the axis.

seriesAxisMaxValue Specifies the maximum value for the axis.

dataAxisYNumberFormat Specifies the format for the display of numeric values on the
chart. Use one of the PE_GNF_XXX “Chart Number Format
Constants” on page 544, or PE_UNCHANGED for no change.

dataAxisY2NumberFormat Specifies the format for the display of numeric values on the
chart. Use one of the PE_GNF_XXX “Chart Number Format
Constants” on page 544, or PE_UNCHANGED for no change.

seriesAxisNumberFormat Specifies the format for the display of numeric values on the
chart. Use one of the PE_GNF_XXX “Chart Number Format
Constants” on page 544, or PE_UNCHANGED for no change.

dataAxisYAutoRange Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autorange.

dataAxisY2AutoRange Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autorange.

seriesAxisAutoRange Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autorange.

dataAxisYAutomaticDivision PE_ADM_AUTOMATIC, PE_ADM_MANUAL, or
PE_UNCHANGED for no change.

dataAxisY2AutomaticDivision PE_ADM_AUTOMATIC, PE_ADM_MANUAL, or
PE_UNCHANGED for no change.

seriesAxisAutomaticDivision PE_ADM_AUTOMATIC, PE_ADM_MANUAL, or
PE_UNCHANGED for no change.
Crystal Reports Technical Reference Guide 469

Print Engine Structures
VB Type Listing

Type PEGraphAxisInfo

StructSize As Integer

groupAxisGridLine As Integer

dataAxisYGridLine As Integer

dataAxisY2GridLine As Integer

seriesAxisGridline As Integer

dataAxisYMinValue As Double

dataAxisYMaxValue As Double

dataAxisY2MinValue As Double

dataAxisY2MaxValue As Double

seriesAxisMinValue As Double

seriesAxisMaxValue As Double

dataAxisYNumberFormat As Integer

dataAxisY2NumberFormat As Integer

seriesAxisNumberFormat As Integer

dataAxisYAutoRange As Integer

dataAxisY2AutoRange As Integer

seriesAxisAutoRange As Integer

dataAxisYAutomaticDivision As Integer

dataAxisY2AutomaticDivision As Integer

seriesAxisAutomaticDivision As Integer

dataAxisYManualDivision As Long

dataAxisY2ManualDivision As Long

seriesAxisManualDivision As Long

dataAxisYAutoScale As Integer

dataAxisY2AutoScale As Integer

seriesAxisAutoScale As Integer

End Type

dataAxisYManualDivision If the corresponding axis m_dataAxisYAutomaticDivision is
PE_ADM_AUTOMATIC, this field is ignored.

dataAxisY2ManualDivision If the corresponding axis m_dataAxisY2AutomaticDivision is
PE_ADM_AUTOMATIC, this field is ignored.

seriesAxisManualDivision If the corresponding axis m_seriesAxisAutomaticDivision is
PE_ADM_AUTOMATIC, this field is ignored.

dataAxisYAutoScale Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autoscale.

dataAxisY2AutoScale Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autoscale.

seriesAxisAutoScale Boolean, or PE_UNCHANGED for no change. If TRUE, the
axis will autoscale.
470 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing
type

 PEGraphAxisInfo = record

 StructSize : Word;

 groupAxisGridLine : Smallint;

 dataAxisYGridLine : Smallint;

 dataAxisY2GridLine : Smallint;

 seriesAxisGridline : Smallint;

 dataAxisYMinValue : double;

 dataAxisYMaxValue : double;

 dataAxisY2MinValue : double;

 dataAxisY2MaxValue : double;

 seriesAxisMinValue : double;

 seriesAxisMaxValue : double;

 dataAxisYNumberFormat : Smallint;

 dataAxisY2NumberFormat : Smallint;

 seriesAxisNumberFormat : Smallint;

 dataAxisYAutoRange : Smallint;

 dataAxisY2AutoRange : Smallint;

 seriesAxisAutoRange : Smallint;

 dataAxisYAutomaticDivision : Smallint;

 dataAxisY2AutomaticDivision : Smallint;

 seriesAxisAutomaticDivision : Smallint;

 dataAxisYManualDivision : Longint;

 dataAxisY2ManualDivision : Longint;

 seriesAxisManualDivision : LongInt;

 end;

PEGraphOptionInfo
PEGraphOptionInfo contains information about chart appearance and is used by
“PEGetGraphOptionInfo” on page 311, and “PESetGraphOptionInfo” on
page 409.

C Syntax
typedef struct PEGraphOptionInfo {

WORD StructSize;

short graphColour;

short showLegend;

short legendPosition;

short pieSize;

short detachedPieSlice;

short barSize;

short verticalBars;

short markerSize;

short markerShape;

short dataPoints;

short dataValueNumberFormat;

short viewingAngle;

short legendLayout;

} PEGraphOptionInfo;
Crystal Reports Technical Reference Guide 471

Print Engine Structures
Members

VB Type Listing
Type PEGraphOptionInfo

StructSize As Integer

graphColour As Integer

showLegend As Integer

legendPosition As Integer

pieSize As Integer

detachedPieSlice As Integer

barSize As Integer

verticalBars As Integer

markerSize As Integer

markerShape As Integer

dataPoints As Integer

dataValueNumberFormat As Integer

viewingAngle As Integer

legendLayout As Integer

End Type

StructSize Specifies the size of the PEGraphOptionsInfo structure. Initialize this member
to PE_SIZEOF_GRAPH_OPTION_INFO.

graphColour Use one of the PE_GCR_XXX “Chart Options Constants” on page 541, or
PE_UNCHANGED for no change.

showLegend BOOLEAN. Use TRUE to show the chart legend, FALSE to hide the chart
legend, or PE_UNCHANGED for no change.

legendPosition Use one of the PE_GLP_XXX “Chart Options Constants” on page 541, or
PE_UNCHANGED for no change. Valid only if showLegend is TRUE.

pieSize For pie charts and doughnut charts, use one of the PE_GPS_XXX “Chart Pie
Size Constants” on page 544, or PE_UNCHANGED for no change.

detachedPie
Slice

For pie charts and doughnut charts, use one of the PE_GDPS_XXX “Chart Slice
Detachment Constants” on page 544, or PE_UNCHANGED for no change.

barSize For bar charts, use one of the PE_GBS_XXX “Chart Bar Size Constants” on
page 542, or PE_UNCHANGED for no change.

verticalBars BOOLEAN. For bar charts, use TRUE if the chart will have vertical bars, FALSE
if the chart will not have vertical bars, or PE_UNCHANGED for no change.

markerSize For line charts and bar charts, use one of the PE_GMS_XXX “Chart Marker
Size Constants” on page 543, or PE_UNCHANGED for no change.

markerShape For line charts and bar charts, use one of the PE_GMSP_XXX “Chart Marker
Shape Constants” on page 543, or PE_UNCHANGED for no change.

dataPoints Use one of the PE_GDP_XXX “Chart Data Point Constants” on page 542, or
PE_UNCHANGED for no change.

dataValue
NumberFormat

Use one of the PE_GNF_XXX “Chart Number Format Constants” on page 544,
or PE_UNCHANGED for no change.

viewingAngle For 3D charts, use one of the PE_GVA_XXX “Chart Viewing Angle Constants”
on page 545, or PE_UNCHANGED for no change.

legendLayout Specifies the legend layout. Use one of the PE_GLL_XXX “Chart Legend
Layout Constants”.
472 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

 PEGraphOptionInfo = record

 StructSize : Word;

 graphColour : Smallint;

 showLegend : Smallint;

 legendPosition : Smallint;

 pieSize : Smallint;

 detachedPieSlice : Smallint;

 barSize : Smallint;

 verticalBars : Smallint;

 markerSize : Smallint;

 markerShape : Smallint;

 dataPoints : Smallint;

 dataValueNumberFormat : Smallint;

 viewingAngle : Smallint;

 end

PEGraphTypeInfo

PEGraphTypeInfo contains information about the type of the specified chart and
is used by PEGetGraphTypeInfo and PESetGraphTypeInfo.

C Syntax

typedef struct PEGraphTypeInfo {

WORD StructSize;

short graphType;

short graphSubtype;

} PEGraphTypeInfo;

Members

VB Type Listing

Type PEGraphTypeInfo

 StructSize As Integer

 graphType As Integer

 graphSubtype As Integer

End Type

StructSize Specifies the size of the PEGraphTypeInfo structure. Initialize this member
to PE_SIZEOF_GRAPH_TYPE_INFO.

graphType Uses one of the PE_GT_XXX “Graph Type Constants” on page 555, or
PE_UNCHANGED for no change.

graphSubtype Uses one of the PE_GST_XXX “Graph Subtype Constants” on page 551, or
PE_UNCHANGED for no change.
Crystal Reports Technical Reference Guide 473

Print Engine Structures
Delphi Record Listing

type

 PEGraphTypeInfo = record

 StructSize : Word;

 graphType : Smallint;

 graphSubtype : Smallint;

 end;

PEGroupOptions

PEGroupOptions contains information about report group options. This
information is used by “PEGetGroupOptions” on page 316 to retrieve current
options and by “PESetGroupOptions” on page 414 to pass new options.

C Syntax

typedef struct PEGroupOptions {

WORD StructSize;

short condition;

char fieldName [PE_FIELD_NAME_LEN];

short sortDirection;

short repeatGroupHeader;

short keepGroupTogether;

short topOrBottomNGroups;

char topOrBottomNSortFieldName [PE_FIELD_NAME_LEN];

short nTopOrBottomGroups;

short discardOtherGroups;

short hierarchicalSorting;

char instanceIDField [PE_FIELD_NAME_LEN];

char parentIDField [PE_FIELD_NAME_LEN];

long groupIndent;

} PEGroupOptions;

Members

StructSize Specifies the size of the PEGroupOptions structure. Initialize to
PE_SIZEOF_GROUP_OPTIONS.

condition Specifies the condition setting for the selected group section. When
getting, use PE_GC_TYPEMASK and PE_GC_CONDITIONMASK to
decode the condition. When setting, pass a PE_GC_XXX “Group
Condition Constants” on page 556, or PE_UNCHANGED for no
change.

fieldName Specifies the field name of the group field (of length
PE_FIELD_NAME_LEN = 512). Use formula form or leave empty for
no change.

sortDirection Specifies one of the “Sort Order Constants” on page 560 or
PE_UNCHANGED for no change.

repeatGroupHeader TRUE, FALSE, or PE_UNCHANGED for no change.

keepGoupTogether TRUE, FALSE, or PE_UNCHANGED for no change.
474 Crystal Reports Technical Reference Guide

Crystal report Engine
Remarks

If topOrBottomNGroups is PE_GO_TBN_TOP_N_GROUPS or
PE_GO_TBN_BOTTOM_N_GROUPS, all the group sort fields related to this
group will be deleted. A new group sort field will be added with the sort direction
of descending or ascending. The group sort field will be sorted by specifying
topOrBottomNSortFieldName if it is not empty. It will be sorted by the first group
sort field name related to this group (before it is deleted) if
topOrBottomNSortFieldName is empty.

topOrBottomNGroups Use one of the following PE_GO_TBN_XXX constants or
PE_UNCHANGED for no change.

Constant Description

PE_GO_TBN_ALL_GROUPS_
UNSORTED

There is no group sorting or Top/
Bottom N for this level of
grouping.

PE_GO_TBN_ALL_GROUPS_
SORTED

There is group sorting, but not
Top/Bottom N.

PE_GO_TBN_TOP_N_GROUPS Top N groups will be selected.

PE_GO_TBN_BOTTOM_N_GRO
UPS

Bottom N groups will be selected.

topOrBottomNSort
FieldName

Specifies the field name (of length PE_FIELD_NAME_LEN = 512) of
the summary field by which the groups are ordered. Use formula form
or leave empty for no change.

nTopOrBottomGroup
s

Specifies the number of groups to keep. Use 0 to keep all groups and
PE_UNCHANGED for no change.

discardOtherGroups Determines whether the remaining groups are collected into an Others
group or discarded. TRUE, FALSE, or PE_UNCHANGED for no
change.

hierarchicalSorting Specifies whether or not sorting is hierarchical. TRUE, FALSE, or
PE_UNCHANGED for no change.

instanceIDField Specifies the instance ID field (of length PE_FIELD_NAME_LEN = 512)
for hierarchical sorting

parentIDField Specifies the parent ID field (of length PE_FIELD_NAME_LEN = 512)
for hierarchical sorting

groupIndent Specifies the indent for hierarchical group sorting, in twips.
Crystal Reports Technical Reference Guide 475

Print Engine Structures
VB Type Listing

Type PEGroupOptions

StructSize As Integer

condition As Integer

fieldName As String * PE_FIELD_NAME_LEN

sortDirection As Integer

repeatGroupHeader As Integer

keepGroupTogether As Integer

topOrBottomNGroups As Integer * PE_FIELD_NAME_LEN

topOrBottomNSortFieldName As String * PE_FIELD_NAME_LEN

nTopOrBottomGroups As Integer

discardOtherGroups As Integer

hierarchicalSorting As Integer

instanceIDField As String * PE_FIELD_NAME_LEN

parentIDField As String * PE_FIELD_NAME_LEN

groupIndent As Long

End Type

Delphi Record Listing

type

PEFieldNameType = array[0..PE_FIELD_NAME_LEN-1] of char;

PEGroupOptions = record

StructSize: Word;

condition: smallint;

fieldName: PEFieldNameType;

sortDirection: smallint;

repeatGroupHeader: smallint;

keepgroupTogether: smallint;

topOrBottomNGroups: smallint;

topOrBottomNSortFieldName: PEFieldNameType;

nTopOrBottomGroups: smallint;

discardOtherGroups: smallint

end;

PEGroupTreeButtonClickedEventInfo

Provides information about the group tree button clicked event, when the callback
function is called with the event ID equal to
PE_GROUP_TREE_BUTTON_CLICKED_EVENT.

C Syntax

typedef struct PEGroupTreeButtonClickedEventInfo {

WORD StructSize;

short visible;

long windowHandle;

} PEGroupTreeButtonClickedEventInfo;
476 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

VB Type Listing

Type PEGroupTreeButtonClickedEventInfo

StructSize As Integer

visible As Integer

windowHandle As Long

End Type

Delphi Record Listing

type

PEGroupTreeButtonClickedEventInfo = record

StructSize: Word;

visible: smallint;

windowHandle: HWnd;

end;

PEHyperlinkEventInfo

PEHyperlinkEventInfo contains information related to the specified hyperlink.

C Syntax

typedef struct PEHyperlinkEventInfo {

WORD StructSize;

WORD ignored;

long windowHandle;

char FAR *hyperlinkText;

} PEHyperlinkEventInfo;

Members

StructSize Specifies the size of the PEGroupTreeButtonClickedEventInfo structure. Initialize
this member to PE_SIZEOF_GROUP_TREE_BUTTON_CLICKED_EVENT_INFO.

visible Indicates whether the group tree is shown or hidden.

window
Handle

Frame window handle where the event happens.

StructSize Specifies the size of the PEHyperlinkEventInfo structure. Initialize this
member to PE_SIZEOF_HYPERLINKEVENTINFO.

ignored For 4-byte alignment. Ignored.

windowHandle Specifies HWND for the window in which the event occurred.

hyperlinkText Specifies a pointer to the hyperlink text associated with the specified object. The
memory referenced by the pointer is freed after calling the callback function.
Crystal Reports Technical Reference Guide 477

Print Engine Structures
PEJobInfo

Contains print job process and display information that is used by
“PEGetJobStatus” on page 319.

C Syntax

typedef struct PEJobInfo {

WORD StructSize;

DWORD NumRecordsRead;

DWORD NumRecordsSelected;

DWORD NumRecordsPrinted;

WORD DisplayPageN;

WORD LatestPageN;

WORD StartPageN;

BOOL printEnded;

} PEJobInfo;

Members

VB Type Listing

Type PEJobInfo

StructSize As Integer

NumRecordsRead As Long

NumRecordsSelected As Long

NumRecordsPrinted As Long

DisplayPageN As Integer

LatestPageN As Integer

StartPageN As Integer

PrintEnded As Long

Type PEJobInfo

StructSize Specifies the size of the PEJobInfo structure. Initialize to
PE_SIZEOF_JOB_INFO.

NumRecordsRead Specifies the number of records actually processed.

NumRecordsSelected Specifies the number of records selected for inclusion in the report out of
the total number of records read.

NumRecordsPrinted Specifies the number of records actually printed or previewed.

DisplayPageN Specifies the page number of the currently displayed page in the
preview window.

LatestPageN Specifies the page being generated. Once the printing is complete, this
value is the number of the last page.

StartPageN Specifies the number of the starting page. The value will normally be 1,
but you can specify something else using “PESetPrintOptions” on
page 435.

printEnded Specifies whether or not the printing process is completed. TRUE
indicates that this process is completed; FALSE indicates that is not yet
complete. When printing to a preview window, printEnded is True only
when the last page is reached.
478 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

PEJobInfo = record

StructSize: Word;

NumRecordsSelected: longint;

NumRecordsPrinted: longint;

DisplayPageN: Word;

LatestPageN: Word;

StartPageN: Word;

PrintEnded: Bool;

end;

PELaunchSeagateAnalysisEventInfo

PELaunchSeagateAnalysisEventInfo contains information related to the launching
of Seagate Analysis.

Note: Seagate Analysis is now known as Crystal Analysis.

C Syntax

typedef struct PELaunchSeagateAnalysisEventInfo {

WORD StructSize;

WORD ignored;

long windowHandle;

char FAR *pathFile;

} PELaunchSeagateAnalysisEventInfo;

Members

PELogOnInfo

PELogOnInfo contains log on information that is used by
“PEGetNthTableLogOnInfo” on page 347; “PESetNthTableLogOnInfo” on
page 427; “PELogOnServer” on page 374; and “PELogOffServer” on page 373 for
logging on and off SQL and password-protected non-SQL databases.

StructSize Specifies the size of the PELaunchSeagateAnalysisEventInfo structure. Initialize
this member to PE_SIZEOF_LAUNCH_SEAGATE_ANALYSIS_EVENT_INFO.

ignored For 4-byte alignment. Ignored.

window
Handle

Specifies HWND for the window in which the event occurred.

pathFile Specifies a pointer to the path and filename of the temporary report. The
memory referenced by the pointer is freed after calling the callback function.
Crystal Reports Technical Reference Guide 479

Print Engine Structures
C Syntax

typedef struct PELogOnInfo {

WORD StructSize;

char ServerName [PE_SERVERNAME_LEN];

char DatabaseName [PE_DATABASENAME_LEN];

char UserID [PE_USERID_LEN];

char Password [PE_PASSWORD_LEN];

} PELogOnInfo;

Members

Remarks

� All strings must be null-terminated.
� Password is undefined when getting information from the report.
� Password must be set using “PEGetNthTableLogOnInfo” on page 347. You

can pass an empty string (“”) for ServerName, DatabaseName, or UserID, and the
program will use the value that’s already set in the report. If you want to
override a value that’s already set in the report, use a non-empty string (for
example, “Server A”) for the other parameters as well.

� For Netware SQL, pass the dictionary path name in member ServerName and
data path name in member DatabaseName.

� If your report uses a Microsoft Access database via ODBC, the data source
indicated in the ServerName parameter must specify an Access database file.
An ODBC data source based on the Access driver with no database specified
cannot be used at runtime.

� For Essbase databases, pass the Essbase application and database to the
DatabaseName member with a comma between each. For example:

Sample,Basic

StructSize Specifies the size of the PELogOnInfo structure. Initialize this member to
PE_SIZEOF_LOGON_INFO.

ServerName Specifies the logon name for the server (of length PE_SERVERNAME_LEN =
128, NULL-terminated) used to create the report. See Remarks below.

DatabaseName Specifies the database logon name (of length PE_DATABASENAME_LEN =
128, NULL-terminated) for the database used to create the report. See Remarks
below.

UserID Specifies the user I.D (of length PE_USERID_LEN = 128, NULL-terminated)
necessary to log on to the server. See Remarks below.

Password Specifies the password (of length PE_PASSWORD_LEN = 128, NULL-
terminated) necessary to log on to the server. See Remarks below.
480 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PELogOnInfo

StructSize As Integer

ServerName As String * PE_SERVERNAME_LEN

DatabaseName As String * PE_DATABASENAME_LEN

UserID As String * PE_USERID_LEN

Password As String * PE_PASSWORD_LEN

End Type

Delphi Record Listing

type

PELogonServerType = array[0..PE_SERVERNAME_LEN-1] of char;

PELogonDBType = array[0..PE_DATABASENAME_LEN-1] of char;

PELogonUserType = array[0..PE_USERID_LEN-1] of char;

PELogonPassType = array[0..PE_PASSWORD_LEN-1] of char;

PELogOnInfo = record

StructSize: Word;

ServerName: PELogonServerType;

DatabaseName: PELogonDbType;

UserId: PELogonUserType;

Password: PELogonPassType;

end;

PEMouseClickEventInfo

PEMouseClickEventInfo contains information associated with a mouse click event
when the callback function is called with event ID equal to PE_RIGHT/MIDDLE/
LEFT_CLICK_EVENT.

C Syntax

typedef struct PEMouseClickEventInfo {

WORD StructSize;

long windowHandle;

UINT clickAction;

UINT clickFlags;

int xOffset;

int yOffset;

PEValueInfo fieldValue;

DWORD objectHandle;

short sectionCode

} PEMouseClickedEventInfo;
Crystal Reports Technical Reference Guide 481

Print Engine Structures
Members

StructSize Specifies the size of the PEMouseClickEventInfo structure. Initialize this
member to PE_SIZEOF_MOUSE_CLICK_EVENT_INFO.

windowHandle Specifies the handle of the frame window in which the mouse click event
occurred.

clickAction Indicates the click action. Uses one of the following PE_MOUSE_XXX constants.

Constant Description

PE_MOUSE_NOTSUPPORTED

PE_MOUSE_DOWN

PE_MOUSE_UP

PE_MOUSE_DOUBLE_CLICK For Mouse Left click or Mouse Middle
click.

clickFlags Indicates the source of the event, which can be any combination of the
following PE_CF_XXX virtual key state-mask constants.

Constant Value Description

PE_CF_NONE 0x0000 No button pressed

PE_CF_LBUTTON 0x0001 Left mouse button

PE_CF_RBUTTON 0x0002 Right mouse button

PE_CF_SHIFTKEY 0x0004 Shift key

PE_CF_CONTROLKEY 0x0008 Control key

PE_CF_MBUTTON 0x00010 Center mouse button

xOffset X-coordinate of cursor during mouse click in pixels.

yOffset Y-coordinate of cursor during mouse click in pixels.

fieldValue The “PEValueInfo” on page 516, structure containing information about the
value of the object at the click point, if it is a field object (excluding MEMO and
BLOB fields), else valueType element = PE_VI_NOVALUE.

objectHandle Specifies the handle of the design view object.

sectionCode Specifies the “Section Codes” on page 559 for the section in which the click
occurred. See “Working with section codes” on page 46.
482 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

 PEMouseClickEventInfo = record

 StructSize : Word;

 windowHandle : LongInt;

 clickAction : integer;

 clickFlags : integer;{

 xOffset : integer;

 yOffset : integer;

 fieldValue : PEValueInfo;

 objectHandle : DWord;

 sectionCode : smallint;

end;

PEObjectInfo

PEObjectInfo contains information related to the type, location, and appearance of
an object.

C Syntax

typedef struct PEObjectInfo {

WORD StructSize;

WORD objectType;

long xOffset;

long yOffset;

long width;

long height;

short sectionCode;

} PEObjectInfo;

Members

StructSize Specifies the size of the PEObjectInfo structure. Initialize this member to
PE_SIZEOF_OBJECT_INFO.

objectType Specifies the object type. Use one of the PE_OI_XXX “Object Type Constants” on
page 558.

xOffset Specifies the X-offset of the object in the section, in twips, or PE_UNCHANGED
for no change.

yOffset Specifies the Y-offset of the object in the section, in twips, or PE_UNCHANGED
for no change.

width Specifies the width of the object, in twips, or PE_UNCHANGED for no change.

height Specifies the height of the object, in twips, or PE_UNCHANGED for no change.

sectionCode Specify the section code for the section containing the object, or
PE_UNCHANGED for no change from the current section.
Crystal Reports Technical Reference Guide 483

Print Engine Structures
PEParameterFieldInfo

The PEParameterFieldInfo structure contains information related to parameter
fields in a report. This structure is used by “PEGetNthParameterField” on page 340
to get information about a specific parameter field and by
“PESetNthParameterField” on page 423 to change a specific parameter field.

C Syntax

typedef struct PEParameterFieldInfo {

WORD StructSize;

WORD ValueType;

WORD DefaultValueSet;

WORD CurrentValueSet;

char Name [PE_PF_NAME_LEN];

char Prompt [PE_PF_PROMPT_LEN];

char DefaultValue [PE_PF_VALUE_LEN];

char CurrentValue [PE_PF_VALUE_LEN];

char ReportName [PE_PF_REPORT_NAME_LEN];

WORD needsCurrentValue;

WORD isLimited;

double MinSize;

double MaxSize;

char EditMask [PE_PF_EDITMASK_LEN];

WORD isHidden;

} PEParameterFieldInfo;

Members

If you wish to set a parameter to NULL, set the CurrentValue to CRWNULL.
CRWULL is of Type String and is independent of the data type of the parameter.

StructSize Specifies the size of the PEParameterFieldInfo structure. Initialize this
member to PE_SIZEOF_PARAMETER_FIELD_INFO.

ValueType Specifies the data type of the parameter field. The Crystal Report Engine
supports the data types and associated PE_PF_XXX “Parameter Field
Value Type Constants” on page 559.

DefaultValueSet For backward compatibility for existing applications only. For all new
development set this member to FALSE and use PEAdd/GetNth/
SetNthParameterDefaultValue. See Remarks below. This member indicates
whether a value is assigned to the DefaultValue parameter field. Use TRUE
to indicate that a new value is set or FALSE to indicate no change.

CurrentValueSet For backward compatibility for existing applications only. For all new
development set this member to FALSE and use PEAdd/GetNth/
SetNthParameterCurrentValue. See Remarks below. This member indicates
whether a value is assigned to the CurrentValue parameter field. Use TRUE
to indicate that a new value is set or FALSE to indicate no change.

Name Specifies the name of the parameter field (of length PE_PF_NAME_LEN =
256, NULL-terminated) to be assigned a new value.
484 Crystal Reports Technical Reference Guide

Crystal report Engine
Remarks

� Regarding members DefaultValueSet, CurrentValueSet, DefaultValue, and
CurrentValue:
� To support backward compatibility for existing applications, when

Default/CurrentValueSet is set to TRUE, the values in Default/
CurrentValue will override any values set by PEAdd/Get/
SetParameterDefault/CurrentValue.

� PEParameterFieldInfo does not process Max or Min parameters if they are
passed in after a Date, Time or Date/Time parameter.

Prompt Specifies the prompting text (of length PE_PF_PROMPT_LEN = 256,
NULL-terminated), if any, that will appear when the user runs the report
for the first time or refreshes the data.

DefaultValue For existing applications only; not for new development. See Remarks
below. Specifies the default value assigned to the parameter field. If the
DefaultValueSet member is FALSE, this value is meaningless. DefaultValue
can be a Number, Currency, Date, DateTime, Time, Boolean, or String (of
length PE_PF_VALUE_LEN = 256).

CurrentValue For existing applications only; not for new development. See Remarks
below. Specifies the current value assigned to the parameter field. If
CurrentValueSet is FALSE, this value is meaningless. CurrentValue can be
a Number, Currency, Date, DateTime, Time, Boolean, or String (of length
PE_PF_VALUE_LEN = 256).

ReportName The name of the report (of length PE_PF_REPORT_NAME_LEN = 128) where
the field belongs (used only with “PEGetNthParameterField” on page 340).

needsCurrentValue Returns FALSE if the parameter is linked, not in use, or has current value
set.

isLimited For string values, this will be TRUE if the string is limited on length. For
other types, it will be TRUE if the parameter is limited by a range. This
capability is not supported currently in Web Viewers.

MinSize Use for numeric and string fields. Depending on the value type, contains
the minimum length of the string or minimum numeric value. For non-
numeric and non-string fields (for example, Date/Time), use
“PEGetParameterMinMaxValue” on page 351, and
“PESetParameterMinMaxValue” on page 431. This capability is not
supported currently in Web Viewers.

MaxSize Use for numeric and string fields. Depending on the value type, contains
the maximum length of the string or maximum numeric value. For non-
numeric and non-string fields (for example, Date/Time), use
“PEGetParameterMinMaxValue” on page 351, and
“PESetParameterMinMaxValue” on page 431. This capability is not
supported currently in Web Viewers.

EditMask An edit mask (of length PEP_PF_EDITMASK_LEN = 256) that restricts
what may be entered for string parameters. This capability is not
supported currently in Web Viewers.

isHidden TRUE if an essbase sub var. This capability is not supported currently in
Web Viewers.
Crystal Reports Technical Reference Guide 485

Print Engine Structures
� For new application development, the Default/CurrentValueSet must be
set to FALSE, so that the Default/CurrentValue members of
PEParameterFieldInfo will be ignored and the values associated with
PEAdd/Get/SetNthParameterDefault/CurrentValue will be valid.
Developers should use the following calls in new applications to access
default and current value lists.
“PEAddParameterCurrentRange” on page 278
“PEAddParameterCurrentValue” on page 279
“PEAddParameterDefaultValue” on page 280
“PEGetNParameterCurrentRanges” on page 325
“PEGetNParameterCurrentValues” on page 325
“PEGetNParameterDefaultValues” on page 326
“PEGetNthParameterCurrentRange” on page 336
“PEGetNthParameterCurrentValue” on page 337
“PEGetNthParameterDefaultValue” on page 338
“PESetNthParameterDefaultValue” on page 422

� To determine if a parameter field is a stored procedure, use
“PEGetNthParameterType” on page 341, or “PEGetNthParameterField” on
page 340.

VB type listing

Type PEParameterFieldInfo

StructSize As Integer

ValueType As Integer

DefaultValueSet As Integer

CurrentValueSet As Integer

Name As String * PE_PF_NAME_LEN

Prompt As String * PE_PF_PROMPT_LEN

DefaultValue As String * PE_PF_VALUE_LEN

CurrentValue As String * PE_PF_VALUE_LEN

ReportName As String * PE_PF_REPORT_NAME_LEN

needsCurrentValue As Integer

isLimited As Integer

MinSize As Double

MaxSize As Double

EditMask As String * PE_PF_EDITMASK_LEN

isHidden As Integer

End Type
486 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi listing

type

PEParameterFieldValueType = array[0..PE_PF_NAME_LEN-1] of char;

PE_PF_ReportNameType = array[0..PE_PF_REPORT_NAME_LEN-1] of char;

 PEParameterFieldNameType = array [0..PE_PF_NAME_LEN-1] of Char;

 PEParameterFieldEditMaskType = array [0..PE_PF_EDITMASK_LEN-1] of

 Char;

PEParameterFieldInfo = record

structSize: Word;

ValueType: Word;

DefaultValueSet: Word;

CurrentValueSet: Word;

Name: PEParameterFieldNameType;

Prompt: PEParameterFieldTextType;

DefaultValue: PEParameterFieldValueType;

CurrentValue: PEParameterFieldValueType;

ReportName: PE_PF_ReportNameType;

needsCurrentvalue: Word;

isLimited: Word;

MinSize: double;

MaxSize: double;

EditMask: PEParameterFieldEditMaskType;

isHidden: Word;

end;

PEParameterPickListOption

PEParameterPickListOption contains information related to parameter sort
methods.

C Syntax

typedef struct PEParameterPickListOption {

WORD StructSize;

short showDescOnly;

short sortMethod;

short sortBasedOnDesc;

} PEParameterPickListOption;

Members

StructSize Specifies the size of the PEParameterFieldInfo structure. Initialize this
member to PE_SIZEOF_PICK_LIST_OPTION.

showDescOnly Boolean, or PE_UNCHANGED for no change.

sortMethod Use one of thePE_OR_XXX “Sort Method Constants” on page 560, or
PE_UNCHANGED for no change.

sortBasedOnDesc Boolean, or PE_UNCHANGED for no change.
Crystal Reports Technical Reference Guide 487

Print Engine Structures
VB Type Listing

Type PEParameterPickListOption

 StructSize As Integer

 showDescOnly As Integer

 sortMethod As Integer

 sortBasedOnDesc As Integer

End Type

Delphi Record Listing

type

 PEParameterPickListOption = record

 StructSize : Word;

 showDescOnly : Smallint;

 sortMethod : Smallint;

 sortBasedOnDesc : Smallint;

 end;

PEParameterValueInfo

PEParameterValueInfo contains information about the type of value(s) that a
specified parameter field can hold. See “Working with section codes” on page 46.

C Syntax

typedef struct PEParameterValueInfo {

WORD StructSize;

short isNullable;

short disallowEditing;

short allowMultipleValues;

short hasDiscreteValues;

short partOfGroup;

short groupNum;

short mutuallyExclusiveGroup

} PEParameterValueInfo;

Members

StructSize Specifies the size of the PEParameterValueInfo structure. Set this member
to PE_SIZEOF_PARAMETER_VALUE_INFO

isNullable Specifies whether or not the parameter field can be set to NULL. Set to
TRUE, FALSE or PE_UNCHANGED if no change.

disallowEditing Indicates whether the parameter field value can be edited. Set to TRUE,
FALSE, or PE_UNCHANGED if no change.

allowMultipleValues Specifies whether or not the parameter field can contain multiple values.
Set to TRUE, FALSE or PE_UNCHANGED if no change.

hasDiscreteValues Specifies whether or not the parameter field contains discreet values,
range values, or both. Uses one of the following PE_DR_XXX Constants.
See “Working with Parameter Values and Ranges” on page 45.
488 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEParameterValueInfo

 StructSize As Integer

 isNullable As Integer

 disallowEditing As Integer

 allowMultipleValues As Integer

 hasDiscreteValues As Integer

 partOfGroup As Integer

 groupNum As Integer

 mutuallyExclusiveGroup As Integer

 End Type

Delphi Record Listing

type

 PEParameterValueInfo = record

 StructSize : Word;

 isNullable : smallint;

 disallowEditing : smallint;

 allowMultipleValues : smallint;

 hasDiscreteValues : smallint;

 partOfGroup : smallint;{

 groupNum : smallint;

 mutuallyExclusiveGroup : smallint;

end;

PEPrintOptions

PEPrintOptions contains printing specifications that are used by the
“PEGetPrintOptions” on page 356, to retrieve current options and
“PESetPrintOptions” on page 435, to pass new options. These specifications are the
same as those that can be set using the Print common dialog box.

Constant Description

PE_DR_HASRANGE Only ranges are present.

PE_DR_HASDISCRETE Only discrete values are present.

PE_DR_HASDISCRETEANDRAN
GE

Both discrete values and ranges are
present.

partOfGroup Specifies whether or not the parameter field is a member of a group. Set
to TRUE, FALSE or PE_UNCHANGED if no change.

groupNum Specifies the group number or set to PE_UNCHANGED if no change.

mutuallyExclusive
Group

Specifies whether or not the parameter field is a member of a mutually
exclusive group. Set to TRUE, FALSE or PE_UNCHANGED if no change.
Crystal Reports Technical Reference Guide 489

Print Engine Structures
C Syntax

typedef struct PEPrintOptions {

WORD StructSize;

unsigned short startPageN;

unsigned short stopPageN;

unsigned short nReportCopies;

unsigned short collation;

char outputFileName [PE_FILE_PATH_LEN];

} PEPrintOptions;

Members

VB Type Listing

Type PEPrintOptions

StructSize As Integer

StartPageN As Integer

StopPageN As Integer

nReportCopies As Integer

collation As Integer

outputFileName As String * PE_FILE_PATH_LEN

End Type

StructSize Specifies the size of the PEPrintOptions structure. Initialize this member to
PE_SIZEOF_PRINT_OPTIONS.

startPageN Specifies the first page that you want to print. Page numbers are 1-based
(Page 1 = 1, Page 2 = 2, etc.). Use 0 if you want to retain the existing settings.

stopPageN Specifies the last page that you want to print. Page numbers are 1-based
(Page 1 = 1, Page 2 = 2, etc.). Use 0 if you want to retain the existing settings.

nReportCopies Specifies the number of copies that you want to print. Copy numbers, like
page numbers, are 1-based. Use 0 if you want to retain the existing settings.

collation Indicates whether or not you want the program to collate the copies (if you
are printing multiple copies of a multiple page report). For this parameter,
use one of the following constants:

Constant Description

PE_UNCOLLATED Prints multiple copies of a multiple
page report uncollated (Page order =
1, 1, 1, 2, 2, 2, 3, 3, 3, etc.).

PE_COLLATED Prints multiple copies of a multiple
page report collated (Page order = 1,
2, 3,..., 1, 2, 3,..., etc.).

PE_DEFAULTCOLLATION Prints multiple copies of a multiple
page report using the collation
settings as specified in the report.

outputFileName Specifies a path and file name (of length PE_FILE_PATH_LEN = 512) if the
report is printed to a file.
490 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

 PEOutputFileNameType = array [0..PE_FILE_PATH_LEN-1] of Char;

 PEPrintOptions = record

StructSize: Word;

StartPageN: Word;

StopPageN: Word;

nReportCopies: Word;

Collation: Word;

outputFileName: PEOutputFileNameType ;

end;

PEReadingRecordsEventInfo

PEReadingRecordsEventInfo contains information about records read when a
callback function is called with event ID equal to PE_READING_RECORDS_EVENT.

C Syntax

typedef struct PEReadingRecordsEventInfo {

WORD StructSize;

short cancelled;

long recordsRead;

long recordsSelected;

short done;

} PEReadingRecordsEventInfo;

Members

VB Type Listing

Type PEReadingRecordsEventInfo

StructSize As Integer

cancelled As Integer

recordsRead As Long

recordsSelected As Long

done As Integer

End Type

StructSize Specifies the size of the PEReadingRecordsEventInfo structure. Initialize this
member to PE_SIZEOF_READING_RECORDS_EVENT_INFO.

cancelled Boolean value indicates whether the reading records is canceled.

recordsRead Indicates how many records have been read.

recordsSelected Indicates how many records have been selected.

done Boolean value indicates whether reading records is finished.
Crystal Reports Technical Reference Guide 491

Print Engine Structures
Delphi Record Listing

type

PEReadingRecordsEventInfo = record

StructSize: Word;

cancelled: smallint;

recordsRead: longint;

recordsSelected: longint;

done: smallint;

end;

PEReportFieldMappingInfo

PEReportFieldMappingInfo contains information required to associate (map) a
report field to a database field that has been changed.

C Syntax

typedef struct PEReportFieldMappingInfo {

WORD StructSize;

WORD valueType;

char tableAliasName[PE_TABLE_NAME_LEN];

char databaseFieldName[PE_DATABASE_FIELD_NAME_LEN];

int mappingTo;

} PEReportFieldMappingInfo;

Members

StructSize Specifies the size of the PEReportFieldMappingInfo structure. Initialize
this member to PE_SIZEOF_REPORT_FIELDMAPPING_INFO.

valueType Indicates the field value type. The Value Type can be one of the following
constants:

Constant Description

PE_FVT_INT8SFIELD 8-bit integer signed

PE_FVT_INT8UFIELD 8-bit integer unsigned

PE_FVT_INT16SFIELD 16-bit integer signed

PE_FVT_INT16UFIELD 16-bit integer unsigned

PE_FVT_INT32SFIELD 32-bit integer signed

PE_FVT_INT32UFIELD 32-bit integer unsigned

PE_FVT_NUMBERFIELD Number field
492 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

 PETableAliasNameType = Array [0..PE_TABLE_NAME_LEN -1] of Char;

 PEDatabaseFieldNameType = Array [0..PE_DATABASE_FIELD_NAME_LEN -1]

 of Char;

 PEReportFieldMappingInfo = record

 StructSize : Word;

 valueType : Word;

 tableAliasName : PETableAliasNameType;

 databaseFieldName : PEDatabaseFieldNameType;

 mappingTo : integer;

 PEFieldMappingEventInfo->databaseFields}

end;

PE_FVT_CURRENCYFIELD Currency field

PE_FVT_BOOLEANFIELD Boolean field

PE_FVT_DATEFIELD Date field

PE_FVT_TIMEFIELD Time field

PE_FVT_STRINGFIELD String field

PE_FVT_TRANSIENTMEMOFIELD Transient Memo field

PE_FVT_PERSISTENTMEMOFIELD Persistent Memo field

PE_FVT_BLOBFIELD BLOB field

PE_FVT_DATETIMEFIELD Date/Time field

PE_FVT_BITMAPFIELD Bitwise field

PE_FVT_ICONFIELD Icon field

PE_FVT_PICTUREFIELD Picture field

PE_FVT_OLEFIELD OLE field

PE_FVT_GRAPHFIELD Graph field

PE_FVT_UNKNOWNFIELD Unknown field type

tableAliasName A string (of length PE_TABLE_NAME_LEN = 128) which contains the
database table alias name.

databaseFieldName A string of length (of length PE_DATABASE_FIELD_NAME_LEN = 128)
which contains the name of the database field.

mappingTo An index of a field in an array in the databaseField member of
“PEFieldMappingEventInfo” on page 462, which contains the list of
database fields. If the field is unmapped then this value is -1.
Crystal Reports Technical Reference Guide 493

Print Engine Structures
PEReportAlertInfo

PEReportAlertInfo contains information on Report Alerts. This information is
used by “PEGetNthReportAlert” on page 343, to retrieve information on the
Report Alerts in the report.

C Syntax

typedef struct PEReportAlertInfo

{

 WORD StructSize;

short nameLength;

HANDLE name;

short isEnabled;

short alertConditionLength;

HANDLE alertConditionFormula;

DWORD nTriggeredInstances;

short alertMessageLength;

short defaultAlertMessageLength;

HANDLE alertMessageFormula;

HANDLE defaultAlertMessage;

} PEReportAlertInfo;

Members

Release the HANDLE even if you are not using it.

StructSize Specifies the size of the PEReportAlertInfo structure. Initialize this
member to PE_SIZEOF_REPORT_ALERT_INFO.

namelenght Specifies the length of the Report Alert’s name.

name Specifies a handle to the string containing the name of the Report Alert.
This is the name assigned to the Report Alert when it was first created.

isEnabled Specifies wether or not the Report Alert is enabled. Pass TRUE to enable,
or PE_UNCHANGED for no change.

alertCondition
Lenght

Specifies the length of the condition defined for the Report Alert.

alertCondition
Formula

Specifies a handle to the condition formula of the Report Alert. This is the
formula created to trigger the Report Alert.

nTriggered
Instances

Specifies the number of times a Report Alert was triggered.

alertMessage
Lenght

Specifies the length of the conditional message defined for the Report
Alert.

defaultAlert
MessageLenght

Specifies the length of the default message defined for the Report Alert.

alertMessage
Formula

Specifies a handle to the formula used to create the alert message when a
Report Alert is triggered.

defaultAlertMessge Specifies a handle to the default Report Alert message.
494 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEReportAlertInfo

StructSize As Integer

nameLength As Integer

name as Long

isEnabled As Integer

alertConditionLenght As Integer

alertConditionFormula As Long

nTriggeredInstances As Long

alertMessageLength As Integer

defaultAlertmessageLength As Integer

alertMessageFormula As Long

defaultAlertMessage as Long

End Type

Delphi Record Listing

type PEReportAlertInfo = record

StructSize : Word;

nameLength : Smallint;

name : HWND;

isEnabled : Smallint;

alertConditionLength : Smallint;

alertConditionFormula : HWND;

nTriggeredInstances : DWord;

alertMessageLength : SmallInt;

defaultAlertMessageLength : SmallInt;

alertMessageFormula : HWND;

defaultAlertMessage : HWND;

end;
Crystal Reports Technical Reference Guide 495

Print Engine Structures
PEReportOptions

PEReportOptions contains report option information. This information is used by
“PEGetReportOptions” on page 357, to retrieve current options and by
“PESetReportOptions” on page 436, to pass new options.

C Syntax

typedef struct PEReportOptions {

WORD StructSize;

short saveDataWithReport;

short saveSummariesWithReport;

short useIndexForSpeed;

short translateDOSStrings;

short translateDOSMemos;

short convertDateTimeType;

short convertNullFieldToDefault;

short morePrintEngineErrorMessages;

short caseInsensitiveSQLData;

short verifyOnEveryPrint;

short zoomMode;

short hasGroupTree;

short dontGenerateDataForHiddenObjects;

short performGroupingOnServer;

short doAsyncQuery;

short promptMode;

short selectDistinctRecords;

short alwaysSortLocally;

short isReadOnly;

short canSelectDistinctRecords;

}PEReportOptions;

Members

For each member, except as noted below, use TRUE, FALSE, or
PE_UNCHANGED for no change.

structSize Specifies the size of the PEReportOptions structure. Initialize to
PE_SIZEOF_REPORT_OPTIONS.

saveDataWithReport Specifies whether or not data should be saved with the report.
Boolean, or PE_UNCHANGED for no change.

saveSummariesWithReport Specifies whether to save summaries with the report. Boolean, or
PE_UNCHANGED for no change.

useIndexForSpeed Specifies whether or not to use index values. Boolean, or
PE_UNCHANGED for no change.

translateDOSStrings Specifies whether or not to translate DOS strings. Boolean, or
PE_UNCHANGED for no change.
496 Crystal Reports Technical Reference Guide

Crystal report Engine
translateDOSMemos Specifies whether or not to translate DOS memos. Boolean, or
PE_UNCHANGED for no change.

convertDateTimeType Specifies whether or not to convert DATE/Time format to another
format. Use one of the following constants, or PE_UNCHANGED
for no change.

Constant Value

PE_RPTOPT_CVTDATETIMETOSTR 0

PE_RPTOPT_CVTDATETIMETODATE 1

PE_RPTOPT_KEEPDATETIMETYPE 2

convertNullFieldToDefault Specifies whether or not to convert NULL parameter fields to their
default values. Boolean, or PE_UNCHANGED for no change.

morePrintEngineError
Messages

Specifies whether or not to allow the print engine to pop up error
messages to the screen from an application without the users
intervention. Boolean, or PE_UNCHANGED for no change.

caseInsensitiveSQLData Specifies whether or not to perform a case insensitive search for
SQL data. Boolean, or PE_UNCHANGED for no change.

verifyOnEveryPrint Specifies whether or not to perform database verification for every
print job. Boolean, or PE_UNCHANGED for no change.

zoomMode Use one of the “Zoom Level Constants” on page 561, or
PE_UNCHANGED for no change.

hasGroupTree Specifies whether or not there is a group tree associated with the
report. Boolean, or PE_UNCHANGED for no change.

dontGenerateData
ForHiddenObjects

Specifies whether or not to generate data for hidden objects.
Boolean, or PE_UNCHANGED for no change.

performGroupingOnServe
r

Specifies whether or not to perform grouping on servers. Boolean,
or PE_UNCHANGED for no change.

doAsyncQuery Boolean, or PE_UNCHANGED for no change.

promptMode Specifies the prompt mode. Use one of the following constants, or
PE_UNCHANGED for no change.

Constant Value Description

PE_RPTOPT_PROMPT_NONE 0

PE_RPTOPT_PROMPT_NORMAL 1

PE_RPTOPT_PROMPT_ALWAYS 2

selectDistinctRecords Specifies whether or not to select distinct records. Boolean, or
PE_UNCHANGED for no change.

alwaysSortLocally Specifies whether or not to sort the records locally. Boolean, or
PE_UNCHANGED for no change.

isReadOnly Specifies wether the report is read only. Boolean value. This
property is read only.

canSelectDistinctRecords Specifies wether the report can select distinct records. Boolean
value. This property is read only.
Crystal Reports Technical Reference Guide 497

Print Engine Structures
VB Type Listing

Type PEReportOptions

StructSize As Integer

saveDataWithReport As Integer

saveSummariesWithReport As Integer

useIndexForSpeed As Integer

translateDOSStrings As Integer

translateDOSMemos As Integer

convertDateTimeType As Integer

convertNullFieldToDefault As Integer

morePrintEngineErrorMessages As Integer

caseInsensitiveSQLData As Integer

verifyOnEveryPrint As Integer

zoomMode As Integer

hasGroupTree As Integer

dontGenerateDataForHiddenObjects As Integer

performGroupingOnServer As Integer

doAsyncQuery As Integer

promptMode As Integer

selectDistinctRecords As Integer

wysiwygMode As Integer

alwaysSortLocally as Integer

isReadOnly as Integer

canSelectDistinctRecords as Integer

End Type

Delphi Record Listing

type

PEReportOptions = record

 StructSize : Word;

 saveDataWithReport : Smallint;

 saveSummariesWithReport : Smallint;

 useIndexForSpeed : Smallint;

 translateDOSStrings : Smallint;

 translateDOSMemos : Smallint;

 convertDateTimeType : Smallint;

 convertNullFieldToDefault : Smallint;

 morePrintEngineErrorMessages : Smallint;

 caseInsensitiveSQLData : Smallint;

 verifyOnEveryPrint : Smallint;

 zoomMode : Smallint;

 hasGroupTree : Smallint;

 dontGenerateDataForHiddenObjects : Smallint;{

 performGroupingOnServer : Smallint;

alwaysSortLocally : Smallint;

isReadOnly : Smallint

canSelectDistinctRecords : Smallint

end;
498 Crystal Reports Technical Reference Guide

Crystal report Engine
PEReportSummaryInfo
PEReportSummaryInfo contains report summary information, corresponding to
the report summary information in the Crystal Reports Designer.

C Syntax

typedef struct PEReportSummaryInfo {

WORD StructSize;

char applicationName[PE_APPLICATION_NAME_LEN];

char title[PE_TITLE_LEN];

char subject[PE_SI_SUBJECT_LEN];

char author[PE_SI_AUTHOR_LEN];

char keywords[PE_SI_KEYWORDS_LEN];

char comments[PE_SI_COMMENTS_LEN];

char reportTemplate[PE_SI_REPORT_TEMPLATE_LEN];

short savePreviewPicture;

} PEReportSummaryInfo;

Members

VB Type Listing

Type PEReportSummaryInfo

StructSize As Integer

applicationName As String * PE_SI_APPLICATION_NAME_LEN’ Read only.

title As String * PE_SI_TITLE_LEN

subject As String * PE_SI_SUBJECT_LEN

author As String * PE_SI_AUTHOR_LEN

keywords As String * PE_SI_KEYWORDS_LEN

comments As String * PE_SI_COMMENTS_LEN

reportTemplate As String * PE_SI_REPORT_TEMPLATE_LEN

savePreviewPicture As Integer

End Type

StructSize Specifies the size of the structure. Initialize this member to
PE_SIZEOF_REPORT_SUMMARY_INFO.

application
Name

Specifies an application name (of length PE_APPLICATION_NAME_LEN =
128) for the application using this report. This member is read only.

title Specifies the title (of length PE_TITLE_LEN = 128) of the current report.

subject Specifies the subject (of length PE_SI_SUBJECT_LEN = 128) of the current report.

author Specifies the (of length PE_SI_AUTHOR_LEN = 128) author of the current report.

keywords Specifies the keywords (of length PE_SI_KEYWORDS_LEN = 128) included
for the current report.

comments Specifies any comments (of length PE_SI_COMMENTS_LEN = 512) for the
current report.

reportTemplate Specifies the report template (of length PE_SI_REPORT_TEMPLATE_LEN =
128) for the current report.

savePreview
Picture

Specifies whether or not to save the preview picture. Boolean or
PE_UNCHANGED for no change.
Crystal Reports Technical Reference Guide 499

Print Engine Structures
Delphi Record Listing

type

PEApplicationNameType

= array[0..PE_SI_APPLICATION_NAME_LEN-1] of char;

PETitleType = array[0..PE_SI_TITLE_LEN-1] of char;

PESubjectType = array[0..PE_SI_SUBJECT_LEN-1] of char;

PEAuthorType = array[0..PE_SI_AUTHOR_LEN-1] of char;

PEKeywordsType = array[0..PE_SI_KEYWORDS_LEN-1] of char;

PECommentsType = array[0..PE_SI_COMMENTS_LEN-1] of char;

PEReportTemplate

= array[0..PE_SI_REPORT_TEMPLATE_LEN-1] of char;

PEReportSummary = record

StructSize: Integer;

applicationName: PEApplicationNameType;

title: PETitleType;

subject: PESubjectType;

author: PEAuthorType;

keywords: PEKeywordsType;

comments: PEReportTemplate;

end;

PESearchButtonClickedEventInfo

PESearchButtonClickedEventInfo contains information about a search button
clicked event. When the search button is clicked, a callback function will be called
with EventId = PE_SEARCH_BUTTON_CLICKED_EVENT.

C Syntax

typedef struct PESearchButtonClickedEventInfo {

long windowHandle;

char searchString [PE_SEARCH_STRING_LEN];

WORD StructSize;

} PESearchButtonClickedEventInfo;

Members

VB Type Listing

Type PESearchButtonClickedEventInfo

windowHandle As Long

searchString As String * PE_SEARCH_STRING_LEN

StructSize As Integer

End Type

windowHandle Specifies the handle of the frame window on which the button is placed.

searchString Search string (of length PE_SEARCH_STRING_LEN = 128) in search edit
control.

StructSize Specifies the size of the PESearchButtonClickedEventInfo structure. Initialize
this member to PE_SIZEOF_SEARCH_BUTTON_CLICKED_EVENT_INFO.
500 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

PESearchStringType

= array[0..PE_SEARCH_STRING_LEN-1] of char;

PESearchButtonClickedEventInfo = record

windowHandle: longint;

searchString: PESearchStringType;

StructSize: Word;

end;

PESectionOptions

PESectionOptions contains specifications for formatting selected report sections
and areas. This information is used by the “PEGetSectionFormat” on page 361 and
“PEGetAreaFormat” on page 301 to retrieve current settings and
“PESetSectionFormat” on page 438 and “PESetAreaFormat” on page 391 to pass
new settings.

C Syntax

typedef struct PESectionOptions {

WORDStructSize;

WORDshort visible;

WORDnewPageBefore;

WORDnewPageAfter;

WORDkeepTogether;

WORDsuppressBlankSection;

WORDresetPageNAfter;

WORDprintAtBottomOfPage;

COLORREF backgroundColor;

short underlaySection;

short showArea;

short freeFormPlacement;

short reserveMinimumPageFooter;

} PESectionOptions;

Members

StructSize Specifies the size of the PESectionOptions structure. Initialize to
PE_SIZEOF_SECTION_OPTIONS.

visible Specifies whether or not the selected section is to be visible. Pass TRUE to
keep the section visible, FALSE to hide the section, or PE_UNCHANGED
for no change.

newPageBefore Specifies whether or not the program is to insert a page break before the
section is printed. Pass TRUE to insert a page break, FALSE to not insert a
page break, or PE_UNCHANGED for no change.

newPageAfter Specifies whether or not the program is to insert a page break after the
section is printed. Pass TRUE to insert a page break, FALSE to not insert a
page break, or PE_UNCHANGED for no change.
Crystal Reports Technical Reference Guide 501

Print Engine Structures
Remarks

� Not all options are available for all sections or areas. For example, if you select
a Page Header or Page Footer section or area, you cannot change
newPageBefore or newPageAfter. The only options that are available for all
sections are visible and suppressBlankSection.

� showArea only applies to area format.
� backgroundColor, underlaySection, showArea, and freeFormPlacement do not

apply to area format.
� reserveMinimumPageFooter can be used to remove undesirable white space

when there are two or more sections in the page footer area and only one
section, based on conditional settings, will be visible when the report is viewed
in the preview window. For example, a report page footer area might contain
two sections, one conditionally set to display at the bottom of odd pages and
the other at the bottom of even pages. When this member is set to TRUE,

keepTogether Specifies whether or not the program is to keep the section together,
either on the current page (if there is room) or on the next (if not). Pass
TRUE to keep the section together, FALSE to allow the program to split
the section data from one page to the next if necessary, or
PE_UNCHANGED for no change.

suppressBlank
Section

Specifies whether or not the program is to eliminate blank sections from
your report. A section must be completely empty before the program
suppresses it. Pass TRUE to eliminate the blank sections, FALSE to retain
them, or PE_UNCHANGED for no change.

resetPageNAfter Specifies whether or not the program is to reset the page number to one
(1) for the following page, after it prints a group total. Pass TRUE to reset
the page number, FALSE to retain the standard numbering, or
PE_UNCHANGED for no change.

printAtBottomOf
Page

Specifies whether or not the program is to cause each group value to print
only at the bottom of a page; FALSE to have the values print in their
normal position, or PE_UNCHANGED for no change.

backgroundColor Specifies the RGB color value contained in the “COLORREF” on page 533
value, for section formats only. Use PE_UNCHANGED_COLOR to
preserve the existing color or PE_NO_COLOR for no color.

underlaySection Indicates whether or not the specified section is to underlay the following
section(s). TRUE, FALSE, or PE_UNCHANGED for no change.

showArea Specifies TRUE to show an area, FALSE to hide an area, or
PE_UNCHANGED for no change. The user can drill down on a hidden area.

freeFormPlacement Design time flag. If set to TRUE, an object can be placed anywhere in a
section. Use PE_UNCHANGED for no change

reserveMinimum
PageFooter

Used to reduce unnecessary white space in the page footer area
containing more than one conditionally formatted section. When set to
TRUE, the space required to display only one section (the tallest) is
reserved. When set to FALSE (default), the maximum height necessary to
display every section in the page footer area at full height will be
reserved. See Remarks below.
502 Crystal Reports Technical Reference Guide

Crystal report Engine
sufficient space will be reserved to display only one of the sections included in
the area (set to the height of the tallest section). Note that when
reserveMinimumPageFooter = TRUE and there is more than one section
visible in the page footer area, the visible sections will be displayed only to the
extent allowed by the reserved minimum space (the height of the tallest
section) with the remainder truncated.

VB Type Listing

Type PESectionOptions

StructSize As Integer

Visible As Integer

NewPageBefore As Integer

NewPageAfter As Integer

KeepTogether As Integer

SuppressBlankSection As Integer

ResetPageNAfter As Integer

PrintAtBottomOfPage As Integer

BackgroundColor As Long

UnderlaySection As Integer

ShowArea As Integer

FreeFormPlacement As Integer

reserveMinimumPageFooter As Integer

End Type

Delphi Record Listing

type

PESectionOptions = record

StructSize: Word;

visible: Smallint;

newPageBefore: Smallint;

newPageAfter: Smallint;

keepTogether: Smallint;

suppressBlankSection: Smallint;

resetPageNAfter: Smallint;

printAtBottomOfPage: Smallint;

backgroundColor: COLORREF;

underlaySection: Smallint;

showArea: Smallint;

freeFormPlacement: Smallint;

end;

PESessionInfo

PESessionInfo contains information about the current Microsoft Access session.
Many Microsoft Access database tables require that a session be opened before the
table can be used. Use this structure with “PEGetNthTableSessionInfo” on
page 349 to retrieve current information and “PESetNthTableSessionInfo” on
page 429 to pass new information.
Crystal Reports Technical Reference Guide 503

Print Engine Structures
C Syntax

typedef struct PESessionInfo {

WORD StructSize;

char UserID [PE_SESS_USERID_LEN];

char Password [PE_SESS_PASSWORD_LEN];

DWORD SessionHandle;

};

Members

Remarks

In Microsoft Access 95 and later, an Access database can have session security (also
known as user-level security), database-level security, or both.
� If the Access database contains only session security, simply pass the session

password to the Password member before calling
“PESetNthTableSessionInfo” on page 429.

� If the Access database contains database-level security, use a newline
character, ‘\n’ (ASCII character 10) followed by the database-level password
(for example, “\ndbpassword”).

� If the Access database contains both session security and database-level
security, use the session password followed by the newline character and the
database password (for example, “sesspswd\ndbpassword”).

� Alternately, database-level security can also be handled by assigning the
database-level password to the Password member of “PELogOnInfo” on
page 479 and calling “PESetNthTableLogOnInfo” on page 427.

VB Type Listing

Type PESessionInfo

StructSize As Integer

UserID As String * PE_SESS_USERID_LEN

Password As String * PE_SESS_PASSWORD_LEN

SessionHandle As Long

End Type

StructSize Specifies the size of the PESessionInfo structure. Initialize this member to
PE_SIZEOF_SESSION_INFO.

UserID Specifies the user ID value (of length PE_SESS_USERID_LEN = 128) needed
for logging on to the system.

Password Specifies the password (of length PE_SESS_PASSWORD_LEN = 128) needed
for logging on to the system. Password is undefined when getting information
from a report.

SessionHandle The handle to the current MS Access session. When setting information, if
SessionHandle = 0, the UserID and Password settings are used; otherwise the
SessionHandle is used. SessionHandle is undefined when getting information
from a report.
504 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

PESesPassType = array[1..PE_SESS_PASSWORD_LEN] of char;

PESessionInfo = record

StructSize: Word;

UserID: PESesPassType;

Password: PESesPassType;

SessionHandle: DWord;

end;

PEShowGroupEventInfo

PEShowGroupEventInfo contains information when an event callback is called
with event ID equal to PE_SHOW_GROUP_EVENT.

C Syntax

typedef struct PEShowGroupEventInfo {

WORD StructSize;

WORD groupLevel;

long windowHandle;

char **groupList;

}PEShowGroupEventInfo;

Members

Remarks

Make a copy of the groupList if you want to keep group path information. CRPE
frees the groupList after the callback function.

Delphi Record Listing

type

PEPCharPointer = ^PChar;

PEShowGroupEventInfo = record

StructSize: Word;

groupLevel: Word;

windowHandle: Longint;

groupList: PEPCharPointer;

end;

StructSize Specifies the size of the PEShowGroupEventInfo structure. Initialize this
member to PE_SIZEOF_SHOW_GROUP_EVENT_INFO.

groupLevel The number of the group name in the group list.

windowHandle Frame window handle where the event happens.

groupList Specifies a pointer to an array of group names describing the group path to
which the group area is going to navigate. This pointer is freed after the
callback function.
Crystal Reports Technical Reference Guide 505

Print Engine Structures
PEStartEventInfo

PEStartEventInfo contains start event information when the callback function is
called with event ID equal to PE_START_EVENT.

C Syntax

typedef struct PEStartEventInfo {

WORD StructSize;

WORD destination;

}PEStartEventInfo;

Members

VB Type Listing

Type PEStartEventInfo

StructSize As Integer

destination As Integer

End Type

Delphi Record Listing

type

PEStartEventInfo = record

StructSize: Word;

destination: Word;

end;

PEStopEventInfo

PEStopEventInfo contains stop event information when a callback function is
called with an event ID equal to PE_STOP_EVENT.

C Syntax

typedef struct PEStopEventInfo {

WORD StructSize;

WORD destination;

WORD jobStatus;

} PEStopEventInfo;

StructSize Specifies the size of the PEStartEventInfo structure. Initialize this member
to PE_SIZEOF_START_EVENT_INFO.

destination Specifies the process destination. Uses one of the PE_TO_XXX “Job
Destination Constants” on page 557.
506 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

VB Type Listing

Type PEStopEventInfo

StructSize As Integer

destination As Integer

jobStatus As Integer

End Type

Delphi Record Listing

type

PEStopEventInfo = record

StructSize: Word;

destination: Word;

jobStatus: Word;

end;

PESubreportInfo

PESubreportInfo contains information about subreports in a report. This structure
is used by “PEGetSubreportInfo” on page 367, to gather information about a
specified subreport.

C Syntax

typedef struct PESubreportInfo {

WORD StructSize;

char name [PE_SUBREPORT_NAME_LEN];

short NLinks;

short isOnDemand;

short external;

short reimportOption;

} PESubreportInfo;

StructSize Specifies the size of the PEStopEventInfo structure. Initialize this member
to PE_SIZEOF_STOP_EVENT_INFO.

destination Specifies the process destination. Uses one of the PE_TO_XXX “Job
Destination Constants” on page 557.

jobStatus Indicates the current status of the job. Uses one of the PE_JOBXXX “Job
Status Constants” on page 558.
Crystal Reports Technical Reference Guide 507

Print Engine Structures
Members

VB Type Listing

Type PESubreportInfo

StructSize As Integer

Name As String * PE_SUBREPORT_NAME_LEN

NLinks As Integer

IsOnDemand As Integer

external As Integer

reimportOption As Integer

End Type

Delphi Record Listing

type

PESubreportNameType

= array[0..PE_SUBREPORT_NAME_LEN-1] of char;

PESubreportInfo = record

structSize: Word;

name: PESubreportNameType;

NLinks: smallint

IsOnDemand: smallint

end;

PETableDifferenceInfo

Read-Only Struct PETableDifferenceInfo contains database table information that
is used by “PECheckNthTableDifferences” on page 284.

C Syntax

typedef struct PETableDifferenceInfo {

WORD StructSize;

DWORD tableDifferences;

DWORD reserved1;

DWORD reserved2;

} PETableDifferenceInfo;

StructSize Specifies the size of the PESubreportInfo structure. Initialize this member to
PE_SIZEOF_SUBREPORT_INFO.

name Specifies the string (of length PE_SUBREPORT_NAME_LEN = 128, NULL-
terminated) containing the name of the subreport. This is the name
assigned to the subreport when it was first created.

NLinks Specifies the number of links to primary report data.

isOnDemand TRUE if the subreport is a real-time subreport. FALSE otherwise.

external TRUE if the subreport is imported. FALSE otherwise.

reimportOption Specifies the update option for the subreport. Use PE_SRI_ONOPENJOB
(reimport the subreport when the main report is opened) or
PE_SRI_ONFUNCTIONCALL (reimport the subreport when the API is
called).
508 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

StructSize Specifies the size of the PETableLocation structure. Initialize this member to
PE_SIZEOF_TABLE_DIFFERENCE_INFO.

tableDifferences Read-Only. Returns any combination of the following PE_TCD_XXX
TableDifference Constants.

Constant Value

PE_TCD_OKAY 0x00000000

PE_TCD_DATABASENOTFOUND 0x00000001

PE_TCD_SERVERNOTFOUND 0x00000002

PE_TCD_SERVERNOTOPENED 0x00000004

PE_TCD_ALIASCHANGED 0x00000008

PE_TCD_INDEXESCHANGED 0x00000010

PE_TCD_DRIVERCHANGED 0x00000020

PE_TCD_DICTIONARYCHANGED 0x00000040

PE_TCD_FILETYPECHANGED 0x00000080

PE_TCD_RECORDSIZECHANGED 0x00000100

PE_TCD_ACCESSCHANGED 0x00000200

PE_TCD_PARAMETERSCHANGED 0x00000400

PE_TCD_LOCATIONCHANGED 0x00000800

PE_TCD_DATABASEOTHER 0x00001000

PE_TCD_NUMFIELDSCHANGED 0x00010000

PE_TCD_FIELDOTHER 0x00020000

PE_TCD_FIELDNAMECHANGED 0x00040000

PE_TCD_FIELDDESCCHANGED 0x00080000

PE_TCD_FIELDTYPECHANGED 0x00100000

PE_TCD_FIELDSIZECHANGED 0x00200000

PE_TCD_NATIVEFIELDTYPECHANGED 0x00400000

PE_TCD_NATIVEFIELDOFFSETCHANGED 0x00800000

PE_TCD_NATIVEFIELDSIZECHANGED 0x01000000

PE_TCD_FIELDDECPLACESCHANGED 0x02000000

reserved1 Reserved. Do not use.

reserved2 Reserved. Do not use.
Crystal Reports Technical Reference Guide 509

Print Engine Structures
VB Type Listing

Type PETableDifferenceInfo

 StructSize As Integer

 tableDifferences As Long

 reserved1 As Long

 reserved2 As Long

End Type

Delphi Record Listing

type

 PETableDifferenceInfo = record

 StructSize : Word;

 tableDifferences : DWord;

 reserved1 : DWord;

 reserved2 : DWord;

 end;

PETableLocation

PETableLocation contains database location information that is used with the
“PEGetNthTableLocation” on page 347 to gather current location information and
“PESetNthTableLocation” on page 426 to pass new location information.

C Syntax

typedef struct PETableLocation {

WORD StructSize;

char Location [PE_TABLE_LOCATION_LEN];

char SubLocation[PE_TABLE_LOCATION_LEN];

char ConnectBuffer[PE_CONNECTION_BUFFER_LEN];

} PETableLocation;

Members

StructSize Specifies the size of the PETableLocation structure. Initialize this member to
PE_SIZEOF_TABLE_LOCATION.

Location Specifies the database location (of length PE_TABLE_LOCATION_LEN = 256,
NULL-terminated). This member is database dependent and must be formatted
correctly for the expected database. The following table lists some examples.

Database Location Examples

xBASE (Natively): <drive>:\<path>\<file>

xBASE (ODBC): <datasource name>

Paradox (Natively): <drive>:\<path>\<file>

Paradox (ODBC): <datasource name>

Btrieve (Natively): <drive>:\<path>\<file>

Btrieve (ODBC): <datasource name>
510 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PETableLocation

 StructSize As Integer

 Location As String * PE_TABLE_LOCATION_LEN

 SubLocation As String * PE_TABLE_LOCATION_LEN

 ConnectBuffer As String * PE_CONNECTION_BUFFER_LEN

End Type

Delphi Record Listing

type

 PETableLocType = array [0..PE_TABLE_LOCATION_LEN - 1] of Char;

 PEConnectBufferType = array [0..PE_CONNECTION_BUFFER_LEN - 1] of Char;

 PETableLocation = record

 StructSize : Word;

 Location : PETableLocType;

 SubLocation : PETableLocType; { For MS Access Table Names }

 ConnectBuffer : PEConnectBufferType;

 end;

PETablePrivateInfo

PETablePrivateInfo contains information for using data objects such as ADO,
RDO, or CDO with the Active Data Driver(PS2MON.DLL).

C Syntax

typedef struct PETablePrivateInfo {

WORD StructSize;

WORD nBytes;

DWORD tag;

BYTE FAR *dataPtr;

} PETablePrivateInfo;

Oracle (Natively): <database>.<table>

Oracle (ODBC): <database>.<table>

SQL Server (Natively): <database>.<owner>.<table>

SQL Server (ODBC): <database>.<owner>.<table>

SubLocation Specifies the database sublocation (of length PE_TABLE_LOCATION_LEN =
256, NULL-terminated).

ConnectBuffer Specifies the connection buffer (of length PE_CONNECTION_BUFFER_LEN =
512, NULL-terminated) containing connection information for attached tables.
Crystal Reports Technical Reference Guide 511

Print Engine Structures
Members

Delphi Record Listing
type

 crBytePointer = ^Byte;

 PETablePrivateInfo = record

 StructSize: Word; {initialize to

 PE_SIZEOF_TABLE_PRIVATE_INFO}

 nBytes: Smallint;

 tag: DWORD;

 dataPtr: crBytePointer;

 end;

PETableType
PETableType contains information for identifying the type of a specified table.
This information is gathered using “PEGetNthTableType” on page 350.

C Syntax
typedef struct PETableType {

WORD StructSize;

char DLLName [PE_DLL_NAME_LEN];

char DescriptiveName [PE_FULL_NAME_LEN];

WORD DBType;

} PETableType;

Members

StructSize Specifies the size of the PETablePrivateInfo structure. Initialize this member to
PE_SIZEOF_TABLE_PRIVATE_INFO.

nBytes Specifies the length of the data starting at the dataPtr.

tag Specifies a value indicating the type of data being passed to theDatabaseTable
object in the Data parameter. Currently, the only possible value is 3. This value
must be used for all Active data sources including DAO, ADO, RDO, CDO, and
the Visual Basic data control.

dataPtr Specifies a pointer to variant data passed to the database driver. With Active
data, this must be a Recordset object if DAO, ADO, or the Visual Basic data
control is used. If CDO is used, this must be a Rowset object.

StructSize Specifies the size of the PETableType structure. Initialize this member to
PE_SIZEOF_TABLE_TYPE.

DLLName Specifies the name of the appropriate database DLL (of length
PE_DLL_NAME_LEN = 64, NULL-terminated) for the table of interest.
Select the DLL you want to use from the table below:

Use this DLL For this standard non-SQL
database

PDBBDE.DLL Borland Database Engine

PDBBND.DLL Bound reports
512 Crystal Reports Technical Reference Guide

Crystal report Engine
Remarks

For PDSODBC.DLL, the DescriptiveName includes the ODBC data source name.

VB Type Listing

Type PETableType

StructSize As Integer

DLLName As String * PE_DLL_NAME_LEN

DescriptiveName As String * PE_FULL_NAME_LEN

DBType As Integer

End Type

Delphi Record Listing

type

PEDllNameType = array[0..PE_DLL_NAME_LEN-1] of char;

PEFullNameType = array[0..PE_FULL_NAME_LEN-1] of char;

PETableType = record

StructSize: Word;

DLLName: PEDllNameType;

DescriptiveName: PEFullNameType;

DBType: Word;

end;

PDBDAO.DLL DAO data sources (Access)

PDBJET.DLL Access

PDBPDX.DLL Paradox

PDBXBSE.DLL dBASE, FoxPro, Clipper

PDCTBTRV.DLL Btrieve

PDSDB22.DLL DB2/2

PDSGUPTA.DLL Gupta

PDSNETW.DLL Netware

PDSODBC.DLL ODBC. See Remarks below.

PDSORACL.DLL Oracle

PDSSYB10.DLL Sybase 10/11

PDSSYBAS.DLL Sybase

DescriptiveName Specifies the full description of the table of interest (of length
PE_FULL_NAME_LEN = 256, NULL-terminated).

DBType Specifies the type of database that contains the table of interest. Use one of
the PE_DT_XXX “Database Type Constants” on page 545.
Crystal Reports Technical Reference Guide 513

Print Engine Structures
PETrackCursorInfo

PETrackCursorInfo is used to retrieve or set the track cursor information for the
preview window by using “PEGetTrackCursorInfo” on page 368, and
“PESetTrackCursorInfo” on page 444.

C Syntax

typedef struct PETrackCursorInfo {

WORD StructSize

short groupAreaCursor;

short groupAreaFieldCursor;

short detailAreaCursor;

short detailAreaFieldCursor;

short graphCursor;

long groupAreaCursorHandle;

long groupAreaFieldCursorHandle;

long detailAreaCursorHandle;

long detailAreaFieldCursorHandle;

long graphCursorHandle;

short ondemandSubreportCursor;

short hyperlinkCursor;

} PETrackCursorInfo;

Members

� Each member of type short can be set to one of the PE_TCD_XXX “Track
Cursor Constants” on page 560, or PE_UNCHANGED for no change.

� Each member of type long is currently reserved and should not be used.

StructSize Specifies the size of the PETrackCursorInfo structure. Initialize this
member to PE_SIZEOF_TRACK_CURSOR_INFO.

groupAreaCursor Specifies the group area cursor. Use one of the PE_TC_XXX “Track
Cursor Constants” on page 560 or PE_UNCHANGED for no change.

groupAreaFieldCursor Specifies the cursor for a memo, blob, database, summary, or formula
field in the group area. Use one of the PE_TC_XXX “Track Cursor
Constants” on page 560 or PE_UNCHANGED for no change.

detailAreaCursor Specifies the Details area cursor. Use one of the PE_TC_XXX “Track
Cursor Constants” on page 560 or PE_UNCHANGED for no change.

detailAreaFieldCursor Specifies the cursor for a memo, blob, database, summary, or formula
field in the Details area. Use one of the PE_TC_XXX “Track Cursor
Constants” on page 560 or PE_UNCHANGED for no change.

graphCursor Specifies the cursor for the group chart in the Report Header or Report
Footer area. Use one of the PE_TC_XXX “Track Cursor Constants” on
page 560 or PE_UNCHANGED for no change.

groupAreaCursor
Handle

Reserved, do not use.

groupAreaFiedlCursor
Handle

Reserved, do not use.
514 Crystal Reports Technical Reference Guide

Crystal report Engine
Remarks

� By default, all the cursors are PE_TC_ARROW_CURSOR. If the canDrillDown
option in “PEWindowOptions” on page 519, is True, then groupAreaCursor,
groupAreaFieldCursor, and graphCursor will be PE_TC_MAGNIFY_CURSOR.

VB Type Listing

Type PETrackCursorInfo

groupAreaCursor As Integer

groupAreaFieldCursor As Integer

detailAreaCursor As Integer

detailAreaFieldCursor As Integer

graphCursor As Integer

groupAreaCursorHandle As Long

groupAreaFieldCursorHandle As Long

detailAreaCursorHandle As Long

detailAreaFieldCursorHandle As Long

graphCursorHandle As Long

End Type

Delphi Record Listing

type

PETrackCursorInfo = record

StructSize: Word;

groupAreaCursor: smallint;

groupAreaFieldCursor: smallint;

detailAreaCursor: smallint;

detailAreaFieldCursor: smallint;

graphCursor: smallint;

groupAreaCursorHandle:longint;

groupAreaFieldCursorHandle: longint;

detailAreaCursorHandle: longint;

detailAreaFieldCursorHandle: longint;

graphCursorHandle: longint; {

end;

detailAreaCursor
Handle

Reserved, do not use.

detailAreaFieldCursor
Handle

Reserved, do not use.

graphCursorHandle Reserved, do not use.

ondemandSubreport
Cursor

Specifies the cursor for on-demand subreports when drilldown for the
window is enabled. Default is PE_TC_MAGNIFY_CURSOR

hyperlinkCursor Specifies the cursor for hyperlink text in report objects. Default is
PE_TC_HAND_CURSOR.
Crystal Reports Technical Reference Guide 515

Print Engine Structures
PEValueInfo

PEValueInfo contains information that is used by “PEConvertPFInfotoVInfo” on
page 290 to return converted parameter values in simple types and by
“PEConvertVInfotoPFInfo” on page 291 to accept values for conversion to the
binary format required by “PESetNthParameterField” on page 423.

C Syntax

typedef struct PEValueInfo {

WORD StructSize;

WORD valueType;

double viNumber;

double viCurrency;

BOOL viBoolean;

char viString[PE_VI_STRING_LEN];

short viDate[3];

short viDateTime[6];

short viTime[3];

COLORREF viColor;

short viInteger;

char viC;

char ignored;

long viLong

} PEValueInfo;

Members

StructSize Specifies the size of the PEValueInfo structure. Initialize this member to
PE_SIZEOF_VALUE_INFO.

valueType Specifies the data type of the parameter field. The Crystal Report Engine
supports the following data types and associated PE_VI_XXX Value Type
constants.

Data Type Constant

Number PE_VI_NUMBER

Currency PE_VI_CURRENCY

Boolean PE_VI_BOOLEAN

Date PE_VI_DATE

String PE_VI_STRING

DateTime PE_VI_DATETIME

Time PE_VI_TIME
516 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEValueInfo

StructSize As Integer

valueType As Integer

viNumber As Double

viCurrency As Double

viBoolean As Long

viString As String * PE_VI_STRING_LEN

viDate(0 To 2) As Integer

viDateTime(0 To 5) As Integer

viTime(0 To 2) As Integer

viColor As Long

viInteger As Integer

viC As Byte

ignored As Byte

viLong As Long

End Type

Integer PE_VI_INTEGER

COLOREF PE_VI_COLOR

Char PE_VI_CHAR

Long PE_VI_LONG

No Value PE_VI_NOVALUE

viNumber Specifies the value if the parameter is a numeric value.

viCurrency Specifies the value if the parameter is a currency value.

viBoolean Specifies the value if the parameter is a Boolean value.

viString Specifies the value if the parameter is a string value (of length
PE_VI_STRING_LEN = 256).

viDate Specifies the value if the parameter is a Date value (year, month, day).

viDateTime Specifies the value if the parameter is a Date/Time value (year, month, day,
hour, minute, second).

viTime Specifies the value if the parameter is a Time value (hour, minute, second).

viColor Specifies the value if the parameter is a color value.

viInteger Specifies the value if the parameter is a integer value.

viC Specifies the value if the parameter is a char value.

ignored Internal use only for 4 byte alignment. Do not use.

viLong Specifies the value if the parameter is a long value.
Crystal Reports Technical Reference Guide 517

Print Engine Structures
Delphi Record Listing

type

PEVALUEINFOSTRINGTYPE

= array[0..PE_VI_STRING_LEN-1] of smallint;

PEVALUEINFODATEORTIMETYPE = array[0..5] of smallint;

PEVALUEINFODATETIMETYPE = array[0..2] of smallint;

PEValueInfo = record

StructSize:Word;

valueType: Word; {a PE_VI_constant

viNumber: Double;

viCurrency: Double;

viBoolean: BOOL;

viString: PEVALUEINFOSTRINGTYPE;

viDate: PEVALUEINFODATEORTIMETYPE;

viDateTime: PEVALUEINFODATETIMETYPE;

viTime: PEVALUEINFODATEORTIMETYPE;

viColor: COLORREF;

viInteger: Smallint;

viC: Char; Char;{BYTE}

ignored: Char;

viLong: Longint;

end;

PEVersionInfo

PEVersionInfo contains information on the version number of the report
associated with the job handle. This information is used by “PEGetReportVersion”
on page 359, to retrieve major and minor version information on the report.

C Syntax

typedef struct PEVersionInfo

{

WORD StructSize;

WORD major;

WORD minor;

char letter;

} PEVersionInfo;

Members

StructSize Specifies the size of the PEVersionInfo structure. Initialize this member to
PE_SIZEOF_VERSION_INFO.

major Specifies the major release number of the report.

minor Specifies the minor release number of the.report.

letter Specifies a character value associated with the minor version number of
the report. Most reports do not have a character value, so a NULL value
will be returned.
518 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEVersionInfo

StructSize As Integer

major As Integer

minor As Integer

letter As String

End Type

Delphi Record Listing

type PEVersionInfo = record

StructSize : Word;

major : Word;

minor : Word;

character : PChar;

end;

PEWindowOptions

PEWindowOptions contains information related to preview window options. This
structure is used by “PEGetWindowOptions” on page 371, and
“PESetWindowOptions” on page 445, to get and set preview window contents.

C Syntax

typedef struct PEWindowOptions {

WORD StructSize;

short hasGroupTree;

short canDrillDown;

short hasNavigationControls;

short hasCancelButton;

short hasPrintButton;

short hasExportButton;

short hasZoomControl;

short hasCloseButton;

short hasProgressControls;

short hasSearchButton;

short hasPrintSetupButton;

short hasRefreshButton;

short showToolbarTips;

short showDocumentTips;

short hasLaunchButton;

} PEWindowOptions;
Crystal Reports Technical Reference Guide 519

Print Engine Structures
Members

Each member of type short can be set to TRUE, FALSE, or PE_UNCHANGED for
no change.

StructSize Specifies the size of the PEWindowOptions structure. Initialize this
member to PE_SIZEOF_WINDOW_OPTIONS.

hasGroupTree Specifies whether or not the Group Tree will appear in the window.
Whether or not the preview window has a group tree is determined by
two flags. One is this option (hasGroupTree) and the other is the
hasGroupTreeOption in Crystal Reports (File|Report Options dialog
box). By default, this value is set to False.

canDrillDown Specifies whether or not drill-down capabilities will be active in the
window. By default, this value is set to False.

hasNavigation
Controls

Specifies whether or not navigation controls will appears in the window.
By default, this value is set to True.

hasCancelButton Specifies whether or not a Cancel button will appear in the window. By
default, this value is set to True.

hasPrintButton Specifies whether or not a Print button will appear in the window. By
default, this value is set to True.

hasExportButton Specifies whether or not an Export button will appear in the window By
default, this value is set to True.

hasZoomControl Specifies whether or not zoom controls will appear in the window. By
default, this value is set to True.

hasCloseButton Specifies whether or not a Close button will appear in the window. By
default, this value is set to False. If canDrillDown is set to True, CRPE
will turnhasCloseButton on unless you set it to False.

hasProgressControls Specifies whether or not progress controls will appear in the window. By
default, this value is set to True.

hasSearchButton Specifies whether or not a Search button will appear in the window. By
default, this value is set to False.

hasPrintSetupButton Specifies whether or not a Print Setup button will appear in the window.

hasRefreshButton Specifies whether or not a Refresh button will appear in the window.

showToolbarTips Specifies whether or not Tooltips are shown on the Toolbar. By default,
this value is set to True (default is visible tooltips on toolbar).

showDocumentTips Specifies whether or not Tooltips are shown on the Document. By
default, this value is set to False (default is hidden tooltips on
document).

hasLaunchButton Specifies whether or not a button to launch Seagate Analysis is placed on
the toolbar. By default, this value is set to False.

Note: Seagate Analysis is now known as Crystal Analysis.
520 Crystal Reports Technical Reference Guide

Crystal report Engine
VB Type Listing

Type PEWindowOptions

StructSize As Integer

hasGroupTree As Integer

canDrillDown As Integer

hasNavigationControls As Integer

hasCancelButton As Integer

hasPrintButton As Integer

hasExportButton As Integer

hasZoomControl As Integer

hasCloseButton As Integer

hasProgressControls As Integer

hasSearchButton As Integer

hasPrintSetupButton As Integer

hasRefreshButton As Integer

showToolbarTips As Integer

showDocumentTips As Integer

End Type

Delphi Recor.d Listing

type

PEWindowOptions = record

StructSize: Word;

hasGroupTree: Smallint;

canDrillDown: Smallint;

hasNavigationControls: Smallint;

hasCancelButton: Smallint;

hasPrintButton: Smallint;

hasExportButton: Smallint;

hasZoomControl: Smallint;

hasCloseButton: Smallint;

hasProgressControls: Smallint;

hasSearchButton: Smallint;

hasPrintSetupButton: Smallint;

hasRefreshButton: Smallint;

showToolbarTips: Smallint;

showDocumentTips: Smallint;

end;

PEZoomLevelChangingEventInfo
PEZoomLevelChangingEventInfo contains information about records read
when a callback function is called with event ID equal to
PE_ZOOM_LEVEL_CHANGING_EVENT.

C Syntax

typedef struct PEZoomLevelChangingEventInfo {

WORD StructSize;

WORD zoomLevel;

long windowHandle;

} PEZoomLevelChangingEventInfo;
Crystal Reports Technical Reference Guide 521

Print Engine Structures
Members

VB Type Listing

Type PEZoomLevelChangingEventInfo

StructSize As Integer

zoomLevel As Integer

windowHandle As Long

End Type

Delphi Record Listing

type

PEZoomLevelChangingEventInfo = record

StructSize: Word;

zoomLevel: Word;

windowHandle: HWnd;

end;

UXDDiskOptions

UXDDiskOptions contains file name information that is used by
“PEEnableEventInfo” on page 457, when you want to export to a disk file.

C Syntax

struct UXDDiskOptions {

WORD StructSize;

char FAR *fileName;

};

Members

StructSize Specifies the size of the PEZoomLevelChangingEventInfo structure.
Initialize this member to
PE_SIZEOF_ZOOM_LEVEL_CHANGNG_EVENT_INFO.

zoomLevel The zoom level set in the preview window. This can be a value from 25 to
400, indicating a magnification percentage, or it can be one of the “Zoom
Level Constants” on page 561.

windowHandle Specifies the frame window handle where the event happens.

structSize Specifies the size of the UXDDiskOptions structure. You must initialize this
member to be the size of whatever it is, for example, options.structSize =
UXDDiskOptionsSize.

fileName Specifies the pointer to the null-terminated string that contains the file
name under which you want your disk file saved.
522 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

UXDDiskOptions = record

structSize: Word;

fileName: PChar;

end;

UXDMAPIOptions

UXDMAPIOptions contains e-mail information that is used by “PEEnableEventInfo”
on page 457, when you want to export to a MAPI e-mail destination.

C Syntax

struct UXDMAPIOptions {

WORD StructSize;

char FAR *toList;

char FAR *ccList;

char FAR *subject;

char FAR *message;

WORD nRecipients;

lpMapiRecipDesc recipients;

}

Members

structSize Specifies the size of the UXDMAPIOptions structure. You must initialize this
member to be the size of whatever it is, for example, options.structSize =
UXDMAPIOptionsSize.

toList Specifies the pointer to the null-terminated string that contains the “To” list to
which you want your e-mail message directed. If you specify “recipients” in this
structure, “toList” is ignored.

ccList Specifies the pointer to the null-terminated string that contains the “CC” list to
which you want your e-mail message copied. This string will appear on the
message. If you specify “recipients” in this structure, “ccList” is ignored.

subject Specifies the pointer to the null-terminated string you want to appear as the
subject line in the e-mail message.

message Specifies the pointer to the null-terminated string you want to appear as the body
of your e-mail message.

nRecipients Specifies the number of recipients that are to receive the e-mail message. You
must pass the value “0” if you specify “To” and “CC” lists in this structure.

recipients Specifies the pointer to an array of structures, each of which describes someone
to whom the message is being sent or CC'd. This member is included for those
applications that are already using Microsoft's MAPI.DLL. If you are not using
MAPI.DLL in your application, there is no advantage to using the recipients
array over the toList and ccList. You must pass the value “0” if you specify “To”
and “CC” lists in this structure. For detailed information about this member,
please refer to Microsoft's MAPI documentation.
Crystal Reports Technical Reference Guide 523

Print Engine Structures
Delphi Record Listing

type

UXDMAPIOptions = record

structSize: Word;

toList: PChar;

ccList: PChar;

subject: PChar;

message: PChar;

end;

UXDSMIOptions

UXDSMIOptions contains e-mail information that is used by the
“PEEnableEventInfo” on page 457, when you want to export to a MAPI e-mail
destination.

C Syntax

struct UXDSMIOptions {

WORD StructSize;

char FAR *toList;

char FAR *ccList;

char FAR *subject;

char FAR *message;

}

Members

structSize Specifies the size of the UXDMAPIOptions structure. You must initialize
this member to be the size of whatever it is, for example, options.structSize
= UXDMAPIOptionsSize.

toList Specifies the pointer to the null-terminated string that contains the “To” list
to which you want your e-mail message directed. If you specify
“recipients” in this structure, “toList” is ignored.

ccList Specifies the pointer to the null-terminated string that contains the “CC”
list to which you want your e-mail message copied. This string will appear
on the message. If you specify “recipients” in this structure, “ccList” is
ignored.

subject Specifies the pointer to the null-terminated string you want to appear as
the subject line in the e-mail message.

message Specifies the pointer to the null-terminated string you want to appear as
the body of your e-mail message.
524 Crystal Reports Technical Reference Guide

Crystal report Engine
Delphi Record Listing

type

UXDSMIOptions = record

structSize: Word;

toList: PChar;

ccList: PChar;

subject: PChar;

message: PChar;

end;

UXDPostFolderOptions

UXDPostFolderOptions contains information that is used by
“PEEnableEventInfo” on page 457, when you want to export to Microsoft
Exchange.

C Syntax

struct UXDPostFolderOptions {

WORD StructSize;

LPSTR pszProfile;

LPSTR pszPassword;

WORD wDestType;

LPSTR pszFolderPath;

};

Members

structSize Specifies the size of the UXDPostFolderOptions structure. You must
initialize this member to be the size of whatever it is, for example,
options.structSize = UXDPostFolderOptionsSize.

pszProfile Specifies the Exchange profile.

pszPassword Specifies the Exchange password.

wDestType Specifies the type of report to export to. Use one of the following:

Constant Valu
e Description

UXDExchFolderType 0 wDestType for Microsoft
Exchange folder.

UXDPostDocMessage 1009 wDestType for folder messages.

UXDPostPersonalReport 1010 wDestType for personal report.

UXDPostFolderReport 1011 wDestType for folder report.

pszFolderPath Specifies the Exchange path where you want the program to place the
exported file.
Crystal Reports Technical Reference Guide 525

Print Engine Structures
Delphi Record Listing

type

UXDPostFolderOptions = record

structSize:Word;

pszProfile:PChar;

pszPassword:PChar;

wDestType: Word;

pszFolderPath:PChar;

end;

(*pszFolderPath has to be in the following format: <Message Store
Name>@<Folder Name>@<Folder Name>*)

UXDVIMOptions

UXDVIMOptions contains e-mail message information that is used by
“PEEnableEventInfo” on page 457, when you want to export a VIM e-mail
destination.

C Syntax

struct UXDVIMOptions {

WORD StructSize;

char FAR *toList;

char FAR *ccList;

char FAR *bccList

char FAR *subject;

char FAR *message;

};

Note: VIM is not supported in the 32-bit version of Crystal Reports.

Members

structSize Specifies the size of the UXDVIMOptions structure. You must initialize this
member to be the size of whatever it is, for example, options.structSize =
UXDVIMOptionsSize.

toList Specifies the pointer to the null-terminated string that contains the “To” list
to which you want your e-mail message directed.

ccList Specifies the pointer to the null-terminated string that contains the “CC”
list to which you want your e-mail message copied. This string will appear
on the message.

bccList Specifies the pointer to the null-terminated string that contains the “Blind
CC” list to which you want your e-mail message copied. This string will
not appear on the message.

subject Specifies the pointer to the null-terminated string you want to appear as
the subject line in the e-mail message.

message Specifies the pointer to the null-terminated string you want to appear as
the body of your e-mail message.
526 Crystal Reports Technical Reference Guide

Crystal report Engine
UXFCharSeparatedOptions

UXFCharSeparatedOptions contains number and date information used by the
“PEEnableEventInfo” on page 457, structure when you want to export in a
Character Separated format and hard code number and/or date options.

C Syntax

struct UXFCharSeparatedOptions {

WORD StructSize;

BOOL useReportNumberFormat;

BOOL useReportDateFormat;

char stringDelimiter;

char FAR *fieldDelimiter;

};

Members

Delphi Record Listing

type

UXFCharSeparatedOptions = record

structSize: Word;

useReportNumberFormat: Bool;

useReportDateFormat: Bool;

stringDelimiter: Char;

fieldDelimiter: PChar;

end;

structSize Specifies the size of the UXFCharSeparatedOptions structure. You must
initialize this member to be the size of whatever it is, for example,
options.structSize = UXFCharSeparatedOptionsSize.

useReport
NumberFormat

Indicates whether or not the program should save numbers in the same
format (decimal places, negatives, etc.) that you have used in the report.
Pass TRUE if you want the program to use the same format used in the
report, FALSE if you want the number saved in a format that has been
optimized for the file format you have selected.

useReportDate
Format

Indicates whether or not the program should save dates in the same format
(MDY, DMY, etc.) that you used in the report. Pass TRUE if you want the
program to use the same format as used in the report, FALSE if you want
dates saved in a format that has been optimized for the file format you have
selected.

stringDelimiter Specifies the character you want to use to enclose alphanumeric field data
in the character separated values format. You can use whatever character
you wish, and it must be enclosed in quotes.

fieldDelimiter Specifies a pointer to the string you want to use to separate the fields in the
character separated values format. Your string may be up to 16 characters
long and must be enclosed in quotes.
Crystal Reports Technical Reference Guide 527

Print Engine Structures
UXFCommaTabSeparatedOptions

UXFCommaTabSeparatedOptions contains number and date information used by
“PEEnableEventInfo” on page 457, when you want to export in a Comma-
separated or Tab-separated format and hard code number and/or date options.

C Syntax

struct UXFCommaTabSeparatedOptions {

WORD StructSize;

BOOL useReportNumberFormat;

BOOL useReportDateFormat;

};

Members

Delphi Record Listing

type

UXFCommaTabSeparatedOptions = record

structSize: Word;

useReportNumberFormat: Bool;

useReportDateFormat: Bool;

end;

UXFDIFOptions

UXFDIFOptions contains number and date information used by
“PEEnableEventInfo” on page 457, when you want to export in a DIF format (Data
Interchange Format) and hard code number and/or date options.

C Syntax

struct UXFDIFOptions {

WORD StructSize;

BOOL useReportNumberFormat;

BOOL useReportDateFormat;

};

structSize Specifies the size of the UXFCommaTabSeparatedOptions structure. You
must initialize this member to be the size of whatever it is, for example,
options.structSize = UXFCommaTabSeparatedOptionsSize.

useReport
NumberFormat

Indicates whether or not the program should save numbers in the same
format (decimal places, negatives, etc.) that you have used in the report.
Pass TRUE if you want the program to use the same format used in the
report, FALSE if you want the number saved in a format that has been
optimized for the file format you have selected.

useReportDate
Format

Indicates whether or not the program should save dates in the same format
(MDY, DMY, etc.) that you used in the report. Pass TRUE if you want the
program to use the same format as used in the report, FALSE if you want dates
saved in a format that has been optimized for the file format you have selected.
528 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

Delphi Record Listing

type

UXFDIFOptions = record

structSize: Word;

useReportNumberFormat: Bool;

useReportDateFormat: Bool;

end;

UXFHTML3Options

UXFHTML3Options contains options used by “PEEnableEventInfo” on page 457,
when you are exporting to HTML format.

C Syntax

struct UXFHTML3Options {

WORD StructSize;

char FAR *fileName;

};

Members

Delphi Record Listing

type

UXFHTML3Options = record

structSize: Word;

fileName: PChar;

end;

structSize Specifies the size of the UXFDIFOptions structure. You must initialize this
member to be the size of whatever it is, for example, options.structSize =
UXFDIFOptionsSize.

useReport
NumberFormat

Indicates whether or not the program should save numbers in the same
format (decimal places, negatives, etc.) that you have used in the report. Pass
TRUE if you want the program to use the same format used in the report,
FALSE if you want the number saved in a format that has been optimized for
the file format you have selected.

useReport
DateFormat

Indicates whether or not the program should save dates in the same format
(MDY, DMY, etc.) that you used in the report. Pass TRUE if you want the
program to use the same format as used in the report, FALSE if you want dates
saved in a format that has been optimized for the file format you have selected.

structSize Specifies the size of the UXFHTML3Options structure. You must initialize this
member to be the size of whatever it is, for example, options.structSize =
UXFHTML3OptionsSize.

fileName Specifies a null terminated file name. For example,
“C\pub\docs\boxoffic\default.htm”. Any exported GIF files will be located in the
same directory as this file.
Crystal Reports Technical Reference Guide 529

Print Engine Structures
UXFODBCOptions

UXFODBCOptions contains information used by “PEEnableEventInfo” on
page 457, whenever you export in ODBC format.

C Syntax

struct UXFODBCOptions {

WORD structSize;

char FAR *dataSourceName;

char FAR *dataSourceUserID;

char FAR *dataSourcePassword;

char FAR *exportTableName;

};

Members

Delphi Record Listing

type

UXFODBCOptions = record

structSize: Word;

dataSourceName:PChar;

dataSourceUserID:PChar;

dataSourcePassword:PChar;

exportTableName:PChar;

end;

UXFPaginatedTextOptions

UXFPaginatedTextOptions contains information used by “PEEnableEventInfo” on
page 457, whenever you export in paginated text format.

C Syntax

struct UXFPaginatedTextOptions {

WORD StructSize;

WORD nLinesPerPage;

};

structSize Specifies the size of the UXFODBCOptions structure. You must initialize
this member to be the size of whatever it is, for example,
options.structSize = UXFODBCOptionsSize.

dataSourceName Specifies the name of the data source that you want to export to.

dataSourceUserID Specifies the User ID that you need to connect to the data source.

dataSourcePassword Specifies the Password that you need to connect to the data source.

exportTableName Specifies the name of the table you want to export to in the data source.
530 Crystal Reports Technical Reference Guide

Crystal report Engine
Members

Delphi Record Listing

type

UXFPaginatedTextOptions = Record

structSize:Word;

nLinesPerPage:Word;

end;

UXFRecordStyleOptions
UXFRecordStyleOptions contains number and date information used by
“PEEnableEventInfo” on page 457, when you want to export in a Record style
(columns of values) format and hard code number and/or date options.

C Syntax
struct UXFRecordStyleOptions {

WORD StructSize;

BOOL useReportNumberFormat;

BOOL useReportDateFormat;

};

Members

Delphi Record Listing

type

UXFRecordStyleOptions = record

structSize: Word;

useReportNumberFormat: Bool;

useReportDateFormat: Bool;

end;

structSize Specifies the size of the UXFPaginatedTextOptions structure. Initialize this member
to UXFPaginatedTextOptionsSize.

nLines
PerPage

Indicates the number of lines to be printed before the page break. The default is 60
lines. When the paginated text format is used with “PEGetExportOptions” on
page 306, the program displays the Lines Per Page dialog box to give the user the
opportunity to specify a different number if he or she wishes.

structSize Specifies the size of the UXFRecordStyleOptions structure. Initialize this
member to UXFRecordStyleOptionsSize.

useReport
NumberFormat

Indicates whether or not the program should save numbers in the same
format (decimal places, negatives, etc.) that you have used in the report. Pass
TRUE if you want the program to use the same format used in the report,
FALSE if you want the number saved in a format that has been optimized for
the file format you have selected.

useReport
DateFormat

Indicates whether or not the program should save dates in the same format
(MDY, DMY, etc.) that you used in the report. Pass TRUE if you want the
program to use the same format as used in the report, FALSE if you want dates
saved in a format that has been optimized for the file format you have selected.
Crystal Reports Technical Reference Guide 531

Print Engine Structures
532 Crystal Reports Technical Reference Guide

Microsoft Windows Structures
The COLORREF and DEVMODE structures are discussed in this section.

COLORREF

Microsoft Windows COLORREF (Windef.h) is a 32-bit value used to specify an
RGB color.

Syntax

When specifying an explicit RGB color, COLORREF has the following
hexadecimal form:

0x00bbggrr

where the low-order byte (rr) contains a value for the relative intensity of red, the
second byte (gg) contains a value for green, and the third byte (bb) contains a value
for blue. The high-order byte must be zero. The maximum value for a single byte
is 0xFF.

Remarks

Complete documentation for the COLORREF Microsoft Windows value can be
found at
http://msdn.microsoft.com/

DEVMODE

The Microsoft Windows DEVMODE structures contain information about the
device initialization and environment of a printer.

C Syntax

typedef struct _devicemode {

BCHAR dmDeviceName[CCHDEVICENAME];

WORD dmSpecVersion;

WORD dmDriverVersion;

WORD dmSize;

WORD dmDriverExtra;

DWORD dmFields;

union {

 struct {

short dmOrientation;

short dmPaperSize;

short dmPaperLength;

short dmPaperWidth;

 };

 POINTL dmPosition;

};

short dmScale;
Crystal Reports Technical Reference Guide 533

Microsoft Windows Structures
short dmCopies;

short dmDefaultSource;

short dmPrintQuality;

short dmColor;

short dmDuplex;

short dmYResolution;

short dmTTOption;

short dmCollate;

BCHAR dmFormName[CCHFORMNAME];

WORD dmLogPixels;

DWORD dmBitsPerPel;

DWORD dmPelsWidth;

DWORD dmPelsHeight;

DWORD dmDisplayFlags;

DWORD dmDisplayFrequency;

 #if(WINVER >= 0x0400)

DWORD dmICMMethod;

DWORD dmICMIntent;

DWORD dmMediaType;

DWORD dmDitherType;

DWORD dmReserved1;

DWORD dmReserved2;

 #if (WINVER >= 0x0500) || (_WIN32_WINNT >= 0x0400)

DWORD dmPanningWidth;

DWORD dmPanningHeight;

 #endif /* WINVER >= 0x0500 */

 #endif /* WINVER >= 0x0400 */

} DEVMODE;

Members

dmDeviceName Specifies the name of the device the driver supports (for example, PCL/HP
LaserJet for PCL/HP LaserJet®). This string is unique among device
drivers.

dmSpecVersion Specifies the version number of the initialization data specification on
which the structure is based.

dmDriverVersion Specifies the printer driver version number assigned by the printer driver
developer.

dmSize Specifies the size, in bytes, of the DEVMODE structure except the
dmDriverData (device-specific) member. If an application manipulates only
the driver-independent portion of the data, it can use this member to
determine the length of the structure without having to account for
different versions.

dmDriverExtra Contains the number of bytes of private driver-data that follow this
structure. If a device driver does not use device-specific information, set
this member to zero. See Remarks below.
534 Crystal Reports Technical Reference Guide

 :
dmFields Specifies which of the remaining members in the DEVMODE structure
have been initialized. Bit 0 (defined as DM_ORIENTATION) corresponds to
dmOrientation; bit 1 (defined as DM_PAPERSIZE) specifies dmPaperSize,
and so on. A printer driver supports only those members that are
appropriate for the printer technology.

dmOrientation Selects the orientation of the paper. This member can be set to either of the
following:

Constant Description

DMORIENT_PORTRAIT

DMORIENT_LANDSCAPE

dmPaperSize Selects the size of the paper to print on. This member can be set to zero if the
length and width of the paper are both set by the dmPaperLength and
dmPaperWidth members. Otherwise, the dmPaperSize member can be set
to one of the following predefined values:

Constant Description

DMPAPER_LETTER Letter, 8 1/2 by 11 inches

DMPAPER_LEGAL Legal, 8 1/2 by 14 inches

DMPAPER_A4 A4 Sheet, 210 by 297 millimeters

DMPAPER_CSHEET C Sheet, 17 by 22 inches

DMPAPER_DSHEET D Sheet, 22 by 34 inches

DMPAPER_ESHEET E Sheet, 34 by 44 inches

DMPAPER_LETTERSMALL Letter Small, 8 1/2 by 11 inches

DMPAPER_TABLOID Tabloid, 11 by 17 inches

DMPAPER_LEDGER Ledger, 17 by 11 inches

DMPAPER_STATEMENT Statement, 5 1/2 by 8 1/2 inches

DMPAPER_EXECUTIVE Executive, 7 1/4 by 10 1/2 inches

DMPAPER_A3 A3 sheet, 297 by 420 millimeters

DMPAPER_A4SMALL A4 small sheet, 210 by 297 millimeters

DMPAPER_A5 A5 sheet, 148 by 210 millimeters

DMPAPER_B4 B4 sheet, 250 by 354 millimeters

DMPAPER_B5 B5 sheet, 182-by-257-millimeter paper

DMPAPER_FOLIO Folio, 8-1/2-by-13-inch paper

DMPAPER_QUARTO Quarto, 215-by-275-millimeter paper

DMPAPER_10X14 10-by-14-inch sheet

DMPAPER_11X17 11-by-17-inch sheet

DMPAPER_NOTE Note, 8 1/2 by 11 inches

DMPAPER_ENV_9 #9 Envelope, 3 7/8 by 8 7/8 inches

DMPAPER_ENV_10 #10 Envelope, 4 1/8 by 9 1/2 inches
Crystal Reports Technical Reference Guide 535

Microsoft Windows Structures
DMPAPER_ENV_11 #11 Envelope, 4 1/2 by 10 3/8 inches

DMPAPER_ENV_12 #12 Envelope, 4 3/4 by 11 inches

DMPAPER_ENV_14 #14 Envelope, 5 by 11 1/2 inches

DMPAPER_ENV_DL DL Envelope, 110 by 220 millimeters

DMPAPER_ENV_C5 C5 Envelope, 162 by 229 millimeters

DMPAPER_ENV_C3 C3 Envelope, 324 by 458 millimeters

DMPAPER_ENV_C4 C4 Envelope, 229 by 324 millimeters

DMPAPER_ENV_C6 C6 Envelope, 114 by 162 millimeters

DMPAPER_ENV_C65 C65 Envelope, 114 by 229 millimeters

DMPAPER_ENV_B4 B4 Envelope, 250 by 353 millimeters

DMPAPER_ENV_B5 B5 Envelope, 176 by 250 millimeters

DMPAPER_ENV_B6 B6 Envelope, 176 by 125 millimeters

DMPAPER_ENV_ITALY Italy Envelope, 110 by 230 millimeters

DMPAPER_ENV_
MONARCH

Monarch Envelope, 3 7/8 by 7 1/2 inches

DMPAPER_ENV_
PERSONAL

6 3/4 Envelope, 3 5/8 by 6 1/2 inches

DMPAPER_FANFOLD_US US Std Fanfold, 14 7/8 by 11 inches

DMPAPER_FANFOLD_
STD_GERMAN

German Std Fanfold, 8 1/2 by 12 inches

DMPA PER_FANFOLD_
LGL_GERMAN

German Legal Fanfold, 8 1/2 by 13 inches

dmPaperLength Overrides the length of the paper specified by the dmPaperSize member,
either for custom paper sizes or for devices such as dot-matrix printers,
which can print on a page of arbitrary length. These values, along with all
other values in this structure that specify a physical length, are in tenths of a
millimeter.

dmPaperWidth Overrides the width of the paper specified by the dmPaperSize member.

dmScale Specifies the factor by which the printed output is to be scaled. The
apparent page size is scaled from the physical page size by a factor of
dmScale/100. For example, a letter-sized page with a dmScale value of 50
would contain as much data as a page of 17 by 22 inches because the output
text and graphics would be half their original height and width.

Constant Description
536 Crystal Reports Technical Reference Guide

 :
dmCopies Selects the number of copies printed if the device supports multiple-page
copies.

dmDefaultSource Reserved. This member must be set to 0.

dmPrintQuality Specifies the printer resolution. There are four predefined device-
independent values. If a positive value is given, it specifies the number of
dots per inch (DPI) and is therefore device dependent.

Constant Description

DMRES_HIGH

DMRES_MEDIUM

DMlRES_LOW

DMRES_DRAFT

dmColor Switches between color and monochrome on color printers. Following are
the possible values:

Constant Description

DMCOLOR_COLOR

DMCOLOR_MONOCHROME

dmDuplex Selects duplex or double-sided printing for printers capable of duplex
printing. Following are the possible values:

Constant Description

DMDUP_SIMPLEX

DMDUP_HORIZONTAL

DMDUP_VERTICAL

dmYResolution Specifies the y-resolution, in dots per inch, of the printer. If the printer
initializes this member, the dmPrintQuality member specifies the x-
resolution, in dots per inch, of the printer.

dmTTOption Specifies how TrueType® fonts should be printed. This member can be one
of the following values:

Constant Description

DMTT_BITMAP Prints TrueType fonts as graphics. This is
the default action for dot-matrix printers.

DMTT_DOWNLOAD Downloads TrueType fonts as soft fonts.
This is the default action for Hewlett-
Packard printers that use Printer Control
Language (PCL).

DMTT_SUBDEV Substitute device fonts for TrueType fonts.
This is the default action for PostScript®
printers.
Crystal Reports Technical Reference Guide 537

Microsoft Windows Structures
dmCollate Specifies whether collation should be used when printing multiple copies.
Using DMCOLLATE_FALSE provides faster, more efficient output, since
the data is sent to a page printer just once, no matter how many copies are
required. The printer is told to simply print the page again. This member
can be be one of the following values:

Constant Description

DMCOLLATE_TRUE Collate when printing multiple copies.

DMCOLLATE_FALSE Do NOT collate when printing multiple
copies.

dmFormName Specifies the name of the form to use; for example, Letter or Legal. A
complete set of names can be retrieved through the Windows EnumForms
function.

dmUnusedPaddin
g

Used to align the structure to a DWORD boundary. This should not be used
or referenced. Its name and usage is reserved, and can change in future
releases.

dmBitsPerPel Specifies in bits per pixel the color resolution of the display device. For
example: 4 bits for 16 colors, 8 bits for 256 colors, or 16 bits for 65,536 colors.

dmPelsWidth Specifies the width, in pixels, of the visible device surface.

dmPelsHeight Specifies the height, in pixels, of the visible device surface.

dmDisplayFlags Specifies the device's display mode. The following are valid flags:

Constant Description

DM_GRAYSCALE Specifies that the display is a non-color
device. If this flag is not set, color is
assumed.

DM_INTERLACED Specifies that the display mode is
interlaced. If the flag is not set, non-
interlaced is assumed.

dmDisplay
Frequency

Specifies the frequency, in hertz (cycles per second), of the display device
in a particular mode.

dmICMMethod Specifies how ICM is handled. For a non-ICM application, this member
determines if ICM is enabled or disabled. For ICM applications, the system
examines this member to determine how to handle ICM support. The
printer driver must provide a user interface for setting this member. Most
printer drivers support only the DMICMMETHOD_SYSTEM or
DMICMMETHOD_NONE value. Drivers for PostScript printers support
all values. This member can be one of the following predefined values, or a
driver-defined value greater than or equal to the value of
DMICMMETHOD_USER.

Constant Description

DMICMMETHOD_NONE Specifies that ICM is disabled.

DMICMMETHOD_SYSTE
M

Specifies that ICM is handled by Windows.
538 Crystal Reports Technical Reference Guide

 :
DMICMMETHOD_DRIVER Specifies that ICM is handled by the device
driver.

DMICMMETHOD_DEVICE Specifies that ICM is handled by the
destination device.

dmICMIntent Windows 95/98, Windows 2000: Specifies which of the three possible color
matching methods, or intents, should be used by default. This member is
primarily for non-ICM applications. ICM applications can establish intents
by using the ICM functions. This member can be one of the following
predefined values, or a driver defined value greater than or equal to the
value of DMICM_USER.

Constant Description

DMICM_ABS_
COLORIMETRIC

Color matching should optimize to match
the exact color requested without white
point mapping. This value is most
appropriate for use with proofing.

DMICM_COLORMETRIC Color matching should optimize to match
the exact color requested. This value is
most appropriate for use with business
logos or other images when an exact color
match is desired.

DMICM_CONTRAST Color matching should optimize for color
contrast. This value is the most appropriate
choice for scanned or photographic images
when dithering is desired.

DMICM_SATURATE Color matching should optimize for color
saturation. This value is the most
appropriate choice for business graphs
when dithering is not desired.

dmMediaType Windows 95/98, Windows 2000: Specifies the type of media being printed
on. The member can be one of the following predefined values, or a driver-
defined value greater than or equal to the value of DMMEDIA_USER.

Constant Description

DMMEDIA_STANDARD Plain paper.

DMMEDIA_GLOSSY Glossy paper.

DMMEDIA_TRANSPAREN
CY

Transparent film.

dmDitherType Windows 95/98, Windows 2000: Specifies how dithering is to be done. The
member can be one of the following predefined values, or a driver-defined
value greater than or equal to the value of DMDITHER_USER.

Constant Description

DMDITHER_NONE No dithering.

DMDITHER_COARSE Dithering with a coarse brush.

DMDITHER_FINE Dithering with a fine brush.
Crystal Reports Technical Reference Guide 539

Microsoft Windows Structures
Remarks

� Header file: Wingdi.h
� A device driver’s private data follows the public portion of the DEVMODE

structure. The size of the public data can vary for different versions of the
structure. The dmSize member specifies the number of bytes of public data,
and the dmDriverExtra member specifies the number of bytes of private data.

� Complete documentation for the DEVMODE Microsoft Windows API
structures can be found at
http://msdn.microsoft.com/

DMDITHER_LINEART Line art dithering, a special dithering
method that produces well defined borders
between black, white, and gray scalings. It
is not suitable for images that include
continuous graduations in intensisty and
hue such as scanned photographs.

DMDITHER_
ERRORDIFFUSION

Windows 95/98: Dithering in which an
algorithm is used to spread, or diffuse, the
error of approximating a specified color
over adjacent pixels. In contrast,
DMDITHER_COARSE, DMDITHER_FINE,
and DMDITHER_LINEART use patterned
halftoning to approximate a color.

DMDITHER_GRAYSCALE Device does grayscaling.

dmReserved1 Windows 95/98, Windows 2000: Not used; must be zero.

dmReserved2 Windows 95/98, Windows 2000: Not used; must be zero.

dmPanningWidth Windows NT/Windows 2000: This member must be zero. Windows 95/98:
This member is not supported.

dmPanningHeigh
t

Windows NT/Windows 2000: This member must be zero. Windows 95/98:
This member is not supported.
540 Crystal Reports Technical Reference Guide

Print Engine Constants
The Print Engine constants are listed alphabetically in this section.

Area/Section Format Formula Constants
Constants PE_FFN_SECTION_VISIBILITY and
PEP_FFN_SECTION_BACK_COLOUR are included for support of older
applications. These constants has the same value as
PE_FFN_AREASECTION_VISIBILITY and PEP_FFN_SECTION_BACK_COLOR.
All new Crystal Reports applications should use
PE_FFN_AREASECTION_VISIBILITY and PEP_FFN_SECTION_BACK_COLOR.

Chart Options Constants
The following chart options constants are supported.

“Chart Bar Size Constants” on page 542
“Chart Color Constants” on page 542
“Chart Data Point Constants” on page 542
“Chart Gridline Constants” on page 542
“Chart Legend Layout Constants” on page 543
“Chart Legend Placement Constants” on page 543
“Chart Marker Shape Constants” on page 543
“Chart Marker Size Constants” on page 543

Constant Description

PE_FFN_AREASECTION_VISIBILITY Area and Section format

PE_FFN_SECTION_VISIBILITY Section format

PE_FFN_SHOW_AREA Area format

PE_FFN_NEW_PAGE_BEFORE Area and Section format

PE_FFN_NEW_PAGE_AFTER Area and Section format

PE_FFN_KEEP_TOGETHER Area and Section format

PE_FFN_SUPPRESS_BLANK_SECTION Section format

PE_FFN_RESET_PAGE_N_AFTER Area and Section format

PE_FFN_PRINT_AT_BOTTOM_OF_PAGE Area and Section format

PE_FFN_UNDERLAY_SECTION Section format

PE_FFN_SECTION_BACK_COLOUR Section format

PE_FFN_SECTION_BACK_COLOR Section format
Crystal Reports Technical Reference Guide 541

Print Engine Constants
“Chart Number Format Constants” on page 544
“Chart Pie Size Constants” on page 544
“Chart Slice Detachment Constants” on page 544
“Chart Viewing Angle Constants” on page 545

Chart Bar Size Constants

Chart Color Constants

Chart Data Point Constants

Chart Gridline Constants

Constant

PE_GBS_MINIMUMBARSIZE

PE_GBS_SMALLBARSIZE

PE_GBS_AVERAGEBARSIZE

PE_GBS_LARGEBARSIZE

PE_GBS_MAXIMUMBARSIZE

Constant

PE_GCR_COLORCHART

PE_GCR_BLACKANDWHITECHART

Constant

PE_GDP_NONE

PE_GDP_SHOWLABEL

PE_GDP_SHOWVALUE

Constant

PE_GGT_NOGRIDLINES

PE_GGT_MINORGRIDLINES

PE_GGT_MAJORGRIDLINES

PE_GGT_MAJORANDMINORGRIDLINES
542 Crystal Reports Technical Reference Guide

 :
Chart Legend Layout Constants

Chart Legend Placement Constants

Chart Marker Shape Constants

Chart Marker Size Constants

Constant Description

PE_GLL_PERCENTAGE

PE_GLL_AMOUNT

PE_GLL_CUSTOM Used for PEGetGraphOptionInfo only. Do not use for
PESetGraphOptionInfo.

Constant

PE_GLP_PLACEUPPERRIGHT

PE_GLP_PLACEBOTTOMCENTER

PE_GLP_PLACETOPCENTER

PE_GLP_PLACERIGHT

PE_GLP_PLACELEFT

Constant

PE_GMSP_RECTANGLESHAPE

PE_GMSP_CIRCLESHAPE

PE_GMSP_DIAMONDSHAPE

PE_GMSP_TRIANGLESHAPE

Constant

PE_GMS_SMALLMARKERS

PE_GMS_MEDIUMSMALLMARKERS

PE_GMS_MEDIUMMARKERS

PE_GMS_MEDIUMLARGEMARKERS

PE_GMS_LARGEMARKERS
Crystal Reports Technical Reference Guide 543

Print Engine Constants
Chart Number Format Constants

Chart Pie Size Constants

Chart Slice Detachment Constants

Constant

PE_GNF_NODECIMAL

PE_GNF_ONEDECIMAL

PE_GNF_TWODECIMAL

PE_GNF_CURRENCYNODECIMAL

PE_GNF_CURRENCYTWODECIMAL

PE_GNF_PERCENTNODECIMAL

PE_GNF_PERCENTONEDECIMAL

PE_GNF_PERCENTTWODECIMAL

Constant

PE_GPS_MINIMUMPIESIZE

PE_GPS_SMALLPIESIZE

PE_GPS_AVERAGEPIESIZE

PE_GPS_LARGEPIESIZE

PE_GPS_MAXIMUMPIESIZE

Constant

PE_GDPS_NODETACHMENT

PE_GDPS_SMALLESTSLICE

PE_GDPS_LARGESTSLICE
544 Crystal Reports Technical Reference Guide

 :
Chart Viewing Angle Constants

Database Type Constants

Error Codes

Constant

PE_GVA_STANDARDVIEW

PE_GVA_TALLVIEW

PE_GVA_TOPVIEW

PE_GVA_DISTORTEDVIEW

PE_GVA_SHORTVIEW

PE_GVA_GROUPEYEVIEW

PE_GVA_GROUPEMPHASISVIEW

PE_GVA_FEWSERIESVIEW

PE_GVA_FEWGROUPSVIEW

PE_GVA_DISTORTEDSTDVIEW

PE_GVA_THICKGROUPSVIEW

PE_GVA_SHORTERVIEW

PE_GVA_THICKSERIESVIEW

PE_GVA_THICKSTDVIEW

PE_GVA_BIRDSEYEVIEW

PE_GVA_MAXVIEW

Constant Description

PE_DT_STANDARD Standard, non-SQL databases.

PE_DT_SQL SQL databases.

PE_DT_SQL_STORED_PROCEDURE SQL stored procedures.

Constant Value Description

PE_ERR_NOERROR 0

PE_ERR_NOTENOUGHMEMORY 500

PE_ERR_INVALIDJOBNO 501

PE_ERR_INVALIDHANDLE 502

PE_ERR_STRINGTOOLONG 503

PE_ERR_NOSUCHREPORT 504
Crystal Reports Technical Reference Guide 545

Print Engine Constants
PE_ERR_NODESTINATION 505

PE_ERR_BADFILENUMBER 506

PE_ERR_BADFILENAME 507

PE_ERR_BADFIELDNUMBER 508

PE_ERR_BADFIELDNAME 509

PE_ERR_BADFORMULANAME 510

PE_ERR_BADSORTDIRECTION 511

PE_ERR_ENGINENOTOPEN 512

PE_ERR_INVALIDPRINTER 513

PE_ERR_PRINTFILEEXISTS 514

PE_ERR_BADFORMULATEXT 515

PE_ERR_BADGROUPSECTION 516

PE_ERR_ENGINEBUSY 517

PE_ERR_BADSECTION 518

PE_ERR_NOPRINTWINDOW 519

PE_ERR_JOBALREADYSTARTED 520

PE_ERR_BADSUMMARYFIELD 521

PE_ERR_NOTENOUGHSYSRES 522

PE_ERR_BADGROUPCONDITION 523

PE_ERR_JOBBUSY 524

PE_ERR_BADREPORTFILE 525

PE_ERR_NODEFAULTPRINTER 526

PE_ERR_SQLSERVERERROR 527

PE_ERR_BADLINENUMBER 528

PE_ERR_DISKFULL 529

PE_ERR_FILEERROR 530

PE_ERR_INCORRECTPASSWORD 531

PE_ERR_BADDATABASEDLL 532

PE_ERR_BADDATABASEFILE 533

PE_ERR_ERRORINDATABASEDLL 534

PE_ERR_DATABASESESSION 535

PE_ERR_DATABASELOGON 536

PE_ERR_DATABASELOCATION 537

PE_ERR_BADSTRUCTSIZE 538

Constant Value Description
546 Crystal Reports Technical Reference Guide

 :
PE_ERR_BADDATE 539

PE_ERR_BADEXPORTDLL 540

PE_ERR_ERRORINEXPORTDLL 541

PE_ERR_PREVATFIRSTPAGE 542

PE_ERR_NEXTATLASTPAGE 543

PE_ERR_CANNOTACCESSREPORT 544

PE_ERR_USERCANCELLED 545

PE_ERR_OLE2NOTLOADED 546

PE_ERR_BADCROSSTABGROUP 547

PE_ERR_NOCTSUMMARIZEDFIELD 548

PE_ERR_DESTINATIONNOTEXPORT 549

PE_ERR_INVALIDPAGENUMBER 550

PE_ERR_NOTSTOREDPROCEDURE 552

PE_ERR_INVALIDPARAMETER 553

PE_ERR_GRAPHNOTFOUND 554

PE_ERR_INVALIDGRAPHTYPE 555

PE_ERR_INVALIDGRAPHDATA 556

PE_ERR_CANNOTMOVEGRAPH 557

PE_ERR_INVALIDGRAPHTEXT 558

PE_ERR_INVALIDGRAPHOPT 559

PE_ERR_BADSECTIONHEIGHT 560

PE_ERR_BADVALUETYPE 561

PE_ERR_INVALIDSUBREPORTNAME 562

PE_ERR_NOPARENTWINDOW 564 Dialog parent window

PE_ERR_INVALIDZOOMFACTOR 565 Zoom factor

PE_ERR_PAGESIZEOVERFLOW 567

PE_ERR_LOWSYSTEMRESOURCES 568

PE_ERR_INVALIDOBJECTFORMATNAME 571

PE_ERR_INVALIDNEGATIVEVALUE 572

PE_ERR_INVALIDMEMORYPOINTER 573

PE_ERR_INVALIDOBJECTTYPE 574

PE_ERR_INVALIDGRAPHDATATYPE 577

PE_ERR_INVALIDSUBREPORTLINKNUMBER 582

PE_ERR_SUBREPORTLINKEXIST 583

Constant Value Description
Crystal Reports Technical Reference Guide 547

Print Engine Constants
PE_ERR_BADROWCOLVALUE 584

PE_ERR_INVALIDSUMMARYNUMBER 585

PE_ERR_INVALIDGRAPHDATAFIELDNUMBER 586

PE_ERR_INVALIDSUBREPORTNUMBER 587

PE_ERR_INVALIDFIELDSCOPE 588

PE_ERR_FIELDINUSE 590

PE_ERR_INVALIDPARAMETERNUMBER 594

PE_ERR_INVALIDPAGEMARGINS 595

PE_ERR_REPORTONSECUREQUERY 596

PE_ERR_CANNOTOPENSECUREQUERY 597

PE_ERR_INVALIDSECTIONNUMBER 598

PE_ERR_SQLSERVERNOTOPENED 599

PE_ERR_TABLENAMEEXIST 606

PE_ERR_INVALIDCURSOR 607

PE_ERR_FIRSTPASSNOTFINISHED 608

PE_ERR_CREATEDATASOURCE 609

PE_ERR_CREATEDRILLDOWNPARAMETERS 610

PE_ERR_CHECKFORDATASOURCECHANGES 613

PE_ERR_STARTBACKGROUNDPROCESSING 614

PE_ERR_SQLSERVERINUSE 619

PE_ERR_GROUPSORTFIELDNOTSET 620

PE_ERR_CANNOTSETSAVESUMMARIES 621

PE_ERR_LOADOLAPDATABASEMANAGER 622

PE_ERR_OPENOLAPCUBE 623

PE_ERR_READOLAPCUBEDATA 624

PE_ERR_CANNOTSAVEQUERY 626

PE_ERR_CANNOTREADQUERYDATA 627

PE_ERR_MAINREPORTFIELDLINKED 629

PE_ERR_INVALIDMAPPINGTYPEVALUE 630

PE_ERR_HITTESTFAILED 636

PE_ERR_BADSQLEXPRESSIONNAME 637 No SQL expression by the specified
name exists in this report.

PE_ERR_BADSQLEXPRESSIONNUMBER 638 No SQL expression by the specified
number exists in this report.

PE_ERR_BADSQLEXPRESSIONTEXT 639 Not a valid SQL expression

Constant Value Description
548 Crystal Reports Technical Reference Guide

 :
PE_ERR_INVALIDDEFAULTVALUEINDEX 641 Invalid index for default value of
a parameter.

PE_ERR_NOMINMAXVALUE 642 The specified PE_PF_* type does
not have min/max values.

PE_ERR_INCONSISTANTTYPES 643 If both min and max values
are specified in
PESetParameterMinMaxValue,
the value types for the min and
max must be the same.

PE_ERR_CANNOTLINKTABLES 645

PE_ERR_CREATEROUTER 646

PE_ERR_INVALIDFIELDINDEX 647

PE_ERR_INVALIDGRAPHTITLETYPE 648

PE_ERR_INVALIDGRAPHTITLEFONTTYPE 649

PE_ERR_PARAMTYPEDIFFERENT 650 The type used in a add/set value
API for a parameter differs with
it's existing type.

PE_ERR_INCONSISTANTRANGETYPES 651 The value type for both start &
end range values must be the
same.

PE_ERR_RANGEORDISCRETE 652 An operation was attempted on a
discrete parameter that is only legal
for range parameters or vice versa.

PE_ERR_NOTMAINREPORT 654 An operation was attempted that
is disallowed for subreports.

PE_ERR_INVALIDCURRENTVALUEINDEX 655 Invalid index for current value of
a parameter.

PE_ERR_LINKEDPARAMVALUE 656 Operation illegal on linked
parameter.

PE_ERR_INVALIDPARAMETERRANGEINFO 672 Invalid PE_RI_XXX combination.

PE_ERR_INVALIDSORTMETHODINDEX 674 Invalid sort method index.

PE_ERR_INVALIDGRAPHSUBTYPE 675 Invalid PE_GST_XXX or
PE_GST_XXX does not match
PE_GT_XXX or PE_GST_XXX
current graph type.

PE_ERR_BADGRAPHOPTIONINFO 676 One of the members of
PEGraphOptionInfo is out of
range.

PE_ERR_BADGRAPHAXISINFO 677 One of the members of
PEGraphAxisInfo is out of range.

PE_ERR_INVALIDPARAMETERVALUE 687

Constant Value Description
Crystal Reports Technical Reference Guide 549

Print Engine Constants
Event Id Constants

PE_ERR_INVALIDFORMULASYNTAXTYPE 688 Specified formula syntax not in
PE_FST_XXX

PE_ERR_INVALIDCROPVALUE 689

PE_ERR_INVALIDCOLLATIONVALUE 690

PE_ERR_STARTPAGEGREATERSTOPPAGE 691

PE_ERR_READONLYPARAMETEROPTION 700

PE_ERR_MINGREATERTHANMAX 701

PE_ERR_INVALIDSTARTPAGE 702

PE_ERR_OTHERERROR 997

PE_ERR_INTERNALERROR 998 Programming error

PE_ERR_NOTIMPLEMENTED 999

Constant Value Description

Constant Description

PE_CLOSE_PRINT_WINDOW_EVENT

PE_ACTIVATE_PRINT_WINDOW_EVENT

PE_DEACTIVATE_PRINT_WINDOW_EVENT

PE_PRINT_BUTTON_CLICKED_EVENT

PE_EXPORT_BUTTON_CLICKED_EVENT

PE_ZOOM_LEVEL_CHANGING_EVENT

PE_FIRST_PAGE_BUTTON_CLICKED_EVENT

PE_PREVIOUS_PAGE_BUTTON_CLICKED_EVENT

PE_NEXT_PAGE_BUTTON_CLICKED_EVENT

PE_LAST_PAGE_BUTTON_CLICKED_EVENT

PE_CANCEL_BUTTON_CLICKED_EVENT

PE_CLOSE_BUTTON_CLICKED_EVENT

PE_SEARCH_BUTTON_CLICKED_EVENT

PE_GROUP_TREE_BUTTON_CLICKED_EVENT

PE_PRINT_SETUP_BUTTON_CLICKED_EVENT

PE_REFRESH_BUTTON_CLICKED_EVENT

PE_SHOW_GROUP_EVENT

PE_DRILL_ON_GROUP_EVENT Include drill on graph.

PE_DRILL_ON_DETAIL_EVENT

PE_READING_RECORDS_EVENT
550 Crystal Reports Technical Reference Guide

 :
Field Mapping Type Constants

Formula Syntax Constants

Remarks

For Running Total Condition Formulas:
� PE_FST_CRYSTAL is the syntax for the eval formula.
� PE_FST_BASIC is the syntax for the reset formula.

Graph Subtype Constants
The following chart subtypes are supported.

“Bar Charts” on page 552
“Line Charts” on page 552
“Area Charts” on page 552
“Pie Charts” on page 553
“Doughnut Charts” on page 553
“3D Riser Charts” on page 553

PE_START_EVENT

PE_STOP_EVENT

PE_MAPPING_FIELD_EVENT

PE_RIGHT_CLICK_EVENT Right mouse click.

PE_LEFT_CLICK_EVENT Left mouse click.

PE_MIDDLE_CLICK_EVENT Middle mouse click.

PE_DRILL_ON_HYPERLINK_EVENT

PE_LAUNCH_SEAGATE_ANALYSIS_EVENT

Constant Description

Constant Description

PE_FM_AUTO_FLD_MAP Automatic field name mapping.

PE_FM_CRPE_PROMPT_FLD_MAP CRPE provides dialog box to map field manually.

PE_FM_EVENT_DEFINED_FLD_MAP CRPE provides list of fields in the report and the new
database. This constant is not available in global32.bas.

Constant Description

PE_FST_CRYSTAL Default value. See Remarks below.

PE_FST_BASIC See Remarks below.
Crystal Reports Technical Reference Guide 551

Print Engine Constants
“3D Surface Charts” on page 553
“Scatter Charts” on page 553
“Radar Charts” on page 554
“Bubble Charts” on page 554
“Stock (High/Low/Close Type) Charts” on page 554
“Misc Chart Types” on page 554

Bar Charts

Line Charts

Area Charts

Constant

PE_GST_SIDEBYSIDEBARCHART

PE_GST_STACKEDBARCHART

PE_GST_PERCENTBARCHART

PE_GST_FAKED3DSIDEBYSIDEBARCHART

PE_GST_FAKED3DSTACKEDBARCHART

PE_GST_FAKED3DPERCENTBARCHART

Constant

PE_GST_REGULARLINECHART

PE_GST_STACKEDLINECHART

PE_GST_PERCENTAGELINECHART

PE_GST_LINECHARTWITHMARKERS

PE_GST_STACKEDLINECHARTWITHMARKERS

PE_GST_PERCENTAGELINECHARTWITHMARKERS

Constant

PE_GST_ABSOLUTEAREACHART

PE_GST_STACKEDAREACHART

PE_GST_PERCENTAREACHART

PE_GST_FAKED3DABSOLUTEAREACHART

PE_GST_FAKED3DSTACKEDAREACHART

PE_GST_FAKED3DPERCENTAREACHART
552 Crystal Reports Technical Reference Guide

 :
Pie Charts

Doughnut Charts

3D Riser Charts

3D Surface Charts

Scatter Charts

Constant

PE_GST_REGULARPIECHART

PE_GST_FAKED3DREGULARPIECHART

PE_GST_MULTIPLEPIECHART

PE_GST_MULTIPLEPROPORTIONALPIECHART

Constant

PE_GST_REGULARDOUGHNUTCHART

PE_GST_MULTIPLEDOUGHNUTCHART

PE_GST_MULTIPLEPROPORTIONALDOUGHNUTCHART

Constant

PE_GST_THREEDREGULARCHART

PE_GST_THREEDPYRAMIDCHART

PE_GST_THREEDOCTAGONCHART

PE_GST_THREEDCUTCORNERSCHART

Constant

PE_GST_THREEDSURFACEREGULARCHART

PE_GST_THREEDSURFACEWITHSIDESCHART

PE_GST_THREEDSURFACEHONEYCOMBCHART

Constant

PE_GST_XYSCATTERCHART

PE_GST_XYSCATTERDUALAXISCHART

PE_GST_XYSCATTERWITHLABELSCHART

PE_GST_XYSCATTERDUALAXISWITHLABELSCHART
Crystal Reports Technical Reference Guide 553

Print Engine Constants
Radar Charts

Bubble Charts

Stock (High/Low/Close Type) Charts

Misc Chart Types

Graph Text Font Constants

Constant

PE_GST_REGULARRADARCHART

PE_GST_STACKEDRADARCHART

PE_GST_RADARDUALAXISCHART

Constant

PE_GST_REGULARBUBBLECHART

PE_GST_DUALAXISBUBBLECHART

Constant

PE_GST_HIGHLOWCHART

PE_GST_HIGHLOWOPENCLOSECHART

Constant

PE_GST_UNKNOWNSUBTYPECHART

Constant

PE_GTF_TITLEFONT

PE_GTF_SUBTITLEFONT

PE_GTF_FOOTNOTEFONT

PE_GTF_GROUPSTITLEFONT

PE_GTF_DATATITLEFONT

PE_GTF_LEGENDFONT

PE_GTF_GROUPLABELSFONT

PE_GTF_DATALABELSFONT
554 Crystal Reports Technical Reference Guide

 :
Graph Title Type Constants

Graph Type Constants

Constant

PE_GTT_TITLE

PE_GTT_SUBTITLE

PE_GTT_FOOTNOTE

PE_GTT_SERIESTITLE

PE_GTT_GROUPSTITLE

PE_GTT_XAXISTITLE

PE_GTT_YAXISTITLE

PE_GTT_ZAXISTITLE

Constant Description

PE_GT_BARCHART

PE_GT_LINECHART

PE_GT_AREACHART

PE_GT_PIECHART

PE_GT_DOUGHNUTCHART

PE_GT_THREEDRISERCHART

PE_GT_THREEDSURFACECHART

PE_GT_SCATTERCHART

PE_GT_RADARCHART

PE_GT_BUBBLECHART

PE_GT_STOCKCHART

PE_GT_USERDEFINEDCHART Use for PEGetGraphTypeInfo only.
Do not use for PESetGraphTypeInfo.

PE_GT_UNKNOWNTYPECHART Use for PEGetGraphTypeInfo only.
Do not use for PESetGraphTypeInfo.
Crystal Reports Technical Reference Guide 555

Print Engine Constants
Group Condition Constants
The following tables list the Group Condition masks and constants applicable to
various field types.

“Group Condition Masks and Type Constants” on page 556
“All field types except Date and Boolean” on page 556
“Date and DateTime Fields” on page 556
“DateTime and Time Fields” on page 557
“Boolean Fields” on page 557

Group Condition Masks and Type Constants

All field types except Date and Boolean

Date and DateTime Fields

Mask and Type Constants Value

PE_GC_CONDITIONMASK 0x00FF

PE_GC_TYPEMASK 0x0F00

PE_GC_TYPEOTHER 0x0000

PE_GC_TYPEDATE 0x0200

PE_GC_TYPEBOOLEAN 0x0400

PE_GC_TYPETIME 0x0800

Constant Description

PE_GC_ANYCHANGE Triggers a grouping every time there is a change.

Constant (Date Fields
Only) Description

PE_GC_DAILY Triggers a grouping every time the date changes.

PE_GC_WEEKLY Triggers a grouping every time the date changes from one week to
the next. (A week runs from Sunday through Saturday).

PE_GC_BIWEEKLY Triggers a grouping every time the date changes from one two-week
period to the next. (A week runs from Sunday through Saturday).

PE_GC_SEMIMONTHLY Triggers a grouping every time the date changes from one half-
month period to the next.

PE_GC_MONTHLY Triggers a grouping every time the date changes from one month to
the next.

PE_GC_QUARTERLY Triggers a grouping every time the date changes from one calendar
quarter to the next.
556 Crystal Reports Technical Reference Guide

 :
DateTime and Time Fields

Boolean Fields

Job Destination Constants

PE_GC_SEMIANNUALLY Triggers a grouping every time the date changes from one half-year
period to the next.

PE_GC_ANNUALLY Triggers a grouping every time the date changes from one year to
the next.

Constant (Date Fields
Only) Description

Constant

PE_GC_BYSECOND

PE_GC_BYMINUTE

PE_GC_BYHOUR

PE_GC_BYAMPM

Constant
(Boolean Fields Only) Description

PE_GC_TOYES Triggers a grouping every time the sort- and group-by field value
changes from No to Yes.

PE_GC_TONO Triggers a grouping every time the sort- and group-by field value
changes from Yes to No.

PE_GC_EVERYYES Triggers a grouping every time the sort- and group-by field value is Yes.

PE_GC_EVERYNO Triggers a grouping every time the sort- and group-by field value is No.

PE_GC_NEXTISYES Triggers a grouping every time the next value in the sort- and group-by
field is Yes.

PE_GC_NEXTISNO Triggers a grouping every time the next value in the sort- and group-by
field is No.

Constant Description

PE_TO_NOWHERE No destination.

PE_TO_WINDOW Print to window.

PE_TO_PRINTER Print to printer.

PE_TO_EXPORT Export.

PE_FROM_QUERY From a query.
Crystal Reports Technical Reference Guide 557

Print Engine Constants
Job Status Constants

Object Type Constants

Ole Object Type Constants

Constant Description

PE_JOBNOTSTARTED

PE_JOBINPROGRESS

PE_JOBCOMPLETED

PE_JOBFAILED An error occurred.

PE_JOBCANCELLED The job was canceled by user.

PE_JOBHALTED The job was halted because of too many records or too much time.

Constant

PE_OI_FIELDOBJECT

PE_OI_TEXTOBJECT

PE_OI_LINEOBJECT

PE_OI_BOXOBJECT

PE_OI_SUBREPORTOBJECT

PE_OI_OLEOBJECT

PE_OI_GRAPHOBJECT

PE_OI_CROSSTABOBJECT

PE_OI_BLOBFIELDOBJECT

PE_OI_MAPOBJECT

PE_OI_OLAPGRIDOBJECT

Constant

PE_OOI_LINKEDOBJECT

PE_OOI_EMBEDDEDOBJECT

PE_OOI_STATICOBJECT
558 Crystal Reports Technical Reference Guide

 :
Ole Object Update Constants

Parameter Field Value Type Constants

Range Info Constants

Section Codes

Constant

PE_OOI_AUTOUPDATE

PE_OOI_MANUALUPDATE

Constant

PE_PF_NUMBER

PE_PF_CURRENCY

PE_PF_BOOLEAN

PE_PF_DATE

PE_PF_STRING

PE_PF_DATETIME

PE_PF_TIME

Constant Value

PE_RI_INCLUDEUPPERBOUND 1

PE_RI_INCLUDELOWERBOUND 2

PE_RI_NOUPPERBOUND 4

PE_RI_NOLOWERBOUND 8

Constant

PE_ALLSECTIONS

PE_SECT_PAGE_HEADER

PE_SECT_PAGE_FOOTER

PE_SECT_REPORT_HEADER

PE_SECT_REPORT_FOOTER

PE_SECT_GROUP_HEADER

PE_SECT_GROUP_FOOTER

PE_SECT_DETAIL
Crystal Reports Technical Reference Guide 559

Print Engine Constants
Sort Method Constants

Sort Order Constants

Track Cursor Constants

Constant

PE_OR_NO_SORT

PE_OR_ALPHANUMERIC_ASCENDING

PE_OR_ALPHANUMERIC_DESCENDING

PE_OR_NUMERIC_ASCENDING

PE_OR_NUMERIC_DESCENDING

Constant Description

PE_SF_DESCENDING Sorts data in descending order (Z to A, 9 to 1).

PE_SF_ASCENDING Sorts data in ascending order (A to Z, 1 to 9).

PE_SF_ORIGINAL Group condition only: Sorts data in its original order.

PE_SF_SPECIFIED Group condition only: Sorts data in a specified order. Read only.

Constant Description

PE_TC_DEFAULT_CURSOR CRPE default cursor =
PE_TC_ARROW_CURSOR.

PE_TC_ARROW_CURSOR Arrow cursor.

PE_TC_CROSS_CURSOR Cross cursor.

PE_TC_IBEAM_CURSOR I-beam cursor.

PE_TC_UPARROW_CURSOR Arrow cursor pointing to the top of the screen.

PE_TC_SIZEALL_CURSOR 32-bit only.

PE_TC_SIZENWSE_CURSOR Sizing cursor when resizing from the top,
left-hand side of the screen to the bottom, right-
hand side of the screen.

PE_TC_SIZENESW_CURSOR Sizing cursor when resizing from the top, right-
hand side of the screen to the bottom, left-hand
side of the screen.

PE_TC_SIZEWE_CURSOR Sizing cursor when resizing from the left side of
the screen to the right side of the screen.

PE_TC_SIZENS_CURSOR Sizing cursor when resizing from the top of the
screen to the bottom of the screen.

PE_TC_NO_CURSOR 32-bit only.
560 Crystal Reports Technical Reference Guide

 :
Zoom Level Constants

Obsolete Functions, Structures, and Constants
The following obsolete functions, structures, and constants are listed
alphabetically. They are not supported by the current version. Where appropriate,
replacement or updated equivalents are listed. The corresponding new call should
be used in all new applications.

Obsolete Functions

PE_TC_WAIT_CURSOR Wait (i.e., hourglass) cursor.

PE_TC_APPSTARTING_CURSOR 32-bit only.

PE_TC_HELP_CURSOR 32-bit only.

PE_TC_SIZE_CURSOR Not used in 32-bit applications.
Use PE_TC_SIZEALL_CURSOR.

PE_TC_ICON_CURSOR Not used in 32-bit applications.
Use PE_TC_ARROW_CURSOR.

PE_TC_BACKGROUND_PROCESS_CURSOR CRPE specific cursor.

PE_TC_GRAB_HAND_CURSOR CRPE specific cursor.

PE_TC_ZOOM_IN_CURSOR CRPE specific cursor.

PE_TC_REPORT_SECTION_CURSOR CRPE specific cursor.

PE_TC_HAND_CURSOR CRPE specific cursor.

PE_TC_MAGNIFY_CURSOR CRPE specific cursor. Magnifying glass cursor
(used for drill-down).

Constant Description

Constant

PE_ZOOM_FULL_SIZE

PE_ZOOM_SIZE_FIT_ONE_SIDE

PE_ZOOM_SIZE_FIT_BOTH_SIDES

Obsolete Function Replacement Function

PEGetGraphData

PEGetGraphOptions “PEGetGraphOptionInfo” on page 311

PEGetGraphText “PEGetGraphTextInfo” on page 312

PEGetGraphType “PEGetGraphTypeInfo” on page 313
Crystal Reports Technical Reference Guide 561

Obsolete Functions, Structures, and Constants
Obsolete Structures

Obsolete Constants

PEGetMinimumSectionHeight “PEGetSectionHeight” on page 363

PEGetNParams “PEGetNParameterFields” on page 327

PEGetNthParam “PEGetNthParameterField” on page 340

PEGetNthParamInfo “PEGetParameterValueInfo” on page 354

PESetGraphData

PESetGraphOptions “PESetGroupOptions” on page 414

PESetGraphText “PESetGraphTextInfo” on page 411

PESetGraphType “PESetGraphTypeInfo” on page 412

PESetMinimumSectionHeight “PESetSectionHeight” on page 441

PESetNthParam “PESetNthParameterField” on page 423

Obsolete Function Replacement Function

Obsolete Structure

PECharSepFileOptions

PEGraphDataInfo

PEGraphOptions

PEGraphTextInfo

PEParameterInfo

PEPrintFileOptions

Obsolete Constants

PE_GRAPH_XXX Graph Direction Constants

PE_SIDE_ / PE_FAKED_ /etc. Graph Type Constants
562 Crystal Reports Technical Reference Guide

Active Data 7

This chapter provides information on using active data in
the Crystal Reports Development environment. Three areas
are covered; the active data driver, Crystal Data Object, and
Crystal Data Source Type Library. By reading these sections
you will learn how to create active data reports, create
recordsets, and connect to the datasource through the
Report Designer Component automation server.
Crystal Reports Technical Reference Guide 563

Active Data Driver
Active Data Driver
Modern Visual Basic applications often use advanced ActiveX components to
connect to data sources. These data sources may include Data Access Objects
(DAO), Remote Data Objects (RDO), OLE DB providers, such as ActiveX Data
Objects (ADO), or the Visual Basic data controls. Using the Active Data Driver for
Crystal Reports, you can design reports for your Visual Basic applications that use
these same ActiveX data sources. The Active Data Driver also supports Crystal Data
Objects (CDO) and the Crystal Data Source Type Library. For more information on
RDO, DAO, and ADO, refer to Microsoft documentation. For information on the
Data Control, refer to your Visual Basic documentation. For information on CDO,
see “Crystal Data Object” on page 575. For information on the Crystal Data Source
Type Library, see “Crystal Data Source Type Library” on page 579.

Occasionally, you may also need to create a report when the data source is not actually
available at design time. Highly dynamic data may only be available at runtime. In
such cases, the Active Data Driver supports the use of Data definition files, tab
separated text files that define the fields in a data source but not the actual data.

Normally, developing applications using the Report Designer Component
requires designing and saving one or more report files in advance to be accessed
by the application at runtime. This process requires that the programmer has
access to the data during design time, and that the application, upon installation,
also installs whatever database drivers and files are required to make sure the
reports can connect to the required data.

An alternative to runtime connectivity, of course, is to save data with the report files.
The data is neatly packaged and available whenever the report is requested from
your custom application. However, saving data with a report increases the file size
of the report, wasting disk space. Furthermore, this technique produces a static
report file in which the data cannot be updated without connectivity to the database.

The Crystal Active Data Driver allows you to create report files at design time without
specifying an actual data source. Instead, the report is based on a data definition file,
an ASCII text file with place holders to represent database fields. At runtime, you add
code to your application to specify the actual source of data for the report.

The following topics are discussed in this section:
� “Data Definition Files” on page 565
� “Using the Active Data Driver” on page 565
� “Creating Data Definition Files” on page 569
� “Using ActiveX Data Sources at Design Time” on page 572
564 Crystal Reports Technical Reference Guide

7 : Active Data
Data Definition Files
A report file designed using a data definition file, instead of a specific database or
ODBC data source, contains information about the kind of data to place in the report
instead of information about an actual data source. It looks for field types, rather than
actual fields. For an example of a data definition file, refer to the file ORDERS.TTX
installed in the \Program Files\Seagate Software\Crystal Reports directory.

At design time, you create your report based on the data definition file. Previewing
or printing the report at design time has little value except to format field
placement and style. Since there is no real data in the text file, you cannot preview
or print any data at design time.

Note: You can add sample data to the data definition file so that values will
appear for each field in the Preview Tab at design time, but the values will be
identical for all records, and grouping will not be available.

At runtime, your application opens the report file, just as it would any other report
file. Instead of simply formatting and printing the file at runtime, though, you
change the data source pointed at by the Crystal Active Data Driver, which is the
data definition file, to a Recordset or Rowset object for an ActiveX data source such
as ADO, RDO, DAO, or the Crystal Data Sources (see “Crystal Data Object” on
page 575), and the Crystal Data Source Type Library (see “Crystal Data Source
Type Library” on page 579).

Once the Crystal Active Data Driver obtains the Recordset from the runtime data
source, the Report Designer Component can generate the actual report using
existing data. The entire process saves you time designing reports and produces
reports that are much more flexible and portable at runtime. For more information
on data definition files, see “Creating Data Definition Files” on page 569.

Using the Active Data Driver
Designing and generating reports using the Crystal Active Data Driver is a
straightforward process, but requires several specific steps:
� “Select the design time data source” on page 566
� “Design the Report” on page 566
� “Obtain a Recordset from the Runtime Data Source” on page 567
� “Open the Report” on page 568
� “Pass the Recordset to the Active Data Driver” on page 568
� “Print the Report” on page 569

The following sections demonstrate this process using the Crystal Active Data
Driver with the Report Designer Component Automation Server in Visual Basic 6.0.
Crystal Reports Technical Reference Guide 565

Active Data Driver
Select the design time data source

When designing a report for your Visual Basic application, you can specify any
ActiveX data source using the Active Data Driver, or you can specify a data
definition file so that the actual data is specified at runtime only. The following
example uses the sample data definition file included with Crystal Reports:

1 Click New Report in the Crystal Reports Welcome dialog box, or click the
New button on the Crystal Reports toolbar.

2 In the Crystal Report Gallery dialog box click Using the Report Expert. In this
example, you can click Standard from the Choose an Expert box. Then Click OK.

3 In the Standard Report Expert Dialog box click Database.

4 In the Data Explorer dialog box:
� expand More Data Sources
� expand Active Data
� expand Active Data (ADO).

5 In the Select Data Source dialog box click the ODBC (ADO) option, select
Xtreme Sample Database from the drop-down list, and then click OK.

6 In the Data Explorer dialog box click Add.

7 In the Select Recordset dialog box select Orders from the Object list, and then
click OK.

8 In the Data Explorer dialog box click Close. The Orders table appears as ado in
the Tables available for report box, under the data tab, in the Standard Report
Expert dialog box.

Note: For information on specifying an OLE DB provider or other ActiveX data
source at design time, see “Using ActiveX Data Sources at Design Time” on
page 572.

Design the Report
Once you have selected a data definition file or an ActiveX data source, you can
design your report just as you would design any other report.

1 Click the Fields Tab of the Standard Report Expert.
The data definition file orders appears as a database table in the Database Fields list
box. Each of the fields defined in orders.ttx appears as a field in the orders table.

2 Add fields to your report just as you would normally add fields to a report
using the Standard Report Expert.

3 Continue designing the report using the Standard Report Expert. When
finished, click Design Report. Since the report is based on a data definition
file, there is no point in previewing it at this time.

4 Apply any formatting or other changes that you feel are necessary to fine-tune
the look of your report. Save the report when finished.
566 Crystal Reports Technical Reference Guide

7 : Active Data
Note: Before saving your report, be sure to turn off the Save Data with Report
option under the File menu. The sample data stored with the data definition file is
unnecessary at runtime, and will only increase the size of your report file.

Obtain a Recordset from the Runtime Data Source

Once you have selected a data source or data definition file and designed a report
based on that data source or file, you can begin programming your Visual Basic
application to obtain a recordset from an ActiveX data source, open the report file,
set the report file to use the recordset object from the ActiveX data source, then
print or export the report file. This process requires using the functionality of the
Crystal Active Data Driver in conjunction with the Report Designer Component or
one of the other Crystal Reports development tools. See the “Visual Basic
Solutions” chapter in the Crystal Reports Technical Reference Guide, or the Crystal
Reports Developer’s Help (CrystalDevHelp.chm) for more information on the other
Crystal Reports development tools.

The following tutorials use the Report Designer Component Automation Server in
Visual Basic 6.0. This section assumes a familiarity with the Report Designer
Component Automation Server. If you need more information on how to use the
automation server, see the “Report Designer Component Object Model” on
page 65.

To begin, you must obtain a Recordset object from a runtime ActiveX data source.
This data source can be opened through DAO, RDO, ADO, the Visual Basic Data
Control, Crystal Data Objects (CDO), or a class that implements the Crystal Data
Source Type Library. For information on DAO, RDO, and ADO, refer to Microsoft
documentation. For information on the Visual Basic Data Control, refer to your
Visual Basic documentation. For information on CDO, see “Crystal Data Object”
on page 575. For information on the Crystal Data Source Type Library, see “Crystal
Data Source Type Library” on page 579.

This tutorial creates a Recordset object from the Orders table of the XTREME.MDB
sample database using DAO. The Recordset concept is used by DAO, ADO, and
the Crystal Data Source Type Library. If you are using RDO, you will need to
obtain a rdoResultSet object. If you are using CDO, you will need to obtain a
Rowset object (see “Crystal Data Object” on page 575).

Note: You must add the Data Access Objects component to your Visual Basic
project before performing the following steps. For instructions on using DAO
with Visual Basic, refer to your Visual Basic documentation.
� Declare variables for the Database and Recordset objects in your Visual Basic

application. This can be handled in the declarations section of a form or
module. Use code similar to this:
Dim db As New DAO.Database

Dim rs As DAO.Recordset
Crystal Reports Technical Reference Guide 567

Active Data Driver
� Obtain a Database object from the Xtreme database.
Set db = DBEngine.Workspaces(0).OpenDatabase(_

“c:\Program Files\Seagate Software\Crystal Reports\xtreme.mdb”)

� Obtain a Recordset object from the Orders table of the Xtreme database.
Set rs = db.OpenRecordset(“Orders”, dbOpenTable)

Open the Report

Once you have obtained a Recordset object, you can begin working with the report
file you created earlier. This example uses the Report Designer Component
Automation Server to open a report file.

Note: You must add the Report Designer Component Automation Server
component to your Visual Basic project before performing the following steps.
For complete information on using the Automation Server, see “Crystal Report
Engine Automation Server” on page 12.
� Declare variables for the Application and Report objects that you will obtain

from the Report Designer Component Object Library in the automation server.
This can be handled in the declarations section of a form or module.

Dim CRXApplication As New Craxdrt.Application

Dim CRXReport As Craxdrt.Report

� Obtain a Report object by opening the report file you created earlier. This
example uses the file ORDERS.RPT.

Set CRXReport = CRXApplication.OpenReport(“c:\reports\Orders.rpt”, 1)

Pass the Recordset to the Active Data Driver

The Recordset object gets passed to the Active Data Driver through the
SetDataSource method of the Database object in the Report Designer Component
Object Library. You must first obtain a Database object from the Report object, then
you must use the SetDataSource method to set the report to point at the recordset
object for your Active data source. The Report Designer Component Automation
Server uses the Active Data Driver itself to replace the data definition file, at
runtime, with the Active data source.

The following code demonstrates how to obtain a Database object from the Report
object:

Dim CRXDatabase As Craxdrt.Database

Set CRXDatabase = CRXReport.Database
568 Crystal Reports Technical Reference Guide

7 : Active Data
Once you have a Database object for the Report object, you can pass the Active data
source to the Report object using the SetDataSource method. This method requires
three parameters. The first is the data source itself. The second parameter is a value
indicating that the data source you are passing to the report is an ActiveX data
source. This value must be 3. The third is the table you are passing the data source
to. Since you should only have one table defining the structure of the recordset ,
this should always be 1. For example:

CRXDatabase.SetDataSource rs, 3, 1

Print the Report

Now that the data source for the report has been set to the DAO Recordset, you can
print, preview, or export the report normally. For instance, the following code
prints the report to the default printer:

CRXReport.PrintOut

Once the data source has been set in the report object, runtime reporting can
proceed normally. All features of the Report Designer Component are available to
you. See “Report Designer Component Object Model” on page 65 for more
information.

Creating Data Definition Files
A data definition file is a tab-separated text file that contains information about
field names, field types, and sample field data. Field names used in the data
definition file must match the field names that will appear in the ActiveX data
source that is specified at runtime. Field type information indicates the type of data
in each field (string, numeric, date, etc.) and, if it is a string field, the maximum
length of the string. Finally, sample field data is simply sample data that Crystal
Reports can display in the preview window while you design the report.

For complete information on creating data definition files, see “Creating Data
Definition Files” on page 569. Crystal Reports installs a sample data definition file
in the \Program Files\Seagate Software\Crystal Reports directory on your
system. This file is named ORDERS.TTX and can be used with the Orders table in
the XTREME.MDB sample database or the Xtreme sample data ODBC data source
that was created when you installed Crystal Reports.
Crystal Reports Technical Reference Guide 569

Active Data Driver
The following is an example of how fields are defined in a data definition file:
Order ID Long 1

Customer NameString50Sample string value

Order Date Date Jan 5, 2000

Order AmountCurrency$1.00

The Active Data Driver supports the following data types in a data definition file:

Note: The data type BLOB is supported when connecting to RDO, ADO, DAO
and the data control at runtime but not when connecting to CDO.

Although data definition files can be created manually using a text editor such as
Notepad, Crystal Reports provides tools for simplifying the process. Each tool has
its advantages. Review the process for using each tool described below to
determine which best suits your own environment and development process.

Database Definition Tool

The Database Definition Tool is available from the Select Data Source dialog box
when you begin designing a report based on the Active Data Driver. This tool
allows you to design a data definition file as the first step of designing your report.
From the Standard Report Expert:

Data Type Description

BLOB Fields that contain bitmap images.

Boolean True/False Boolean value.

Byte 8-bit integer value.

Currency 64-bit floating-point value that can include a currency or
percent sign.

Date Any date/time value. Examples include:
� Jan 5, 1999
� 07/11/97 5:06:07
� 07/11/97
� 23:30:01

Long, int32 32-bit integer value.

Memo Any string value over 254 characters long. You must indicate
the maximum number of characters for the string.

Number 64-bit floating-point value.

Short, int16 16-bit integer value.

String Any string value under 254 characters long, such as a name,
description, or identification number that is not meant to be
interpreted numerically. You must indicate the maximum
number of characters for the string.
570 Crystal Reports Technical Reference Guide

7 : Active Data
1 In the Standard Report Expert click Database.

2 In the Data Explorer dialog box:
� expand More Data Sources
� expand Active Data
� expand Active Data (Field Definitions Only).

3 In the Select Data Source dialog box click New to create a new data definition
file.
The Database Definition Tool appears.

4 Use the Database Definition Tool to create fields for your data definition file.
Use the controls to enter field names, field types, and sample data that will
appear in the Crystal Reports Preview Tab. If you select String as the field type,
you will also be asked to specify a maximum string length.

5 Click Add to add each new field to your data definition file. Each field appears
in the list box at the bottom of the Database Definition Tool.

6 Continue adding as many fields as necessary for your data definition file by
entering the information in the controls of the Database Definition Tool, and
clicking Add each time.

7 You can delete a field that you have created by selecting the field in the list box
and clicking Delete.

8 Click the Close button in the upper right of the Database Definition Tool
dialog box when you are finished designing your data definition file. A
message appears asking if you want to save the data definition file.

9 Click Yes, and a Save File As dialog box appears.

10 Save the data definition file where it can be accessed by your report file. When
finished, the new data definition file will appear in the Data Definition text box
in the Select Data Source dialog box.

11 Continue creating your report.

Active Data Driver Functions

The Active Data Driver (P2SMON.DLL) is a standard dynamic link library that is
normally used by Crystal Reports (or the Report Designer Component) to access
ActiveX data sources such as DAO and ADO. The DLL is installed, by default, in
your \WINDOWS\SYSTEM directory. In addition, the Active Data Driver exports
functions that can be used at runtime from within your application to dynamically
design a data definition file based on your data source, and a report file based on
the data definition file. These functions are available to any development
environment that supports DLL function calls.
Crystal Reports Technical Reference Guide 571

Active Data Driver
Note: To use the functions in the Active Data Driver DLL, you must declare the
functions first. Refer to your Visual Basic documentation for information on
declaring DLL functions. See “The Crystal Active Data Driver Reference” on
page 601 for information about declaring the Active Data Driver functions.

To use the Active Data Driver Functions from Visual Basic

1 Obtain a valid Recordset object from your DAO, ADO, or Data Control data
source, or a valid Rowset object using CDO.

2 Call the function CreateReportOnRuntimeDS to create a data definition file
based on your Recordset or Rowset object. For example:

CreateReportOnRuntimeDS(daoRs, “c:\reports\orders.rpt”,

“c:\reports\orders.ttx”, True, False)

This example creates a data definition file named ORDERS.TTX, then creates a simple
report file based on this data definition file and names it ORDERS.RPT. If the last
argument is set to True, Crystal Reports, if installed on the system, will open
automatically on the user’s machine, allowing them to make changes to the report file.

Notice that the first argument is a DAO Recordset object. If you are using this
function in a language such as C or C++, you would pass a pointer to an IUnknown
derived interface to the Recordset.

Note: See “The Crystal Active Data Driver Reference” on page 601 for complete
information on the functions provided by the Active Data Driver.

Using ActiveX Data Sources at Design Time
The Active Data Driver is intended to allow reports to be based on ActiveX data
sources such as ADO and DAO. Data definition files allow you to avoid specifying
an actual data source until runtime. However, you may often need to simply
specify an ADO data source at design time for the report.

The Select Data Source dialog opens when you select one of the active data folders
in the More Data Sources\Active Data folder in the Data Explorer. This dialog box
provides four options for selecting a data source to use in your report: specify an
ODBC data source for ADO or RDO, specify an ADO connection string for OLE
DB, specify a DAO recordset, or specify a data definition file. The Data Definition
option has been thoroughly discussed earlier in this section. The remainder of this
section will discuss selecting an ADO, RDO, or DAO data source.

The following topics are discussed in this section:
� “ODBC with ADO and RDO” on page 573
� “ADO and OLE DB” on page 573
� “DAO” on page 574
572 Crystal Reports Technical Reference Guide

7 : Active Data
ODBC with ADO and RDO

1 Click the ODBC option in the Select Data Source dialog box.
This option allows you to connect to an ODBC data source through ADO or
RDO. The currently selected data objects technology appears in parentheses
next to the ODBC option.

� Use the drop-down list to select an ODBC data source that is available on your
system.

� Click the New button to create a new ODBC data source. Refer to Microsoft
ODBC documentation for information on creating ODBC data sources.

� Click the Advanced button to select ADO or RDO as the data objects
technology used. This should match the technology used in your Visual Basic
application.

2 After you select your data source and data objects technology, you can click
Next in the Select Data Source dialog box.
The Select Recordset dialog box appears.

3 If the ODBC data source requires log on information, specify a user name and
password to log on.

4 Determine if you want to create a Recordset or Resultset using an object
available from your data source, such as a database table, or if you prefer to
specify a SQL statement. Select the appropriate option in the Recordset section
of the Select Recordset dialog box.

Note: For simplicity, RDO Resultsets are also referred to as Recordsets in this
dialog box.

5 If you want to connect to a database object, use the Object Type drop-down list
box to select the type of database object, such as a Table, then select the object
itself from the Object drop-down list box.

6 If you want to obtain a Recordset using a SQL statement, write the SQL
statement in the text box provided, or click Build to use the Microsoft Query
application and Query Wizard to visually design your SQL statement.

7 Click Finish in the Select Recordset dialog box. Either ado or rdo will appear in
the list box on the Data Tab of the Standard Report Expert.

8 Continue creating your report normally. While creating your report, the ado or
rdo specification will act like a database table, providing all fields that have
been obtained from your ADO Recordset or RDO Resultset.

ADO and OLE DB

1 Click the ADO and OLE DB option in the Select Data Source dialog box. This
option is designed to allow you to specify an ADO connection string that can
connect to any OLE DB provider.
Crystal Reports Technical Reference Guide 573

Active Data Driver
2 Type the ADO connection string into the text box provided, or click Build to
open the Datal Links Properties dialog box. The following are examples of an
acceptable connection string for ADO:
DSN=Xtreme sample data;
DATABASE=pubs;DSN=Publishers;UID=sa;Password=;

3 Type in the first example shown here to follow along in this tutorial. Click
Next in the Select Data Source dialog box when finished. The Select Recordset
dialog box appears.

4 Determine if you want to create a Recordset using an object available from
your data source, such as a database table, or if you prefer to specify a SQL
statement. Select the appropriate option in the Recordset section of the Select
Recordset dialog box.

5 If you want to connect to a database object, use the Object Type drop-down list
to select the type of database object, such as a Table, then select the object itself
from the Object drop-down list.

6 If you want to obtain a Recordset using a SQL statement, write the SQL
statement in the text box provided, or click Build to use the Microsoft Query
application and Query Wizard to visually design your SQL statement.

7 Click Finish in the Select Recordset dialog box. You will see ado in the list box
on the Data Tab of the Standard Report Expert.

8 Continue creating your report normally. While creating your report, the ado
specification will act like a database table, providing all fields that have been
obtained from your ADO Recordset.

DAO

1 Click the DAO option in the Select Data Source dialog box. This option allows
you to connect to a database file through Data Access Objects (DAO).

2 Select a database type from the Database drop-down list box. This list displays
all DAO compatible database drivers installed on your system. Crystal Reports
installs many DAO drivers for you. For this example, you can select Access as
the database type.

3 Use the Browse button to open the Select Database File dialog box. Use this
dialog box to locate and select a database file. Crystal Reports includes several
sample databases in the \Program Files\Seagate Software\Crystal Reports
directory by default. You can select the XTREME.MDB Access file from this
directory for this example.

4 Click Open in the Select Database File dialog box, and the path and file name
of the database you selected appear in the DAO text box on the Select Data
Source dialog box.

5 Click Next, and the Select Recordset dialog box appears.
574 Crystal Reports Technical Reference Guide

7 : Active Data
6 If the database requires log on information, specify a user name and password
to log on.

7 Determine if you want to create a Recordset using an object available from
your database, such as a database table, or if you prefer to specify a SQL
statement. Select the appropriate option in the Recordset section of the Select
Recordset dialog box.

8 If you want to connect to a database object, use the Object Type drop-down list
to select the type of database object, such as a Table, then select the object itself
from the Object drop-down list.

9 If you want to obtain a Recordset using a SQL statement, write the SQL
statement in the text box provided and click Next.

10 Click Finish in the Select Recordset dialog box. You will see dao in the list box
on the Data Tab of the Standard Report Expert.

11 Continue creating your report normally. While creating your report, the dao
specification will act like a database table, providing all fields that have been
obtained from your DAO Recordset.

Crystal Data Object
The Crystal Data Object (CDO) is an ActiveX data source that allows you to define
fields and records at runtime based on data that exists only at runtime. Through
CDO, any data can become a virtual database and can be reported on using the
power of the Report Designer Component. The Crystal Data Object does not
support Memo or Blob fields.

CDO, like DAO and ADO, is based on the Component Object Model (COM). Any
development environment that supports COM interfaces can dynamically generate
a set of data for a report without relying on a database that exists at design time.

Applications that produce data that does not exist outside of the running
application have been unable, until now, to take advantage of the most powerful
reporting features in the industry. CDO, however, solves that problem. For
instance, applications that monitor system or network resources, or any constantly
operating environment, can produce a current report on such information at any
time. No longer does data need to be dumped to a separate database before
analysis. Through CDO, the Active Data Driver, and the Report Designer
Component, analysis is instant and up-to-date.

The following topics are discussed in this section:
� “CDO vs. the Crystal Data Source Type Library” on page 576
� “Using the Crystal Data Object” on page 576
� “Crystal Data Object Model” on page 578
Crystal Reports Technical Reference Guide 575

Crystal Data Object
CDO vs. the Crystal Data Source Type Library
Crystal Reports also supports the “Crystal Data Source Type Library” on page 579,
for implementing in a Visual Basic class definition. Crystal Data Source objects can
also be passed to the Active Data Driver as ActiveX data sources. However, the
Crystal Data Source Type Library exposes a complete COM interface that must be
implemented in your class. CDO, on the other hand, provides a fast and simple
method for producing an internal customized ActiveX data source.

If you need to implement a complete data source in your application that allows
runtime movement through records and fields, or if you intend to implement your
data source as a separate ActiveX component, consider using the Crystal Data
Source Type Library. However, if you need to create a quick and simple means of
storing a large amount of data in a convenient package for reporting on, and the
data will remain inside the same application as the reporting functionality, then
use Crystal Data Objects.

Using the Crystal Data Object
The Crystal Data Object is an ActiveX DLL that can be accessed from any Windows
development environment that supports ActiveX. By creating a Rowset object,
similar to a Recordset, and filling it with fields and data, you design a virtual
database table that can be passed as an ActiveX data source to the Crystal Active
Data Driver. The Crystal Data Object does not support Memo or Blob fields.

Once the CDO Rowset has been created, it can be used just like any other active
data source such as DAO or ADO. Use a procedure, much like the procedure
described in “Using the Active Data Driver” on page 565, to print, preview, or
export a report at runtime that is based on the CDO data source. Simply replace the
steps that explain how to pass a DAO Recordset to the Active Data Driver with
appropriate steps for passing your CDO Rowset.

The rest of this section explains how to create a CDO Rowset in Visual Basic.
However, as an ActiveX DLL, CDO can be used by any application development
environment that supports ActiveX.

To create a CDO Rowset:
� “Obtain a CDO Rowset Object” on page 577
� “Add Fields to the Rowset Object” on page 577
� “Obtain Data as Rows” on page 577
� “Add Rows to the Rowset Object” on page 578

Use these steps as a guideline for creating your own CDO Rowsets for use with the
Active Data Driver.
576 Crystal Reports Technical Reference Guide

7 : Active Data
Obtain a CDO Rowset Object

As stated earlier, CDO is a standard automation server. A Rowset object can be
obtained from CDO using the Visual Basic CreateObject function:
Public CDOSet As Object

Set CDOSet = CreateObject(“CrystalDataObject.CrystalComObject”)

This Rowset object is, essentially, equivalent to a Recordset object you might obtain
from DAO or another active data source. It is the Rowset object that you eventually
pass to the Active Data Driver.

Add Fields to the Rowset Object

Once you have a Rowset object, you need to define fields for the Rowset. These
fields act as the virtual database fields. The field names you specify must match the
field names specified in the data definition file. For more information on data
definition files, see “Creating Data Definition Files” on page 569.

Fields are added to a CDO Rowset using the AddField method:
CDOSet.AddField “Order ID”, vbString

CDOSet.AddField “Company Name”, vbString

CDOSet.AddField “Order Date”, vbDate

CDOSet.AddField “Order Amount”, vbCurrency

This code adds four fields to the Rowset with the specified field names, and field types.
The field types are based on constant values for the Variant data type. The constant
names used here are from Visual Basic. For information on valid constant values, see
the AddField method in the “Crystal Data Source Object Models” on page 589.

Obtain Data as Rows

Data to be added as rows in the Rowset can be collected in a two dimensional
array. The first dimension indicates rows, while the second dimension specifies
fields for each row. The number of possible fields indicated by the second
dimension must not exceed the number of fields you added to the Rowset using
the AddField method. For example, you might define an array such as this:

Dim Rows(11, 3) As Variant

This specifies an array named Rows that contains 12 rows (0 to 11) and 4 columns
(0 to 3). Notice that the four fields are defined with the AddField method, so the 4
columns in the Rows array are also defined. In addition, room has been made for
12 rows or records. Finally, since each field holds a different type of data, the array
is defined as a Variant type.

Note: If your Rowset contains only a single field, you can use a one dimensional
array instead of two dimensional. The single dimension indicates the number of
columns or fields in your Rowset.

Now that you have defined an array to hold data, you can begin adding values to the
array. These array values will become the actual field values for the virtual database.
Crystal Reports Technical Reference Guide 577

Crystal Data Object
Most likely, you will want to design a routine in your application that adds runtime
data generated by your application into each cell of the array. The following code,
however, demonstrates how you can explicitly add values to the array:
Rows(0, 0) = “1002” ’The first Order ID

Rows(0, 1) = “Cyclist's Trail Co.” ’The first Company Name

Rows(0, 2) = #12/2/94# ’The first Order Date

Rows(0, 3) = 5060.2725 ’The first Order Amount

From here, you could continue by adding a value to the first field of the second
record, Rows (1, 0). You continue filling in data record by record and field by field.
This technique, of course, requires a lot of code and is not very practical. Most real
applications would contain a looping procedure that progressively filled in values
for the array.

Add Rows to the Rowset Object

At this point, you have created a CDO Rowset object, added fields to the Rowset,
and collected data in an array that will become part of a virtual runtime database.
All that is left is to pass the data from the array to the Rowset object. This step is
handled with a single method:

CDOSet.AddRows Rows

The AddRows method accepts a two-dimensional array containing the values you
want added to the Rowset and, ultimately, added to a report file that is printed or
exported. A one-dimensional array is used to add a single row with multiple fields.

Rows can be added to a CDO Rowset with multiple calls to the AddRows method.
However, once you begin adding rows of data to a Rowset, you cannot add any new
fields to the Rowset. Any call to AddFields after a successful call to AddRows will fail.

Once you finish populating your virtual database in the CDO Rowset object, you
can pass this object as an active data source to the Active Data Driver using the
SetDataSource method in the Report Designer Component Automation Server. For
complete instructions on doing this, see “Pass the Recordset to the Active Data
Driver” on page 568.

Crystal Data Object Model
Crystal Data Objects support several methods and properties that can be used to
work with the Rowset object. The object model for CDO is completely defined and
described in the section “Crystal Data Source Object Models” on page 589.
578 Crystal Reports Technical Reference Guide

7 : Active Data
Crystal Data Source Type Library
The Crystal Data Source Type Library, like Crystal Data Objects, provides a means
for designing customized data sources that can be reported off of using the Active
Data Driver. Crystal Data Source, however, unlike CDO, is a type library with an
interface that can be implemented in a standard Visual Basic class. Once
implemented, the Crystal Data Source interface allows your data to be fully
manipulated much like a standard Recordset object in ADO or DAO.

Note: The Crystal Data Source type library is designed for Visual Basic 5.0 or later.

If you simply need a quick means for packaging some data in a form that can easily
be reported off of, you should consider using Crystal Data Objects. Crystal Data
Source, on the other hand, is designed for developers who need more flexibility
when working with custom data sources. Keep in mind, though, once you add the
Crystal Data Source interface to your class, you must implement all methods and
properties exposed by the interface.

The following topics are discussed in this section:
� “Creating a new project and class” on page 579
� “Adding the type library” on page 581
� “Implementing the functions” on page 583
� “Passing the CRDataSource object to the Active Data Driver” on page 585
� “Crystal Data Source Projects” on page 587

Creating a new project and class
The Crystal Data Source interface can be implemented inside almost any type of
application. You might want to create and internal data source, for instance, inside
the same standard executable application that you are implementing the Report
Designer Component or another of the Crystal Report development tools. See the
“Visual Basic Solutions” chapter in the Crystal Reports Technical Reference Guide, or
the Crystal Reports Developer’s Help (CrystalDevHelp.chm) for more information on
the other Crystal Reports development tools.. On the other hand, you could create
an ActiveX DLL that did nothing except implement Crystal Data Source. Your
ActiveX DLL then could work as a separate data source to be accessed from other
applications, much like ADO, RDO, and DAO are used.

The following topics are discussed in this section:
� “When to use the Crystal Data Source Type Library” on page 580
� “Creating a new project” on page 580
� “Adding a class module to a project” on page 580
� “Adding a Sub Main() procedure” on page 581
Crystal Reports Technical Reference Guide 579

Crystal Data Source Type Library
When to use the Crystal Data Source Type Library

The Crystal Data Source interface, as stated before, is designed to allow developers
to create full-fledged data sources that work much like the ADO Recordset object.
In fact, the interface has been designed to support properties and methods with
names identical to several corresponding properties and methods in the ADO
Recordset object. Through your existing knowledge of ADO, you can quickly
familiarize yourself with the Crystal Data Source interface.

If you are designing an application or component that must produce a fully
featured data source with methods and properties for easily navigating through
records and fields, Crystal Data Source is the ideal solution. Not only is the
interface easy to learn and use, it also follows a Recordset standard currently being
developed by Microsoft.

Creating a new project

For this tutorial, you will implement the Crystal Data Source interface in an
ActiveX DLL that can be referenced by other applications. One such application
may be a standard executable that uses the Active Data Driver with the Report
Designer Component to produce reports based on this new ActiveX data source.

1 With Visual Basic running, select New Project from the File menu. The New
Project dialog box appears.

2 Select ActiveX DLL from the New Project dialog box, and click OK. Your new
ActiveX DLL project is created.

3 Select Class1 in the Project window, and make sure the Properties window is
displayed. To display the Properties window, press the F4 key or select
Properties Window from the View menu.

Note: If you are not creating an ActiveX DLL, you may not have a class module in
your project. See the next section, Adding a class module to a project.

4 Change the value of the (Name) property for Class1 to MyDataSource.

5 Select Project1 in the Project window, and change the value of the (Name)
property for Project1 to MyDataSourcePrj.

6 Save the project. Use MyDataSource as the name of the class file and the
project file.

Adding a class module to a project

Since you are creating an ActiveX DLL, your project already contains a class
module that we can use to implement the Crystal Data Source interface. However,
if you are creating a project that does not automatically include a class module,
such as a Standard EXE project, you will need to use the following steps.
580 Crystal Reports Technical Reference Guide

7 : Active Data
� From the Project menu, select Add Class Module. The Add Class Module
dialog box appears.

� Make sure Class Module is selected, and click Open. The new class module is
added to your project, and the code window for the module appears.

Adding a Sub Main() procedure

Although a Sub Main() procedure is not required by ActiveX DLLs created in
Visual Basic 5.0 or later, you may want to create a Sub Main() procedure to handle
initialization processes. Developers working in Visual Basic 4.0 are required to add
the Main subroutine to an Automation Server DLL project and specify that the
project use Sub Main() as the entry point. If you are creating an ActiveX EXE in
Visual Basic 4.0 or later, you should add the Sub Main() procedure to allow your
code to determine if it is being started as a stand-alone application or as an out-of-
process automation server.

The following steps demonstrate how to add a Sub Main() procedure in Visual
Basic versions 5.0 and 6.0. If you add this procedure to the MyDataSource project,
you can leave the procedure empty.
� From the Project menu in Visual Basic, select Add Module. The New Module

dialog box appears.
� Leave the default Module type selected, and click Open. A new module,

Module1, is added to your project.
� In the code window for the new module, add the following code:

Sub Main()

End Sub

Adding the type library
The Crystal Data Source interface is a standard COM (Component Object Model)
interface that is defined in a type library (.TLB) file. To implement the Crystal Data
Source interface in your Visual Basic application, you must first add a reference to
the type library, implement the interface in your class module with the Implements
statement, and, finally, create code for each of the properties and methods defined
by the interface.

The following topics are discussed in this section:
� “Adding a reference to the Crystal Data Source Type Library” on page 582
� “Viewing in the Object Browser” on page 582
� “Using Implements in the class declaration” on page 583
Crystal Reports Technical Reference Guide 581

Crystal Data Source Type Library
Adding a reference to the Crystal Data Source Type Library

If this is the first time you are using the Crystal Data Source type library, you may
need to tell Visual Basic where the type library is located before you can add a
reference.

1 From the Project menu, choose References.
The References dialog box appears.

2 Scroll through the Available References list to locate the CRDataSource 1.0 Type
Library. If you find the reference, skip to step 6. Otherwise, continue with the
next step.

3 In the References dialog box, click the Browse button to locate the type library
file.
The Add Reference dialog box appears.

4 Locate the CRSOURCE.TLB type library file in the same directory that you
installed Crystal Reports. If you accepted the default directory when you
installed the product, this directory will be C:\Program Files\Seagate
Software\Crystal Reports.

5 Select CRSOURCE.TLB, and click Open. CRDataSource 1.0 Type Library will
now appear in the Available References list in the References dialog box.

6 Place a check mark in the check box next to CRDataSource 1.0 Type Library if
one does not appear already.

7 Click OK to add the reference to your project.

Viewing in the Object Browser

Before continuing with the design of your ActiveX DLL project, it may be helpful
to look at the object model provided by the Crystal Data Source interface.

1 From the View menu, select Object Browser. The Object Browser appears.

2 Switch the Object Browser to display just the CRDataSourceLib object library.

Notice that the Crystal Data Source interface contains a single object:
CRDataSource. This object is similar to the Recordset object you would see if you
added a reference to the Microsoft ActiveX Data Objects Recordset 2.0 Library to
your project. This is also the object you would pass to the Active Data Driver (Page
306) when producing a report at runtime.

Take a moment to review the properties and methods provided by the
CRDataSource object. Close the Object Browser when finished.
582 Crystal Reports Technical Reference Guide

7 : Active Data
Using Implements in the class declaration

The next step is to add the Crystal Data Source interface to your class module.

1 With the code window for the MyDataSource class module open, add the
following code to the General Declarations section of the class.

Implements CRDataSourceLib.CRDataSource

2 Open the drop-down list of objects in the upper left of the code window. You
will see a new object has been added to the list: CRDataSource.

3 Select CRDataSource from the list of objects. A new Property Get procedure is
added to the class module for the FieldCount property of the CRDataSource
object. Remember that in COM interfaces, properties are actually implemented
as Get and Let procedures. For more information, refer to your Visual Basic
documentation.

4 Open the drop-down list in the upper right of the class module code window.
Notice that several procedures appear corresponding to the properties and
methods of the Crystal Data Source interface. In fact, the properties and
methods you saw in the Object Browser are the same properties and methods
listed here in the code window.

Implementing the functions
Once you have added the Crystal Data Source interface to your class module, you
must implement all of the properties and methods in the interface to successfully
produce a data source that can be compiled into an ActiveX DLL and used with the
Active Data Driver. The first step to implementing all of the properties and methods
is to add procedures to your class for each of the Crystal Data Source procedures.

The following topics are discussed in this section:
� “Adding procedures” on page 583
� “Implementing procedures” on page 584
� “Compiling the ActiveX DLL” on page 585

Adding procedures

When you selected the CRDataSource object in the object list in the previous
section, you automatically added a procedure to the class for the FieldCount
property. This property procedure appears in bold in the list of CRDataSource
methods and properties to indicate that it has already been added.

1 With the CRDataSource object selected in the code window, select Bookmark
[Property Get] from the drop-down list in the upper right corner of the code
window. A Property Get procedure appears in the class for the Bookmark
property of CRDataSource.
Crystal Reports Technical Reference Guide 583

Crystal Data Source Type Library
2 Repeat the process for the Property Let procedure of the Bookmark property.
Keep in mind that Property Get procedures allow values to be retrieved from
properties while Property Let procedures allow values to be assigned to
properties.

3 Continue selecting each of the property and method procedures listed so that a
procedure appears in your class for every property and every method defined
by the Crystal Data Source interface.

4 Notice that each of the procedures has been defined as Private. For our ActiveX
DLL to expose these properties and methods to other applications, we need to
change these to Public. Replace each Private statement with Public.

5 Save your project to preserve all changes up to this point.

Implementing procedures

Exactly how you implement each of the properties and methods in the
CRDDataSource interface depends upon the purpose and design of your
application or component. To give you an idea of how to implement the
procedures, though, the following code sample simply uses an ADO Recordset
object connected to the Xtreme sample data DataSource. Obviously, this example
has little value in a real application; an ADO Recordset can itself be reported on
through the Active Data Driver. However, the example does illustrate how the
properties and methods in the Crystal Data Source interface work.

Implements CRDataSourceLib.CRDataSource

Dim adoRs As ADOR.Recordset

Private Sub Class_Initialize()

Set adoRs = New ADOR.Recordset

adoRs.Open "Customer", "Xtreme sample data", _

adOpenKeyset, adLockOptimistic, adCmdTable

End Sub

Private Sub Class_Terminate()

adoRs.Close

Set adoRs = Nothing

End Sub

Public Property Let CRDataSource_Bookmark(ByVal RHS As Variant)

adoRs.Bookmark = RHS

End Property

Public Property Get CRDataSource_Bookmark() As Variant

CRDataSource_Bookmark = adoRs.Bookmark

End Property

Public Property Get CRDataSource_EOF() As Boolean

CRDataSource_EOF = adoRs.EOF

End Property

Public Property Get CRDataSource_FieldCount() As Integer

CRDataSource_FieldCount = adoRs.Fields.Count

End Property
584 Crystal Reports Technical Reference Guide

7 : Active Data
Public Property Get CRDataSource_FieldName _

(ByVal FieldIndex As Integer) As String

CRDataSource_FieldName = adoRs.Fields(FieldIndex).Name

End Property

Public Property Get CRDataSource_FieldType _

(ByVal FieldIndex As Integer) As Integer

CRDataSource_FieldType = adoRs.Fields(FieldIndex).Type

End Property

Public Property Get CRDataSource_FieldValue _

(ByVal FieldIndex As Integer) As Variant

CRDataSource_FieldValue = adoRs.Fields(FieldIndex).Value

End Property

Public Sub CRDataSource_MoveFirst()

adoRs.MoveFirst

End Sub

Public Sub CRDataSource_MoveNext()

adoRs.MoveNext

End Sub

Private Property Get CRDataSource_RecordCount() As Long

CRDataSource_RecordCount = adoRs.RecordCount

End Property

Compiling the ActiveX DLL

Once you have finished implementing all of the properties and methods, you can
compile the ActiveX DLL. When compiling ActiveX components, Visual Basic
registers the component in the Windows Registry database. The name of the project,
MyDataSourcePrj in this case, is used as the name of the component. The name of the
class module, MyDataSource for this example, becomes the name of a creatable
object. Once compiled, the component can be referenced by another application.

1 Make sure you save the entire project so that all source code is preserved.

2 From the File menu, choose Make MyDataSource.dll. Note that the name of
the DLL that will be created is based on the name of your Visual Basic project
file (.VBP), not on the project name as specified by the (Name) property.

3 When the Make Project dialog box appears, select the location where the new
DLL should reside.

4 Click OK, and the new DLL is created and registered.

Passing the CRDataSource object to the Active Data Driver
Using an object that implements the Crystal Data Source interface is a
straightforward process, much like using any ActiveX component in an
application. A Reference to the component must first be made, then an instance of
the component object must be created in the application, and finally, the properties
and methods of the object can be used. In this example, we will use the ActiveX
DLL we created to obtain a MyDataSource object that we can pass to the Active
Data Driver in a report generated using the Crystal Designer Component.
Crystal Reports Technical Reference Guide 585

Crystal Data Source Type Library
For this example, we will assume you have created an application in Visual Basic
and designed a report using the Crystal Report Designer Component. For more
information on the Crystal Report Designer Component, see the Crystal Reports
Developer’s Guide.

If you want to create a new report that can use the MyDataSource ActiveX DLL,
create the report using three fields corresponding to the Customer ID, Customer
Name, and City fields in the Customer table of the Xtreme sample data ODBC data
source. To make things simple, you can use ADO to connect directly to those three
fields. The purpose of this tutorial is simply to teach the techniques, not,
necessarily, to produce a real application.

Adding a reference to MyDataSourcePrj

With your application open in Visual Basic:

1 Choose References from the Project menu. The References dialog box appears.

2 Scroll through the list of Available References to locate the MyDataSourcePrj
component.

3 Add a check mark to the check box next to MyDataSourcePrj, and click OK. The
component is now available to your application.

4 Open the Object Browser in Visual Basic, and select the MyDataSourcePrj
library. Notice that the MyDataSource object is available and that this object
contains all of the properties and methods that you implemented in the
MyDataSource ActiveX DLL. Additionally, each of these properties and
methods corresponds to a property or method in CRDataSource.

Creating an instance of MyDataSource

This section assumes you are already familiar with how to pass a new data source
to the Active Data Driver at runtime. If you need more information on using the
Active Data Driver, refer to “Active Data Driver” on page 564. The following steps
simply illustrate how to assign the myDs object created above to the Active Data
Driver so that a report will use it as the source of data at runtime.

To actually use the MyDataSourcePrj component, you must create an instance of
the MyDataSource object, then assign that object to the Report object displayed by
your application. Assuming you created a report in your application using the
Crystal Designer Component and accepted default settings for adding the Crystal
Report Viewer/ActiveX to your project:

1 Open the code window for the form containing the CrystalReport Viewer/
ActiveX.
586 Crystal Reports Technical Reference Guide

7 : Active Data
2 In the General Declarations section for the form, add the following code:

Dim myDs As New MyDataSourcePrj.MyDataSource

3 In the Form_Load procedure, add the following line before the Report object is
assigned to the ReportSource property of the CRViewer1 object:

CRXReport.Database.SetDataSource myDs,3, 1

Note: This example is based on a Visual Basic application created using the
Report Designer Component. for more information see “Report Designer
Component Object Model” on page 65.

The first line of code creates an instance of the MyDataSource object in your
application, much like you might create an instance of an ADO Recordset object.
The second line of code added uses the SetDataSource method inside the Crystal
Designer Component library to dynamically change the source of data used by
your report.

If you designed your report using an ADO, DAO, or RDO data source, or by using
a Data Definition file, then your report uses the Active Data Driver to access the
report data at runtime. Since the Active Data Driver also supports data sources that
expose the Crystal Data Source interface, you can easily assign the MyDataSource
object to your report.

Crystal Data Source Projects
Now that you have seen the extensive power of the Crystal Data Source interface
implemented inside a Visual Basic class, you can begin to consider the extensive
possibilities for its use. Many computer based operations produce continuous
streams of data in real-time. In your own work, you may encounter needs for
gathering data from process control systems, data acquisition applications, or
computer-based instrumentation.

In these kinds of applications, data is usually gathered and stored for later analysis.
Systems running in real-time, however, may need real-time monitoring and
reporting. With objects that implement the Crystal Data Source interface, you can
gather and move through data as it is generated, then produce up to the instant
analysis through reports.

Programmer’s building n-tier applications that operate across a network may often
find themselves designing business objects and other business rules components.
By implementing the Crystal Data Source interface in business object components,
you can design reports that produce real-time information about data traveling
across the network. Even Microsoft Transaction Server components can
implement a fully functional ActiveX data source for reporting. Crystal Data
Source takes your applications from runtime to real time.
Crystal Reports Technical Reference Guide 587

Crystal Data Source Type Library
588 Crystal Reports Technical Reference Guide

Crystal Data Source Object Models 8

Crystal Reports provides support for reporting off data
when no true data source exists. In this chapter you will
find detailed information, including properties and
methods, on Crystal Data Objects and the Crystal Data
Source Type Library.
Crystal Reports Technical Reference Guide 589

Crystal Data Source Object Models
Crystal Data Source Object Models
Crystal Reports includes two ActiveX based data source models to allow on-the-
fly reporting when a true data source does not exist at design time, and the data at
runtime does not exist in a relational or OLAP database. The Crystal Data Sources
allow you to dynamically produce data at runtime inside your code, then pass the
data to an existing report file. Both data source models are designed primarily for
Visual Basic programmers, but they can be used within other development
environments that support ActiveX components and interfaces.

Crystal Data Objects
Crystal Data Objects allow you to quickly design a set of relational data at runtime
using standard Visual Basic arrays. For more information on using Crystal Data
Objects in Visual Basic, see “Crystal Data Object” on page 575. To add a reference
to the Crystal Data Objects component to your Visual Basic application, select the
Crystal Data Object item in the Available References list box of the References
dialog box. Crystal Data Objects do not support Memo or Blob fields.

CrystalComObject
The CDO component provides a single object named CrystalComObject. This
object works much like a Recordset or Rowset that you might use in ADO, DAO,
or RDO. Rather than connecting to an existing database, though, CDO allows you
to fill it with data stored in a standard Visual Basic array. Once filled with data, the
entire object can be passed to the “Grid Controls and the Crystal Report Engine”
on page 20 at runtime, producing a dynamic report filled with data only available
at runtime.

To create an instance of the CrystalComObject in Visual Basic, use the following
code as an example:
Dim cdoRowset As Object

Set cdoRowset = CreateObject("CrystalComObject.CrystalDataObject")

The following topics are discussed in this section:
� “CrystalComObject Properties” on page 591
� “CrystalComObject Methods” on page 591
590 Crystal Reports Technical Reference Guide

8 : Crystal Data Source Object Models
CrystalComObject Properties
The CrystalComObject provides a single property:

RowCount

Use this property to obtain the number of rows in the rowset once data has been
assigned. This is especially useful if data is added to the Rowset in several steps,
each step adding more to the size of the Rowset. This value can be used to find out
how many rows have been added.

Example

Dim numRows As Long

numRows = cdoRowset.RowCount

CrystalComObject Methods
The CrystalComObject uses the following methods. These methods each have a
section describing their parameters and returns, followed by an example.
� “AddField” on page 591
� “AddRows” on page 592
� “DeleteField” on page 593
� “GetColCount” on page 593
� “getEOF” on page 593
� “GetFieldData” on page 594
� “GetFieldName” on page 594
� “GetFieldType” on page 595
� “MoveFirst” on page 595
� “MoveNext” on page 596
� “MoveTo” on page 596
� “Reset” on page 596

AddField
Function AddField(FieldName As String, [FieldType]) As Boolean

Use this method to add fields to a rowset before adding data. The rowset must
have fields defined before data can be added using the AddRows method.
Crystal Reports Technical Reference Guide 591

CrystalComObject
Parameters

FieldName
A string value specifying the name of the field.

FieldType
An optional value specifying the data type that will be contained in this field. Use
Visual Basic VarType constants to specify the data type. If this value is omitted, the
vbVariant type will be used.

Returns

A Boolean value indicating whether or not the field was successfully added to the
Rowset.

Example

cdoRowset.AddField "Order ID", vbString

cdoRowset.AddField "Company Name", vbString

cdoRowset.AddField "Order Amount", vbCurrency

AddRows
Sub AddRows(RowData)

Use this method to assign an array of data to the CDO Rowset.

Parameters

RowData
A standard Visual Basic two-dimensional array. The first dimension specifies the
number of rows in the Rowset, while the second dimension specifies the number
of fields for each row. A one-dimensional array is used to add a single row with
multiple fields. When this array is dimensioned, it must be defined As Variant. For
example:

Dim Rows(11, 3) As Variant

This example creates an array that will hold 12 rows with 4 fields. You must assign
data to all cells in the array before assigning the array to the Rowset using
AddRows.

Example

cdoRowset.AddRows Rows
592 Crystal Reports Technical Reference Guide

8 : Crystal Data Source Object Models
DeleteField
Function DeleteField(FieldName As String) As Boolean

This method removes an existing field from the Rowset. If the field contains any
data, that data is lost.

Parameters

FieldName
The name of the field you want to delete from the Rowset.

Returns

A Boolean value indicating whether or not the field was successfully deleted. If the
field does not exist, this function will return False.

Example

cdoRowset.DeleteField "Company Name"

GetColCount
Function GetColCount() As Integer

This function returns the number of columns or fields currently in the Rowset.

Returns

An integer value indicating the number of fields in the Rowset.

Example

Dim numFields As Integer

numFields = cdoRowset.GetColCount

getEOF
Function getEOF() As Boolean

Use this function to determine if the current row in the Rowset is the last row.

Returns

True if the current row is the last row in the Rowset. False if the current row is
anywhere else in the Rowset.

Example

If cdoRowset.getEOF Then

cdoRowset.MoveFirst

End If
Crystal Reports Technical Reference Guide 593

CrystalComObject
GetFieldData
Function GetFieldData(column As Integer)

This method obtains the current value of a specific column in the Rowset for the
currently selected row.

Parameters

column
A number indicating which field (column) of the row you want the current value
of. Rowset columns, like array dimensions, are 0 based. The first column is 0, the
second is 1, etc.

Returns

A variant value that contains the data for the specified field of the current row.

Example

Dim fieldData As Variant

fieldData = cdoRowset.GetFieldData 0

GetFieldName
Function GetFieldName(column As Integer) As String

Returns the name of the specified field (column). Field names are assigned using
“AddField” on page 591.

Parameters

column
A number indicating which field (column) of the Rowset you want the name of.
Rowset columns, like array dimensions, are 0 based. The first column is 0, the
second is 1, etc.

Returns

A string containing the name of the specified field.

Example

Dim secondField As String

secondField = cdoRowset.GetFieldName 1
594 Crystal Reports Technical Reference Guide

8 : Crystal Data Source Object Models
GetFieldType
Function GetFieldType(Field) As Integer

Use this method to obtain the type of data contained by a field in the Rowset. Data
types are assigned to fields using “AddField” on page 591.

Parameter

Field
This parameter indicates which field you are querying for the type of data
contained. This field can accept either a numeric value or a string value. If you use
a numeric value, it must be a number representing the field (column) of the Rowset
you want to find out the data type of. Rowset columns, like array dimensions, are
0 based. The first column is 0, the second is 1, etc. If a string is used, the string must
contain the name of the field.

Returns

A Visual Basic VarType constant indicating the type of data contained in the field.

Example

Dim dataType As Integer

dataType = cdoRowset.GetFieldType "Customer Id"

If dataType = vbString Then

’ Do something with the string

End If

MoveFirst
Function MoveFirst() As Boolean

This method moves to the first row (record) in the Rowset.

Returns

A Boolean value indicating whether or not the current row was successfully set to
the first row. If the Rowset contains no data, this method will return False.

Example

cdoRowset.MoveFirst
Crystal Reports Technical Reference Guide 595

CrystalComObject
MoveNext
Function MoveNext() As Boolean

Moves to the next row (record) in the Rowset. The current record is set to the new
row.

Returns

A Boolean value indicating whether or not the current record was successfully set
to the next row in the Rowset. This function will return False if the current record
before calling the method is the last row of the Rowset.

Example

cdoRowset.MoveNext

MoveTo
Function MoveTo(recordNum As Long) As Boolean

Moves the current record to the specified record number in the Rowset.

Parameter

recordNum
A 1-based value indicating to which record in the Rowset you want to move. The
first record is 1, the second is 2, etc.

Returns

A Boolean value indicating whether or not the current record was successfully set
to the specified record number. This method returns False is the specified record
does not exist.

Example

cdoRowset.MoveTo 9

Reset
Sub Reset()

Resets the Rowset, clearing all fields and data.

Example

cdoRowset.Reset
596 Crystal Reports Technical Reference Guide

8 : Crystal Data Source Object Models
Crystal Data Source Type Library
The Crystal Data Source Type Library is a COM interface type library that can be
implemented in your own Visual Basic classes. One the interface has been added to
a class, you must implement every method and property defined by the interface.
This process requires extensive Visual Basic coding, but the result is a complete data
source that can be used much like other ActiveX data sources such as ADO or DAO.
Additionally, a data source defined using the Crystal Data Source Type Library can
be passed to report files at runtime through the “Grid Controls and the Crystal
Report Engine” on page 20, allowing dynamic runtime reporting on powerful
customized data sources.

Possible uses for data sources defined using the Crystal Data Source Type Library
are ActiveX style data sources, similar to ADO, DAO, and RDO, Business Objects
and business rules components, Microsoft Transaction Server components, or
instrumentation systems that produce dynamic real-time data.

Note that as a type library, the Crystal Data Source Type Library does not actually
provide any functionality on its own. You must determine the actual functionality
by implementing each of the properties and methods defined in the type library
interface. The descriptions given here of the CRDataSource object, its properties,
and its methods are intended as a guideline for the type of functionality you
should define in your own classes.

CRDataSource
CRDataSource is a COM interface rather than an actual COM object. By writing
code for each of the CRDataSource methods and properties in your own code, your
class or COM component implements the CRDataSource interface and, therefore,
becomes the actual Crystal Data Source.

To implement CRDataSource in a Visual Basic class, use the following code in the
General Declarations section of your class module:

Implements CRDataSourceLib.CRDataSource

Once implemented, CRDataSource will appear as an available object in your class
module. You must add code for every property and method of the CRDataSource
object to correctly implement the Crystal Data Source interface. For more
information, see “Crystal Data Source Type Library” on page 579.

The following topics are discussed in this section:
� “CRDataSource Properties” on page 598
� “CRDataSource Methods” on page 600
Crystal Reports Technical Reference Guide 597

Crystal Data Source Type Library
CRDataSource Properties
The Crystal Data Source interface defines the following properties. An example of
each property follows the property description.
� “Bookmark” on page 598
� “EOF” on page 598
� “FieldCount” on page 599
� “FieldName” on page 599
� “FieldType” on page 599
� “FieldValue” on page 599
� “RecordCount” on page 600

Bookmark

Used to obtain a bookmark (identifier) for a particular record in the Recordset, or
to move to the record identified by the bookmark. To simplify the process of
navigating to a particular record over and over again, you can save a bookmark for
the record in a variable, then quickly return to that record by assigning the value
of the variable to the Bookmark property.

Example

Dim aBookmark As Variant

aBookmark = myCRDataSource.CRDataSource_Bookmark

’ Move around in the Recordset performing various operations

’ To return to the bookmarked record:

myCRDataSource.CRDataSource_Bookmark = aBookmark

EOF

Read only.

This property indicates whether or not the current record is the last record in the
Recordset. The value of the EOF property is True if the current record is the last
record, False otherwise.

Example

If myCRDataSource.CRDataSource_EOF = True Then

myCRDataSource.CRDataSOurce_MoveFirst

End If
598 Crystal Reports Technical Reference Guide

8 : Crystal Data Source Object Models
FieldCount

Read only.

This property returns the number of fields in the Recordset.

Example

Dim numFields as Integer

numFields = myCRDataSource.CRDataSource_FieldCount

FieldName

Read only.

Returns the name of a specific field as indicated by the field index. Field indexes for
the Crystal Data Source interface start with 1 for the first field, 2 for the second, etc.

Example

Dim firstField As String

Dim secondField As String

firstField = myCRDataSource.CRDataSource_FieldName 1

secondField = myCRDataSource.CRDataSource_FieldName 2

FieldType

Read only.

Obtains a Visual Basic VarType constant indicating the type of data stored in a
particular field. Fields are identified using field indexes. Field indexes for the
Crystal Data Source interface start with 1 for the first field, 2 for the second, etc.

Example

Dim fieldType As Integer

fieldType = myCRDataSource.CRDataSource_FieldType 1

If fieldType = vbString Then

’ Do something with the string data in this field

End If

FieldValue

Obtains the data actually stored in the field for the current record. Fields are
identified using field indexes. Field indexes for the Crystal Data Source interface
start with 1 for the first field, 2 for the second, etc.

Example

Dim fieldVal As Variant

fieldVal = myCRDataSource.CRDataSource_FieldValue 2
Crystal Reports Technical Reference Guide 599

Crystal Data Source Type Library
RecordCount

Read only.

This property contains the total number of records in the Crystal Data Source
recordset.

Example

Dim numRecords as Long

numRecords = myCRDataSource.CRDataSource_RecordCount

CRDataSource Methods
The Crystal Data Source type library defines the following two methods:
� “MoveFirst” on page 600
� “MoveNext” on page 600

MoveFirst
Sub MoveFirst()

Moves to the first record in the Recordset. The first record is set as the current
record.

Example

myCRDataSource.CRDataSource_MoveFirst

MoveNext
Sub MoveNext()

Moves to the next record in the Recordset and sets that record to the current record.
A Visual Basic error occurs if the current record before calling this method is the
last record. Use “EOF” on page 598 to determine if the current record is the last
record in the recordset.

Example

If Not myCRDataSource.CRDataSource_EOF Then

myCRDataSource.CRDataSource_MoveNext

End If
600 Crystal Reports Technical Reference Guide

9 : The Crystal Active Data Driver Reference
The Crystal Active Data Driver Reference9

This chapter provides information on the functions
available in the Active Data Driver (P2smon.dll). These
functions simplify the creation of Data Definition Files and
allow you to pass a recordset to a report using the Crystal
Report Print Engine.
Crystal Reports Technical Reference Guide 601

Overview
Overview
The Crystal Active Data Driver provides functions that can be called from your
application to simplify the process of designing field definition files and reports at
runtime. In addition, a function is provided that translates a Visual Basic object
type, such as a Recordset object, into a string value that can be used with the
PEGetNthTableLocation function in the Report Engine API.

Declarations of these functions are provided in both C and Visual Basic syntax. If
you are using a language other than C, C++, or Visual Basic, refer to the
documentation for your development environment for instructions on how to
translate C declare statements.

The following topics are discussed in this section:

� “CreateFieldDefFile” on page 602
� “CreateReportOnRuntimeDS” on page 603
� “SetActiveDataSource” on page 604

CreateFieldDefFile
Creates a tab-separated text file, known as a field definition file, which represents
the structure of the data in a specified Recordset or Rowset object. This field
definition file can then be used to design a report file using the Runtime DB option
in the Create Report Expert of Crystal Reports. When designing an application that
prints, previews, or exports the report, the field definition file can be replaced, at
runtime, by the Recordset or Rowset object.

C Syntax

BOOL FAR PASCAL CreateFieldDefFile(LPUNKNOWN FAR *lpUnk,

LPCSTR fileName,

BOOL bOverWriteExistingFile);

Visual Basic Syntax

Declare Function CreateFieldDefFile Lib “p2smon.dll”(lpUnk As Object, _

ByVal fileName As String, ByVal bOverWriteExistingFile As Long) _

As Long

Parameters

Parameter Description

lpUnk The active data source used to create the field definition file. In C or C++, this is
a pointer to an Iunknown derived COM interface relating to a DAO or ADO
Recordset. In Visual Basic, this is a Recordset or Rowset object.

fileName The path and file name of the field definition file to be created.

bOverWriteE
xistingFile

If a field definition file already exists with the specified path and file name, this
flag indicates whether or not to overwrite that file.
602 Crystal Reports Technical Reference Guide

9 : The Crystal Active Data Driver Reference
Return Value

Returns 0 (False) if the call failed. Returns 1 (True) if the call succeeded and the
field definition file was created.

Remarks

This function creates a field definition file only, and does not create a report file.
You must create a report file using Crystal Reports.

CreateReportOnRuntimeDS
Creates a tab-separated text file, known as a field definition file, which represents
the structure of the data in a specified Recordset or Rowset object. Then, the
function creates a blank report file based on this field definition file. When
designing an application that prints, previews, or exports the report, the field
definition file can be replaced by the Recordset or Rowset in the active data source.

C Syntax

BOOL FAR PASCAL CreateReportOnRuntimeDS(LPUNKNOWN FAR *lpUnk,

LPCSTR reportFile,

LPCSTR fieldDefFile,

BOOL bOverWriteFile,

BOOL bLaunchDesigner);

Visual Basic Syntax

Declare Function CreateReportOnRuntimeDS Lib "p2smon.dll" (_

lpUnk As Object, ByVal reportFile As String, ByVal fieldDefFile _

As String, ByVal bOverWriteFile As Long, ByVal bLaunchDesigner _

As Long) As Long

Parameters

Parameter Description

lpUnk The active data source used to create the field definition file. In
C or C++, this is a pointer to an Unknown derived COM
interface relating to a DAO or ADO Recordset. In Visual Basic,
this is a Recordset or Rowset object.

reportFile The path and file name of the report file to be created.

fieldDefFile The path and file name of the field definition file to be created.

bOverWriteFile If a field definition file already exists with the specified path
and file name, this flag indicates whether or not to overwrite
that file.

bLaunchDesigner If True (1), Crystal Reports is launched with the newly created
report file opened. Crystal Reports must be installed on the
system.
Crystal Reports Technical Reference Guide 603

Overview
Return Value

Returns 0 (False) if the call failed. Returns 1 (True) if the call succeeded and the
field definition file was created.

Remarks

This function creates a field definition file, then creates a report file based on that
field definition file. The function CreateFieldDefFile, is unnecessary when this
function is used.

SetActiveDataSource
The SetActiveDataSource Function is used to provide information about a data
source to the Crystal Active Data database driver. For instance, if a report has been
designed using the Crystal Active Data Driver this method can be used to provide
an active data source for the report, such as a DAO, ADO, or RDO recordset or a
CDO rowset. In this case, the object passed to the third parameter of this function
replaces, at runtime, the field definition file used to create the report.

Visual Basic Syntax

Declare Function SetActiveDataSource Lib "p2smon.dll" (ByVal printJob as

Integer,

 ByVal tableNum as Integer,

 x as Object) As Long

Parameters

Return Value

Returns 0 (False) if the call failed. Returns 1 (True) if the call succeeded the data
source was passed.

Remarks

The SetActiveDataSource function is used in conjunction with the Crystal Report
Print Engine (Crpe32.dll) in a Visual Basic application. If you are using Visual C++
see “PESetNthTablePrivateInfo” on page 429.

Parameter Description

printJob Specifies the print job to which you want to add the active data source.

tableNum The 0 based number of a table for which you want to pass the active data
recordset or rowset.

x Variant data passed to the database driver such as a DAO, ADO or RDO
recordset or a CDO rowset.
604 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
Creating User-Defined
Functions in C 10

Crystal Reports allows you to create User Defined
Functions that are recognized by the Crystal Reports
Formula Editor. In this chapter you will find detailed
information on programming User Defined Functions in C.
Crystal Reports Technical Reference Guide 605

Overview of User-Defined Functions in C
Overview of User-Defined Functions in C
The Crystal Reports Formula Editor and formula language are powerful tools,
enabling you to perform a wide variety of report-related tasks easily and
efficiently. The formula language is expandable as well. That is, while it already
includes a large selection of useful functions, it also comes with the ability to accept
new functions that you define to meet your needs.

User-Defined Functions that are recognized by the Crystal Reports Formula Editor
can be created in a Dynamic Link Library or, for 32-bit environments, in an
Automation Server. This section demonstrates how to create User-Defined
Functions in a Dynamic Link Library using the C programming language. For
information on how to create User-Defined Functions in an Automation Server
using Visual Basic or Delphi, see “Creating User-Defined Functions in Visual Basic”
on page 623 or “Creating User-Defined Functions in Delphi 3.0” on page 635.

Programming User-Defined Functions in C
You can add new functions to the Crystal Reports Formula Editor by:
� writing the functions using the C programming language, and
� compiling and linking the functions into a User-Defined Function DLL called a

UFL (User Function Library).

Note: If you are not familiar with programming Windows DLLs, refer to the
Microsoft Windows Software Development Kit. Do not attempt to create a UFL if
you do not understand Windows DLL programming.

When designing a new function for the Crystal Reports Formula Editor, you need
to determine the following:
� “Name of the function” on page 606
� “Purpose of the function” on page 607
� “Function data” on page 607

the report data or user supplied data that the function will require.
� “Return types” on page 608

the type of data that the function will return to the report.

Name of the function
The name of the new function should reflect the function’s purpose, making it
easier to recognize when it appears in the Formula Editor's Functions list. For
example, a function named “Picture” could let you specify a template picture of
how data should appear in the report. If a field contains phone numbers, you can
use the Picture function to specify that the data appear like this:
(xxx) xxx-xxxx

A resulting value from the phone number field would appear as follows:
606 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
(415) 555-1234

Function names must start with a letter, while all remaining characters in the name
can be letters or numbers. The name can be up to 254 characters long, and it must
be unique. That is, you cannot give a function a name that has been used for
another Formula Editor function or UFL function, nor can it have a name that
matches a standard C keyword (such as if, return, switch, or while).

Purpose of the function
You may find it helpful to start simply by “fleshing out” your function. Determine
the purpose of the function and outline it on paper. Use C code or even
pseudocode to determine how the function will perform the required operation.
This step is important, as it will form the base information for every other step in
the designing and programming of your UFL.

Function data
UFL functions are much like any other function you might create in C. They can
accept values that are passed as parameters, and they return a value that is printed
on the report. Once you have determined how a UFL function will perform a task,
you will know exactly what kind of data it will require to complete that operation.
The following table shows the data types that a UFL function can accept as a
parameter, along with a description of what the parameter will look like in C:

Parameter Type C Data Type

number Double.

currency Double.

Boolean Short integer.

string Pointer to an array of characters.

range (number) Structure containing two doubles.

range (currency) Structure containing two doubles.

range (Boolean) Structure containing two short integers.

range (date) Structure containing two long integers.

range (string) Structure containing pointers to two elements in a character array.

array (number) Pointer to a number array.

array (currency) Pointer to a number array.

array (integer) Pointer to an integer array.

array (Boolean) Pointer to a Boolean array.

array (date) Pointer to a date array.
Crystal Reports Technical Reference Guide 607

Return types
Return types
Finally, you must determine what kind of data your function returns to the current
report in Crystal Reports. The following table lists the possible UFL return types
along with a description of the C data type used when programming the function:

Programming the UFL
After sketching out a new function, deciding on its parameters and data types, and
determining the type of data the function will return to a report, you can begin
programming the UFL.

A UFL is like any other DLL with a few simple differences:
� Although the file is referred to as a "UFL" it must have a U2L prefix for 32-bit

Crystal Reports. For example, U2LSAMP.DLL.
� it must export your User-Defined Function (UDF) as a DLL function, and
� it must export a collection of other functions required by Crystal Reports.

You can design your UFL from scratch, but you may find the “Helper Modules”
on page 609, provided with Crystal Reports useful. If you use the helper modules

array (string) Pointer to a string array.

Parameter Type C Data Type

Return Type C Data Type

string Pointer to a character array.

number Double.

date Long integer.

Boolean Short integer.

currency Double.

range (date) Structure containing two long integers.

range (number) Structure containing two doubles.

range (currency) Structure containing two doubles.

range (string) Structure containing pointers to two elements in a character array.

array (date) Pointer to a date array.

array (number) Pointer to a number array.

array (currency) Pointer to a number array.

array (string) Pointer to a string array.

array (Boolean) Pointer to a Boolean array.
608 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
provided, you will only need to create a single C code module, a “Module
Definition (.def) File” on page 619, and an application project file. More
experienced programmers may want to use these modules simply as a starting
point to design more complex UFL features.

The “Picture” example

Code for the Picture function is provided as an example of a UFL. The purpose of
this function is to display string type field data using a format specified by the user.
For example, if the phone number is entered in the database table as “4155551234”,
the user can create the following formula:

Picture({table.PHONENUM}, “(xxx) xxx-xxxx”)

The phone number will appear in the report as: (415) 555-1234

The code segments that appear in this section as examples use this Picture
function. In addition, the complete code is listed in “Picture Function - a sample
UFL function” on page 617, later in the chapter.

Helper Modules
The files listed below have been installed on your system in the same directory as
CRW.EXE (C:\CRW by default).

You do not need to work with the actual code in any of these files, but they will
have to be added to your UFL project. UFJOB.H and UFJOB.C are optional files
providing job information for the current print job accessing the Formula Editor.
For more information, see “UFJOB Modules” on page 620:

File Name Purpose

ufdll.h Defines UFL enumerated, union, structure, and other data types.

ufuser.h Prototypes of tables and functions user must implement.

ufmain.h Prototypes of internal UFL functions implemented in UFMAIN.C.

uffuncs.h Prototypes of functions that must be exported by the UFL to be used by Crystal
Reports. These functions are implemented in UFMAIN.C.

ufmain.c Implementation of UFL functions used internally and used by Crystal Reports
when connecting to the UFL. This file also contains generic LibMain and WEP
functions for Windows 3.x DLLs and a generic DllEntryPoint function for Win32
DLLs. (The LibMain, WEP, and DllEntryPoint functions are defined conditionally
according to whether or not you are building a Win32 DLL. You do not need to
make any changes to the code here).

ufjob.h Optional file. Contains a definition of the JobInfo structure see “UFJOB Modules”
on page 620, and prototypes of the “InitForJob Function” on page 614,
“TermForJob Function” on page 615, and FindJobInfo (see “Implement InitJob and
TermJob” on page 622, implemented in UFJOB.C. structure and PROTOTYPES.C.
Crystal Reports Technical Reference Guide 609

Setting Up a UFL Project
Setting Up a UFL Project
Begin creating your UFL by setting up a new directory on your system to work in.
Use File Manager or Windows Explorer to copy all of the files listed in the chart
under “Helper Modules” on page 609, into your new directory. This assures that
you do not inadvertently edit or change the original files in your CRW directory.

Note: If you will not be using the functionality provided by UFJOB.H and
UFJOB.C, you do not need to copy these files into your working directory.

Now, open your Integrated Development Environment (IDE) application, and use
the tools there to create a new project file. Name the new project file with a UFL
prefix if your function library will be used with Crystal Reports for Windows 3.x,
or with a U2L prefix if it will be used with Crystal Reports for Win32. For example,
UFLSAMP.MAK or U2LFUNCS.PRJ. Make sure the project is set to build a DLL
(not a Windows EXE) file.

Note: If you are building a 32-bit version of a User Function Library, make sure
you set Struct Member Alignment for the project to 1 byte. Crystal Reports for
Win32 will not be able to use your UFL otherwise. To find out how to change the
Struct Member Alignment setting for your project, refer to the documentation for
your development environment.

Finally, add the UFMAIN.C file to your project, and save the project in your new
working directory. Add the UFJOB.C file as well if you are using this file. You are
now ready to begin creating a new UFL for the Crystal Reports Formula Editor.

Function Definition
Creating a UFL function requires that you create only one more C code module
and a module definition (.def) file in addition to the Helper modules. (Your
particular UFL Function needs may require more modules, but the simplest
method for creating a UFL requires creating only these two.) For information on
creating the module definition file, see “Module Definition (.def) File” on page 619.
To begin building your UFL, create a new C module in your IDE, and save it to
your working directory with the same name as your project file. For example, if
your project file is named UFLSAMP.MAK or UFLFUNCS.PRJ, you would name
your C module UFLSAMP.C or UFLFUNCS.C respectively. This demonstration
will refer to UFLSAMP.C. This is the “private” C module for your UFL because it
is the one section of code that must be unique to your UFL.

ufjob.c Optional file. Contains implementations of the required “InitForJob Function” on
page 614 and “TermForJob Function” on page 615. Also implements the
FindJobInfo helper function.

File Name Purpose
610 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
The first step to programming your UFL’s private C code module is to #include the
appropriate header files:
� #include <windows.h>
� #include “ufdll.h”
� #include “ufmain.h”
� #include “ufuser.h”

You do not need to #include the UFFUNCS.H header file that you also copied into
your working directory. This file is already #included by UFMAIN.C, and you will
not be directly calling any of the functions defined in these files (though they are
necessary for Crystal Reports when the Formula Editor accesses your UFL).

The private C code module of your UFL requires several parts:
� “Function Definition Table” on page 611,

� “Function definition table example” on page 612
� “Function Templates Table” on page 612,
� “Function Examples Table” on page 613,
� “Error Table” on page 614,
� “InitForJob Function” on page 614,
� “TermForJob Function” on page 615, and
� “UFL Function Implementation” on page 615.

Most of these sections have specific guidelines that must be used and that are the
same for every function you add to your UFL. Your UFL function implementation
is completely designed and programmed by you. It is the functionality that you are
adding to the Crystal Reports Formula Editor.

Function Definition Table
You must supply a definition for each function that you want to add to Crystal
Reports. Each entry in the function definition table consists of a definition string
that specifies: the return type,
� the function name,
� an argument list (showing the required order in which arguments are to be

entered and the data type of each argument), and
� the name of the C/C++ function that implements the call. The definition must

appear with the following format:

“returnType UDFName (arg1, arg2,...)”, CFunctionName

Here is an example:

“String Picture (String, String)”, Picture

In this example:
� “String” specifies that the function is to return a string.
Crystal Reports Technical Reference Guide 611

Function Definition
� “Picture” is the name that will identify the function on the Function list in the
Formula Editor.

� “(String, String)” specifies that the function is to require two arguments, both
are strings.

� “Picture” (appearing after the comma), is the actual function name, the name
you give the function when you code it.

Note: The UDFName and the CFunctionName do not have to be the same. You
can use something other than the function name to identify a function on the
Function list of the Formula Editor if you wish.

All function definitions must be set up in a table with the following heading:

UFFunctionDefStrings FunctionDefStrings [] =

Note: The table must be terminated with three nulls.

Crystal Reports uses the information you supply in this table to create parameter
blocks when you call the functions.

Function definition table example

Here is a sample function definition table for the Picture function:
UFFunctionDefStrings FunctionDefStrings [] =

{

{“String Picture(String,String)”,Picture},

{NULL,NULL,NULL}

};

An optional third parameter can be used when you know the maximum length of
the return value (or your code can obtain it).

For example, the definition for the Picture function might be:

{“String Picture (String, String)”, Picture, PictureRetSize},

Here, PictureRetSize specifies the maximum acceptable length of the string
returned by the Picture function.

Function Templates Table
You must supply a function template for each function that you define. A function
template specifies the string that Crystal Reports is to enter in the Formula Editor’s
Formula text box when you select the function from the Functions list in the
Formula Editor. Each template must contain:
� the function call,
� any syntax guides (parentheses, commas, etc.) you want to include, and
� an exclamation point (!) character to specify where the insertion point is to

appear when the function is entered into the formula. Here is an example:

“Picture (!,)“
612 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
In this example, the string “Picture (,)“ is to be entered into the formula whenever
you select the Picture function from the Functions list in the Formula Editor.
� The string includes the function call “Picture” and the syntax guides “(,)“ to

guide the user when entering arguments.
� The exclamation point specifies that the insertion point is to be placed inside

the parentheses, before the comma.

All function templates must be set up in a table with the following heading:

UFFunctionTemplates FunctionTemplates [] =

Note: The table must be terminated with a null.

Continuing with the example, the function templates table for the Picture function
should look like this:
UFFunctionTemplates FunctionTemplates [] =

{

{“Picture (!,)“},

{NULL}

};

Function Examples Table
You must also supply a function example for each function. A function example
specifies the string you want to use to identify and select the function in the
Functions list in the Formula Editor. Here is a function example for the Picture
function:

“\tPicture (string, picture)”

This example specifies that the string “Picture (string, picture)” is the listing that
you want to appear in the Functions list. The characters “\t” specify that the string
is to be set in from the left one tab stop, thus aligning it with other functions in the
list.

All function examples must be set up in a table with the following heading:

UFFunctionExamples FunctionExamples [] =

Note: The table must be terminated with a null.

The complete function examples table for the Picture function should look like this:
UFFunctionExamples FunctionExamples [] =

{

{“\tPicture (string,picture)”},

{NULL}

};
Crystal Reports Technical Reference Guide 613

Function Definition
Error Table
You must also supply an error string for each error message that you want to make
available to your functions. Each error string contains only the text you want to
display when an error is detected, and it must be in the format:

“ErrorString”

Note: C compilers view the first string in the table as Error 0, the second as Error
1, etc. Each string in the error table corresponds to an error code that you define.
For each user error code, there must be a message string in the error table at the
corresponding index, where the first string is at index 0.

Each UFL C function must return a value of the enumerated type UFError, defined
in ufdll.h. Return UFNoError if no error occurred. Return one of the other UFError
values if there is an error. Try to choose one of the predefined values if it fits your
situation. If the error is specific to your UFL, set the
ReturnValue.UFReturnUserError member of the parameter block to an error code
value you have defined and return UFUserError from your function code. The
Formula Editor will then call back to return the error string that you have defined
in the error table.

The Formula Editor passes a parameter block to a UFL function rather than
individual parameters. “Obtaining parameter values from the parameter block”
on page 616, will examine how to handle parameter blocks.

All error strings must be set up in a table with the following heading:

char *ErrorTable [] =

An error table for the Picture function should, at a minimum, look like this:
char *ErrorTable[] =

{

“no error”

};

InitForJob Function
The InitForJob function initializes all user function UFL's with the job ID whenever
a job starts. You can handle any job initialization for your functions here, but all
that is absolutely necessary is an empty function implementation:
void InitForJob(UFTInt32u jobID)

{

}

Note: See the note following “TermForJob Function” on page 615.
614 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
TermForJob Function
The TermForJob function terminates the job ID for all user function UFL's
whenever a job finishes. You can add any job termination code here that you like,
but all that is absolutely necessary is an empty function implementation:
void TermForJob(UFTInt32u jobID)

{

}

Note: Every UFL must have an implementation of “InitForJob Function” on
page 614, and TermForJob. These functions are called when a job starts and ends
printing, respectively. You can choose to implement these yourself. At a
minimum, you must provide empty functions.

Crystal Reports provides helper modules (UFJOB.C and UFJOB.H) which
implement these functions and maintain a doubly linked list of JobInfo structures,
one for each active job. The JobInfo structure (declared in UFJOB.H) holds the ID#
of the job and contains a void pointer where you can store any data that you
allocate. The files also implement a FindJobInfo function (see “Implement InitJob
and TermJob” on page 622, which you can use to retrieve the job information for
any open job. “UFJOB Modules” on page 620, will examine these files and their
implementation of InitForJob and TermForJob.

UFL Function Implementation
As the final step to creating a UFL function (see “Function Definition” on
page 610), you must add code for the operation of the function you have designed.
Your function must be programmed for the specific needs of your UFL. This
section will examine the basics of how to obtain the parameters from the parameter
block and use the values of those parameters in the implementation of the UFL
function.

You begin by coding your function as follows:
ExternC UFError FAR _export PASCAL FunctionName

(UFParamBlock *ParamBlock)

{

// Your function’s code

}

First, notice that the function is exported because a UFL is simply a DLL being
accessed by Crystal Reports. Second, the function returns an error code of the
enumerated type UFError. In the error trapping sections of your function, you can
return a UFError value, such as UFNotEnoughParameters, or you can return
UFUserError and define your own errors in the error table. Finally, the function
accepts a parameter block of type UFParamBlock from Crystal Reports rather than
individual parameters. You will need to retrieve the individual parameters from
that parameter block to work with the data values passed by the Formula Editor.

Note: ExternC is defined in UFDLL.H and is equivalent to: extern “C”.
Crystal Reports Technical Reference Guide 615

Returning User-Defined Errors
Returning User-Defined Errors
The UFError enumerated type provides several errors that are common to many
types of functions. If appropriate, have your UFL function return one of these
predefined types. If no error occurs, you can return UFNoError.

If your function can cause an error that is not predefined, however, you can
establish a user-defined error. You do this by:
� adding an error string to the error table,
� passing the appropriate error index to the ReturnValue.UFReturnUserError

member of the parameter block, and
� returning UFUserError from your UFL function implementation.

A user-defined error string in the error table might look like this:
char *ErrorTable[] =

{

“My User-defined Error”

};

This error string is assigned an error index by Crystal Reports. The first error is 0,
the second is 1, etc. If an error occurs in your function, you assign the appropriate
index value to the ReturnValue.UFReturnUserError member of the parameter
block. For example:
ParamBlock->ReturnValue.UFReturnUserError = 0;

Once you specify a user-defined error, you can return the UFError value UFUserError
from your function. When the Formula Editor finds the error in a formula entered in
the Formula text box (when the Check or Accept button is clicked), it will use the error
index specified to report the appropriate string listed in the error table.

Obtaining parameter values from the parameter block
Since Crystal Reports passes the values for a Formula Editor function’s parameters
in a parameter block rather than individually, you must separate the values from
the parameter block before they can be evaluated. For the Picture function (see
“Picture Function - a sample UFL function” on page 617), expect the parameter
block to contain two parameters, both of type String, as defined in the function
definition table.

To obtain the values of the individual parameters, begin by defining pointers to
two structures of type UFParamListElement (defined in UFDLL.H):
UFParamListElement*FirstParam,

*SecondParam;

Next, call the GetParam function (defined in UFMAIN.C) for each
UFParamListElement to obtain a pointer to each parameter from the parameter block:
FirstParam = GetParam (ParamBlock, 1);

SecondParam = GetParam (ParamBlock, 2);
616 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
The actual value is stored in the Parameter member of the UFParamListElement
according to the type of data it contains. The Parameter member is a UFParamUnion
type (a union data type holding a value according to the type of data expected). Since
both of the parameters are of type String, you can obtain the actual parameter value
for each UFParamListElement by using the following notation:
FirstParam->Parameter.ParamString

SecondParam->Parameter.ParamString

If, on the other hand, the second parameter contained a numeric value, you could
use this notation:
SecondParam->Parameter.ParamNumber

Study the UFParamUnion union definition in the UFDLL.H file for a complete list
of all possible parameter types and how to obtain a value from them.

Picture Function - a sample UFL function
Here is a complete commented private C code module implementing the Picture
function. Use this as a guide for how to create your own functions in UFLs:
/********************************

** UFLSAMP.C

**

** Private C code module

** implementing the Picture UDF.

********************************/

#include <Windows.h>

#include “UFDll.h”

#include “UFMain.h”

#include “UFUser.h”

#define PicturePlaceholder 'x'

/* UDF PROTOTYPE */

ExternC UFError FAR _export PASCAL Picture

(UFParamBlock * ParamBlock);

/*****

* This array gives the program the types for the

* parameters to the UDF, the return

* type, and the name. It also passes the

* address of the actual function code.

*****/

UFFunctionDefStrings FunctionDefStrings [] =

{

{“String Picture (String, String)”,

 Picture},

{NULL, NULL, NULL}
Crystal Reports Technical Reference Guide 617

Picture Function - a sample UFL function
};

/*****

* The following is the template the program

* will insert into the Formula Editor

* Formula text box when this function is

* selected.

*****/

UFFunctionTemplates FunctionTemplates [] =

{

{“Picture (!,“},

{NULL}

};

/*****

* The following is an example of the format

* for this function. This text will appear

* in the Functions list box of the Formula

* Editor.

*****/

UFFunctionExamples FunctionExamples [] =

{

{“\tPicture (string, picture)”},

{NULL}

};

/*****

* This array contains ASCII string

* representations of the errors which

* could occur.

*****/

char *ErrorTable [] =

{

“no error”

};

/* Called for on initialization */

void InitForJob (UFTInt32u jobID)

{

}

/* Called on termination */

void TermForJob (UFTInt32u jobID)

{

}

l/*****

* This function is used by the Picture UDF to

* copy the contents of a source string and a
618 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
* format string into a destination string.

*****/

static void copyUsingPicture(char *dest,

const char *source, const char *picture)

{

while (*picture != '\0')

{

If (tolower (*picture) ==

 PicturePlaceholder)

If (*source != '\0')

*dest++ = *source++;

Else

; // do not insert anything

Else

*dest++ = *picture;

picture++;

}

 // copy the rest of the source

lstrcpy (dest, source);

}

/*****

* This is the User-Defined Function

*****/

ExternC UFError FAR _export PASCAL Picture

(UFParamBlock * ParamBlock)

{

UFParamListElement*FirstParam,*SecondParam;

FirstParam = GetParam (ParamBlock, 1);

SecondParam = GetParam (ParamBlock, 2);

If (FirstParam == NULL || SecondParam ==

 NULL)

return UFNotEnoughParameters;

copyUsingPicture(ParamBlock-

ReturnValue.ReturnString,

FirstParam-Parameter.ParamString,

SecondParam-Parameter.ParamString);

return UFNoError;

}

Module Definition (.def) File
The last element of your UFL is the module definition (.def) file. This is just like any
module definition file you would create for a DLL, but you must make sure to
explicitly export not only your UFL function, but also the specialized UFL
functions defined in UFMAIN.C that Crystal Reports expects to find. The
Crystal Reports Technical Reference Guide 619

UFJOB Modules
following is an example of a module definition file for the UFL that exports the
Picture function (see “Picture Function - a sample UFL function” on page 617):
Library UFLSAMP

Description’User Function Library for Crystal Reports’

ExeType Windows

HeapSize1024

Code Moveable Discardable Preload

Data Moveable Preload

Segments_TEXTPreload

Exports

WEP

UFINITIALIZE

UFTERMINATE

UFGETVERSION

UFSTARTJOB

UFENDJOB

UFGETFUNCTIONDEFSTRINGS

UFGETFUNCTIONEXAMPLES

UFGETFUNCTIONTEMPLATES

UFERRORRECOVERY

PICTURE

Notice that the only function exported that you actually coded is the Picture UFL.
The rest of the exported functions have been defined for you in UFMAIN.C. Every
UFL must export these 9 UF* functions. In addition to these functions, every UFL
that you create must be exported.

Note: If you are creating a 32-bit UFL, do not export the WEP procedure function.
If you are creating a 32-bit UFL, you will only need to include the LIBRARY,
DESCRIPTION, and EXPORTS sections of the .def file.

When you have finished coding the module definition file, save it to your working
directory and add it to the list of files in your project file.

Finally, compile and link the ufl* or u2l* project file. Resolve any errors that occur,
and recompile if necessary. Once you have your DLL (ufl*.dll or u2l*.dll), place it in
the directory that holds CRW.EXE. From that point on, when you open the Formula
Editor, your User-Defined Function(s) will appear in the “Additional Functions”
section at the bottom of the Functions list of the Formula Editor. Enter each function
in one or more formulas, and test and modify it until it works the way you want.

Note: For additional information, review UFLSAMP1.C and UFLSAMP2.C (sample
files that were installed in the Crystal Reports directory, \CRW, by default).

UFJOB Modules
Two optional modules, UFJOB.C and UFJOB.H have been provided with Crystal
Reports. These files provide an implementation of the “InitForJob Function” on
page 614,and “TermForJob Function” on page 615, which allow you to obtain an ID
620 Crystal Reports Technical Reference Guide

10 : Creating User-Defined Functions in C
number that is specific to the current print job in Crystal Reports. At the same time,
these modules establish a JobInfo structure for the current job where you can store
information regarding the job. If your UFL, for example, must evaluate all values in
a field before printing a result, it can tally data in the JobInfo structure until it has a
result. Data can even be passed between functions using the JobInfo structure.

Use the JobInfo structure whenever you want to create UFL functions that
summarize or group report data. For example, statistical functions that evaluate the
median, mean, or range of values in a field can store data in the JobInfo structure.

The UFLSAMP2.C file, included with Crystal Reports, demonstrate UFLs that
group data according to the Top N values. (Crystal Reports can do this
automatically for you, but the functions in UFLSAMP2.C will help you understand
how to use the functions and the JobInfo structure in the UFJOB modules.)

If you decide to use the UFJOB modules in your own UFL, the following are required:
� “UFJOB.C” on page 621

� add UFJOB.C to your UFL project file.
� Note: See also “UFJOB.H” on page 622

� “UFJOB.H” on page 622
� #include UFJOB.H in your private C code module that implements your

UFL functions.
� “Implement InitJob and TermJob” on page 622

� Replace your own implementations of the InitForJob and TermForJob
functions with implementations of the InitJob and TermJob functions.

UFJOB.C
This module contains implementations of the “InitForJob Function” on page 614,
and “TermForJob Function” on page 615, that provide a JobInfo structure for the
current job in Crystal Reports. These replace any versions of these functions that
you coded in your private C module containing your UFL definitions. They also
call the InitJob and TermJob functions respectively. You will implement these
functions in your private C code module.

In addition, this file also defines the FindJobInfo function. Use this function in your
own code whenever you need to obtain a pointer to the JobInfo structure for the
current job. This function requires only the job ID number, which is stored in the
JobId member of the parameter block. The following code demonstrates how to
call this function:
struct JobInfo *jobInfo;

jobInfo = FindJobInfo (ParamBlock->JobId);
Crystal Reports Technical Reference Guide 621

Implement InitJob and TermJob
UFJOB.H
This module prototypes the “InitForJob Function” on page 614, “TermForJob
Function” on page 615, and FindJobInfo functions that appear in UFJOB.C. It also
prototypes the InitJob and TermJob functions that you must implement yourself.
Most importantly, this file defines the JobInfo structure:
struct JobInfo

{

UFTInt32u jobId;

struct JobInfo FAR *prev;

struct JobInfo FAR *next;

void FAR *data;

};

The data member of this structure allows you to store a pointer to any kind of data
you wish. This means you can store information for the current job that allows you
to evaluate several field values before printing a result or store data from one
function to be used by another function.

Implement InitJob and TermJob
If you previously implemented the InitForJob and TermForJob functions in the
private C code module with your UFL function definitions, delete those functions
now since they are being replaced by the functions in UFJOB.C. Now, in your
private C module, define the InitJob and TermJob functions which InitForJob and
TermForJob call. You can use these functions to add job initialization or job
termination code to your UFL, but they can also remain blank.

Following are examples of how you might implement these functions for your own
UFL:
void InitJob (struct JobInfo *jobInfo)

{

}

void TermJob (struct JobInfo *jobInfo)

{

If (jobInfo->data != 0)

free (jobInfo->data);

}

Once you have done all this, you can make full use of the JobInfo structure with
your own UFL function code.
622 Crystal Reports Technical Reference Guide

Creating User-Defined Functions
in Visual Basic 11

Crystal Reports allows you to create User Defined
Functions that are recognized by the Crystal Reports
Formula Editor. In this chapter you will find detailed
information on programming User Defined Functions in
Microsoft Visual Basic.
Crystal Reports Technical Reference Guide 623

Overview of User-Defined Functions in Visual Basic
Overview of User-Defined Functions in Visual Basic
The Crystal Reports Formula Editor and formula language are powerful tools,
enabling you to accomplish a wide variety of report-related tasks easily and
efficiently. The formula language is expandable as well. That is, while it already
includes a large selection of useful functions, it also comes with the ability to accept
new functions that you define to meet your needs.

User-Defined Functions that are recognized by the Crystal Reports Formula Editor can
be created in a Dynamic Link Library or, for 32-bit environments, in an Automation
Server. This section demonstrates how to create User-Defined Functions in an
Automation Server using Visual Basic. For information on how to create User-Defined
Functions in a Dynamic Link Library using the C or C++ programming language, see
“Programming User-Defined Functions in C” on page 606. For information on
creating User-Defined Functions in an Automation Server using Delphi 3.0, see
“Programming User-Defined Functions in Delphi” on page 636.

Programming User-Defined Functions in Visual Basic
The Crystal Reports Formula Editor can access User-Defined Functions through a
User Function Library (UFL). A User Function Library is a specially designed
Dynamic Link Library that exposes one or more functions that you create. UFLs
can be designed and programmed in any language that supports the development
of Windows DLLs.

The 32-bit version of Crystal Reports Professional Edition includes the User Function
Library U2LCOM.DLL. This UFL is installed in your \WINDOWS\CRYSTAL
directory when you install Crystal Reports and provides an interface through which
you can expose User-Defined Functions in Automation Servers.

An automation server is a Dynamic Link Library or executable file that exposes its
functionality to other modules and processes through the Component Object
Model. For complete information on the Component Object Model (COM), refer to
Microsoft documentation or the Microsoft World Wide Web site. U2LCOM.DLL is
a UFL that can access any functions exposed by any Automation Servers named
with a CRUFL prefix. This means that you can create an Automation Server in any
language environment that supports COM, name the server with a CRUFL prefix,
register the server on a system, and the Crystal Reports Formula Editor will access
and make available any functions exposed by that Automation Server.

Note: You may be more familiar with Automation Servers as OLE Automation.
Though the technology behind Automation Servers is the same as OLE
Automation, the correct name for these servers is now simply Automation Servers.

Visual Basic, version 4.0 and later, allows you to design 32-bit Automation Servers
easily. As a Visual Basic programmer, you can design custom functions for use in your
reports by exposing them in ActiveX DLLs and registering the DLL on your system.
624 Crystal Reports Technical Reference Guide

11 : Creating User-Defined Functions in Visual Basic
Note: Any development environment that allows the creation of COM-based
Automation Servers can use the techniques similar to those described in this
section. However, the code and examples shown here are based on Visual Basic.

The steps for creating automation servers in Visual Basic are slightly different,
depending on the version of Visual Basic you are using.

Using Visual Basic 4.0
There are five primary steps to creating an Automation Server in Visual Basic 4.0
that exposes functions to the U2LCOM.DLL User Function Library:
� “Set Up the Main Subroutine” on page 625
� “Add a Class Module to the Project” on page 625
� “Add User Functions to the Class Module” on page 626
� “Name the Project” on page 626
� “Compile the Project as an OLE DLL” on page 626

Set Up the Main Subroutine

When Visual Basic 4.0 first opens, it creates a default project and form for you. The
entry point to your Automation Server DLL must be the Main subroutine. This
subroutine needs to be defined in a Visual Basic Module, but cannot be defined in
a Class Module.

1 Remove the default form from your project by highlighting the form in the
Project window and choosing Remove File from the File menu.

2 To add a new Module to the project, choose Module from the Insert menu.

3 In the Module window, add the following:
Sub Main()

End Sub

You do not need to add any code to the Main subroutine, as long as it exists in your
project.

Add a Class Module to the Project

Now you must add a Class Module to your project. The Class Module will contain
any User-Defined Functions that you wish to make available to the Crystal Reports
Formula Editor.

1 To create a Class Module, choose Class Module from the Insert menu. A new
Class Module window appears, and the Class Module is added to the Project
window.

2 In the Properties window, set the following properties for the Class Module:
� Instancing = 2 - Creatable MultiUse
Crystal Reports Technical Reference Guide 625

Programming User-Defined Functions in Visual Basic
� Name = Any valid Class Module name
� Public = True

Note: For complete information on these properties, refer to Visual Basic Help.

If the Properties window is not visible, select the Class Module window, then
choose Properties from the View menu.

Add User Functions to the Class Module

The next step is to add the actual User-Defined Functions that you want to appear
in the Crystal Reports Formula Editor. These functions are standard Visual Basic
functions that you might define in any Visual Basic project. The only requirement
is that the functions are declared Public.

Type in the following function:
Public Function DateToString(date1 As Date) As String

DateToString = Format(date1, “Long Date”)

End Function

Note: For complete information on how to define functions in Visual Basic, refer
to your Visual Basic documentation.

The U2LCOM.DLL UFL supports most standard Visual Basic data types and
arrays. For complete information on how the Crystal Reports Formula Editor
interprets Visual Basic data types and arrays, see the sections “Visual Basic and
Crystal Reports” on page 629, and “Using Arrays” on page 630.

Name the Project

The U2LCOM.DLL UFL will only read Public functions exposed by Automation
Servers named with a CRUFL prefix. For example, CRUFLMyFunctions is a valid
project name for your Automation Server.

1 To change the name of your project in Visual Basic 4.0, choose Options from
the Tools menu. The Options dialog box appears.

2 Click the Project Tab, and change the name of the project in the Project Name
text box. The name should be CRUFLxxx, where xxx is a name of your choice.

3 While in the Options dialog box, make sure the Startup Form for the project is
the Sub Main subroutine. Click OK when finished.

Compile the Project as an OLE DLL

1 Save the Module file, the Class Module file, and the P3roject file for your project.

2 Choose Make OLE DLL File from the File menu. Accept the default name for
the DLL (your file name and location can be anything), and click OK. Visual
Basic creates your Automation Server for you and registers it in your local
system Registry.
626 Crystal Reports Technical Reference Guide

11 : Creating User-Defined Functions in Visual Basic
Using Visual Basic 5.0
There are only four major steps to creating an Automation Server in Visual Basic
5.0. When you finish designing your Automation Server, the U2LCOM.DLL User
Function Library will be able to access all of the functions that it exposes.
� “Create a New ActiveX DLL Project” on page 627
� “Add User Functions to the Class Module” on page 627
� “Name the Project” on page 627
� “Build the DLL” on page 628

Create a New ActiveX DLL Project

1 When you first run Visual Basic 5.0, the New Project dialog box appears. If you
already have Visual Basic open, simply choose New Project from the File menu.

2 Double-click the ActiveX DLL icon in the New Project dialog box. Visual Basic
creates a new project for you with a single Class Module.

Note: For complete information on creating an ActiveX DLL in Visual Basic 5.0,
refer to your Visual Basic documentation.

Add User Functions to the Class Module

The next step is to add the actual User-Defined Functions that you want to appear
in the Crystal Reports Formula Editor. These functions are standard Visual Basic
functions that you might define in any Visual Basic project. The only requirement
is that the functions are declared Public.

Type in the following function:
Public Function DateToString(date1 As Date) As String

DateToString = Format(date1, “Long Date”)

End Function

The U2LCOM.DLL UFL supports most standard Visual Basic data types and
arrays. For complete information on how the Crystal Reports Formula Editor
interprets Visual Basic data types and arrays, see the sections “Visual Basic and
Crystal Reports” on page 629, and “Using Arrays” on page 630.

Name the Project

The U2LCOM.DLL UFL will only read Public functions exposed by Automation
Servers named with a CRUFL prefix. For example, CRUFLMyFunctions is a valid
project name for your Automation Server.

To change the name of your project in Visual Basic 5.0, highlight your project in
the Project window, then change its (Name) property in the Properties window
to CRUFLxxx, where xxx is a name of your choice.
Crystal Reports Technical Reference Guide 627

Programming User-Defined Functions in Visual Basic
Build the DLL

From the File menu, choose Make CRUFLxxx.dll. Once again, xxx is the name
you chose. When this command executes, Visual Basic will compile your
project into an ActiveX DLL (an Automation Server) and register it in your local
system Registry.

Registration of the Automation Server and Distribution of the Visual
Basic Project

An Automation Server must be registered on any system on which it will be used.
Automation Servers are registered in the Windows 95 or Windows NT System
Registry. The file can be physically stored anywhere on your hard drive because
the Registry settings tell Windows where the file is located when it is needed.

When you make an ActiveX DLL project in Visual Basic 5.0 or an OLE DLL project
in Visual Basic 4.0, using the Make command from the File menu, Visual Basic
automatically registers the Automation Server on your system. Once registered,
you can easily test and use the new User-Defined Functions from the Crystal
Reports Formula Editor.

Visual Basic 4.0 also includes an easy-to-use command-line application,
REGSVR32.EXE, that will handle registering an Automation Server on your system.
This application is located in the \CLISVR subdirectory of the directory in which
you installed Visual Basic. This application can be used from an MS-DOS prompt by
simply specifying the name of the Automation Server DLL. For example:
RegSvr32.exe C:\Projects\CRUFLMyFunctions.dll

The easiest way to distribute any Visual Basic project is to use the Setup Wizard to
create an installation program. In addition to making sure all necessary files are
installed where appropriate, the Setup Wizard can add code to your installation to
register the Automation Server in the user’s system Registry.

In addition to installing and registering your Automation Server, you must also
provide the U2LCOM.DLL UFL file on any system that will use the functions exposed
by your Automation Server. If the system has Crystal Reports installed, then this file
will already be located in the system’s \WINDOWS\CRYSTAL directory.
628 Crystal Reports Technical Reference Guide

11 : Creating User-Defined Functions in Visual Basic
Using the User-Defined Functions
From Crystal Reports:

1 Create a new report and add tables to the report, or open an existing report.

2 From the Insert menu, choose Formula Field. The Insert Field dialog box appears.

3 Click New, and enter a name for the new formula in the Formula Name dialog
box.

4 Click OK; the Formula Editor appears.

5 Scroll down in the Functions list box to the Additional Functions section.
Locate the User Defined Function you created.
User-Defined Function names for functions created in Automation Servers are
prefixed according to the project and class name used when you created the
Automation Server. For instance, if you named your project CRUFLProject,
named the class Conversion, and named the function Square, the User-Defined
Function would appear in the Formula Editor as ProjectConversionSquare.

6 Double-click the User-Defined Function, and it appears in the Formula text
box. Enter valid arguments for the function. For example:

ProjectConversionSquare(5)

7 Click Check. Make sure no errors appear in the function.

8 Click Accept, and place the formula in your report. Preview the report and
verify that the function worked correctly.

Congratulations, you just created and used a User-Defined Function.

Visual Basic and Crystal Reports
Note: 32-bit Support Only. U2LCOM.DLL is a 32-bit UFL only and, therefore,
supports only 32-bit Automation Server DLLs. To create User-Defined Functions
for Crystal Reports, you must have the 32-bit edition of Visual Basic 4.0 or Visual
Basic 5.0 (or another 32-bit development environment that supports the creation
of COM-based Automation Servers).
Crystal Reports Technical Reference Guide 629

Visual Basic and Crystal Reports
Variable Types
Crystal Reports will support most common Visual Basic data types provided
through a User-Defined Function developed in Visual Basic. The following table
shows how Crystal Reports converts the most common Visual Basic data types to
data types supported by the Formula Editor:

Note: Ranges--The range data type available in the Crystal Reports Formula
Editor is not supported in COM-based User-Defined Functions.

Using Arrays
Arrays can be passed to any User Defined Function as a parameter of the function.
This means that when you design your function in Visual Basic, the function can
accept an array of values of any of the supported data types. However, the function
cannot return an array to the Crystal Reports Formula Editor. The following Visual
Basic function is an acceptable User Defined Function for Crystal Reports:
Public Function GetNthItem (sArray() As String, n As Integer) As String

GetNthItem = sArray(n)

End Function

Reserved Names
Certain names are reserved and cannot be used as User Defined Function names.
The following names are reserved by the Crystal Reports Formula Editor for
special purposes:

� UFInitialize
� UFTerminate
� UFStartJob
� UFEndJob

Visual Basic Data Types Formula Editor Data Types

Integer
Long
Single
Double

NumberVar

Currency CurrencyVar

Date DateVar

Boolean BooleanVar

String StringVar
630 Crystal Reports Technical Reference Guide

11 : Creating User-Defined Functions in Visual Basic
For more explanation of these function names, see “Special Purpose Functions” on
page 632. In addition, User-Defined Functions cannot use the same name as any of
the functions exposed by the IDispatch interface used by COM:

� QueryInterface
� AddRef
� Release
� GetTypeInfoCount
� GetTypeInfo
� GetIDsOfNames
� Invoke

Function Name Prefixing
To ensure a unique name when User-Defined Functions appear in the Formula
Editor, Crystal Reports appends a prefix to each function name that is generated
from the project and Class Module names in the original source code. The first part
of the prefix is the project name without the CRUFL prefix. The rest of the function
name prefix is the Class Module name.

Once the prefix for the function name is generated, all non-alphanumeric
characters are removed, and the prefix is applied to the original function name.
The following table illustrates this process:

This function name prefixing can be turned off if you are sure that your function
names will not conflict with any other function names recognized by the Formula
Editor. To turn off function name prefixing:

1 Define a Boolean property for the class called UFPrefixFunctions.

2 Set the value of the property to False in the Initialize subroutine for the class.
For example:

Public UFPrefixFunctions As Boolean

Private Sub Class_Initialize()

UFPrefixFunctions = False

End Sub

Note: Function name prefixing is designed to eliminate function name conflicts.
If you turn off function name prefixing and your function name conflicts with
another function, you may get unpredictable results.

Project Name: CRUFLTestFunctions

Class Module Name: Conversion

User Defined Function Name: Date_To_String()

Formula Editor Function: TestFunctionsConversionDateToString()
Crystal Reports Technical Reference Guide 631

Visual Basic and Crystal Reports
Passing Parameters By Reference and By Value
Arguments can be passed to User-Defined Functions written in Visual Basic either
ByRef or ByVal. ByRef is the default method for Visual Basic, but both methods
will work. For instance, all of the following functions are valid:

Public Function Test1 (num1 As Integer) As Integer

Public Function Test1 (ByRef num1 As Integer) As Integer

Public Function Test1 (ByVal num1 As Integer) As Integer

Error Handling
If it is possible for your User Defined Function to produce an error, the Crystal
Reports Formula Editor should be notified of the error. Many types of errors are
automatically handled by the Formula Editor. Passing the wrong type of data to a
function, for instance, will be recognized and trapped by Crystal Reports. However,
if you design a function that can produce an error unique to that function, you
should provide a means for reporting that error to the Formula Editor.

To send error messages to the Formula Editor, define the UFErrorText string
property in your Class Module. This property should be defined Public, using
code similar to this:

Public UFErrorText As String

Any time you trap for an error condition, simply set the UFErrorText property to
the error text you want reported in Crystal Reports. Setting the value of this
property triggers the error in Crystal Reports, and Crystal Reports displays a
dialog box containing the error message that you assigned to UFErrorText.

Note: You should not use the UFErrorText property for anything other than
returning errors from User-Defined Functions. The U2LCOM.DLL UFL regularly
resets the value of this property, so data can be lost if stored in UFErrorText for
any reason other than reporting an error.

Special Purpose Functions
You can define several special purpose functions in your Class Module in addition
to the User-Defined Functions that you are creating. The Crystal Reports Formula
Editor can look for and process code defined in any of the following functions:
Public Function UFInitialize () As Long

Public Function UFTerminate () As Long

Public Sub UFStartJob (job As Long)

Public Sub UFEndJob (job As Long)

Be sure to define the functions in your code exactly as they appear above. If not
defined correctly, they will be ignored by Crystal Reports. These functions are
completely optional when creating your Visual Basic Automation Server. They are
provided to assist you with the design of your User-Defined Functions.
632 Crystal Reports Technical Reference Guide

11 : Creating User-Defined Functions in Visual Basic
UFInitialize

This function is called just after the DLL is loaded into memory. Use this function
to handle one-time initialization of variables.

Return a value of 0 (zero) to indicate successful initialization. Any non-zero value
indicates initialization failed.

UFTerminate

This function is called just before the DLL is unloaded from memory. Use this
function to clean up any allocated memory or other data before unloading the DLL.

Return a value of 0 (zero) when finished cleaning up memory.

UFStartJob

This procedure is called by Crystal Reports just before User-Defined Functions are
evaluated (or reevaluated). The Crystal Reports job number is passed to the function
as the only parameter. Use this function to handle any initialization on a per-job basis.

UFEndJob

This procedure is called by Crystal Reports when the current job finishes, which
happens when all pages of a report have been generated, before UFStartJob is
called again, or before UFTerminate is called. This function also accepts the Crystal
Reports job number as its only parameter. Handle any clean-up necessary on a per-
job basis using this function.

Sample UFL Automation Server
Crystal Reports includes the source code for a sample automation server that
exposes a User Defined Function. The code includes a Visual Basic 4.0 project file
that can be compiled in either Visual Basic 4.0 or 5.0. Use this sample as a reference
for building your own Automation Server based User-Defined Functions. You can
even copy the Class Module provided into your own projects as a head-start to
building Automation Servers for U2LCOM.DLL.
Crystal Reports Technical Reference Guide 633

Sample UFL Automation Server
634 Crystal Reports Technical Reference Guide

Creating User-Defined Functions in Delphi
3.0 12

Crystal Reports allows you to create User Defined
Functions that are recognized by the Crystal Reports
Formula Editor. In this chapter you will find detailed
information on programming User Defined Functions in
Delphi.
Crystal Reports Technical Reference Guide 635

Overview of User-Defined Functions in Delphi
Overview of User-Defined Functions in Delphi
The Crystal Reports Formula Editor and formula language are powerful tools,
enabling you to do a wide variety of report-related tasks easily and efficiently. The
formula language is expandable as well. That is, while it already includes a large
selection of useful functions, it also comes with the ability to accept new functions
that you define to meet your needs.

User Defined Functions that are recognized by the Crystal Reports Formula Editor
can be created in a Dynamic Link Library or, for 32-bit environments, in an
Automation Server. This section demonstrates how to create User Defined
functions in an Automation Server using Borland Delphi 3.0 (and later versions).
For information on how to create User Defined Functions in a Dynamic Link
Library using the C or C++ programming language, see “Programming User-
Defined Functions in C” on page 606. For information on how to create User
Defined Functions in an Automation Server using Visual Basic, see “Programming
User-Defined Functions in Visual Basic” on page 624.

Programming User-Defined Functions in Delphi
The Crystal Reports Formula Editor can access User Defined Functions through a
User Function Library (UFL). A User Function Library is a specially designed
Dynamic Link Library that exposes one or more functions that you create. UFLs
can be designed and programmed in any language that supports the development
of Windows DLLs.

The 32-bit version of Crystal Reports Professional Edition includes the User Function
Library U2LCOM.DLL. This UFL is installed in your \WINDOWS\CRYSTAL
directory when you install Crystal Reports and provides an interface through which
you can expose User Defined Functions in Automation Servers.

An Automation Server is a Dynamic Link Library or executable file that exposes its
functionality to other modules and processes through the Component Object
Model. For complete information on the Component Object Model (COM), refer to
Microsoft documentation or the Microsoft World Wide Web site. U2LCOM.DLL is
a UFL that can access any functions exposed by any Automation Servers named
with a CRUFL prefix. This means that you can create an Automation Server in any
language environment that supports COM, name the server with a CRUFL prefix,
register the server on a system, and the Crystal Reports Formula Editor will access
and make available any functions exposed by that Automation Server.

Note: You may be more familiar with Automation Servers as OLE Automation.
Though the technology behind Automation Servers is the same as OLE
Automation, the correct name for these servers is now simply Automation Servers.

Delphi 3.0 allows you to design 32-bit Automation Servers easily. As a Delphi
programmer, you can design custom functions for use in your reports by exposing
them in an ActiveX Library and registering the library (Automation Server) on
your system.
636 Crystal Reports Technical Reference Guide

12 : Creating User-Defined Functions in Delphi 3.0
Using Delphi 3.0
Note: Version 3.0 of Delphi is required to create Automation Servers containing
User Defined Functions.

There are seven primary steps to creating User Defined Functions in an
automation server in Delphi 3.0:
� “Create the Project” on page 637
� “Create the Automation Object” on page 637
� “Add Methods to the Type Library” on page 638
� “Register the Type Library” on page 638
� “Create the User-Defined Functions” on page 638
� “Build the Project” on page 638
� “Using the User-Defined Functions” on page 639

Create the Project

When Delphi first opens, it creates a default project and form for you.

1 Choose New from the File menu.

2 Click the ActiveX Tab in the New Items dialog box, and double-click the
ActiveX Library icon. Delphi creates a default ActiveX Library for you.
The U2LCOM.DLL UFL will only read functions exposed by Automation
Servers named with a CRUFL prefix. For example, CRUFLMyFunctions is a
valid project name for your Automation Server.

3 Choose Save Project As from the File menu, and save your Delphi project. The
project should be named CRUFLxxx.DPR, where xxx is a name of your choice.

Create the Automation Object

1 Choose New from the File menu.

2 Click the ActiveX Tab in the New Items dialog box, and double-click the
Automation Object icon. The Automation Object Wizard appears.

3 Enter a class name appropriate to the functions you will create. Make sure
Instancing is set to Multiple Instance, and click OK. The Type Library Editor
appears.

4 Make sure the name of the type library for your project matches the project
name you created earlier. If not, change the name of the type library to
CRUFLxxx, where xxx is the name you chose.
Crystal Reports Technical Reference Guide 637

Programming User-Defined Functions in Delphi
Add Methods to the Type Library
The methods in the class you specified when you created the type library will
become User Defined Functions that appear in the Crystal Reports Formula Editor.

1 Right-click the interface for your type library. The interface name is identical to
the class name you specified preceded by an I.

2 Choose New from the menu that appears, and choose Method.
A new method appears below the interface in the Object list pane.

3 Name the method according to the function you want to create.

4 On the Attributes Tab for the method, declare your function. For example:
function Square (Number: double): double;

Note: For complete information on how to declare functions in Delphi, refer to
your Delphi documentation.

The U2LCOM.DLL UFL supports most standard Delphi data types and arrays. For
complete information on how the Crystal Reports Formula Editor interprets
Delphi data types and arrays, see “Delphi and Crystal Reports” on page 639.

Continue creating methods for all User Defined Functions you want to appear in
the Crystal Reports Formula Editor.

Register the Type Library
Click Register in the Type Library Editor. Delphi creates your type library and
registers it on your system. A message should appear indicating that the ActiveX
automation server was successfully registered. Click OK in the message box.

Note: If the type library is not registered successfully on your system, create the
type library and object methods over again. If you continue to have problems,
refer to your Delphi documentation on creating type libraries.

Create the User-Defined Functions
1 Minimize the Type Library Editor, and locate the declaration of the method

you created in the your type library in the Unit1.pas unit.

2 Enter code for the function as desired. For example:
function TConversion.Square(Number: Double): Double;

begin

result := Number * Number;

end;

Continue coding all methods that you declared for the interface.

Build the Project
Save all files in your project, and choose Build All from the Project menu. Delphi
builds your automation server, and the methods you declared are now available
from the Crystal Reports Formula Editor.
638 Crystal Reports Technical Reference Guide

12 : Creating User-Defined Functions in Delphi 3.0
Using the User-Defined Functions

From Crystal Reports:

1 Create a new report and add tables to the report, or open an existing report.

2 From the Insert menu, choose Formula Field. The Insert Field dialog box
appears.

3 Click New, and enter a name for the new formula in the Formula Name dialog
box.

4 Click OK and the Formula Editor appears.

5 Scroll down in the Functions list box to the Additional Functions section.
Locate the User-Defined Function you created.
User-Defined Function names for functions created in Automation Servers are
prefixed according to the project and class name used when you created the
automation server. For instance, if you named your project CRUFLProject,
named the class Conversion, and named the function Square, the User-Defined
Function would appear in the Formula Editor as ProjectConversionSquare.

6 Double-click the User-Defined Function, and it appears in the Formula text
box. Enter valid arguments for the function. For example:

ProjectConversionSquare(5)

7 Click Check. Make sure no errors appear in the function.

8 Click Accept, and place the formula in your report. Preview the report and
verify that the function worked correctly.

Congratulations, you just created and used a User-Defined Function.

Delphi and Crystal Reports
Note: 32-bit Support Only. U2LCOM.DLL is a 32-bit UFL only and, therefore,
supports only 32-bit Automation Server DLLs. To create User-Defined Functions
for Crystal Reports, you must have Delphi 3.0 (or another 32-bit development
environment that supports the creation of COM-based Automation Servers).

The following topics are discussed in this section:
� “Data Types” on page 640.
� “Using Arrays” on page 640.
� “Reserved Names” on page 640.
� “Function Name Prefixing” on page 641.
� “Passing Parameters By Reference and By Value” on page 641.
� “Error Handling” on page 642.
� “Special Purpose Functions” on page 642.
Crystal Reports Technical Reference Guide 639

Delphi and Crystal Reports
Data Types
Crystal Reports will support most common Delphi data types provided through a
User-Defined Function developed in Delphi 3.0. The following table shows how
Crystal Reports converts the most common Delphi data types to data types
supported by the Formula Editor:

Note: Ranges--The range data type available in the Crystal Reports Formula
Editor is not supported in COM-based User-Defined Functions.

Using Arrays
Arrays can be passed to any User-Defined Function as a parameter of the function.
This means that when you design your function in Delphi, the function can accept
an array of values of any of the supported data types. However, the function
cannot return an array to the Crystal Reports Formula Editor. The following
Delphi function is an acceptable User-Defined Function for Crystal Reports:
Function GetNthItem (A: MyArray, n: Integer): Integer;

begin

GetNthItem := A[n];

End;

Reserved Names
Certain names are reserved and cannot be used as User-Defined Function names.
The following names are reserved by the Crystal Reports Formula Editor for
special purposes:

� UFInitialize
� UFTerminate
� UFStartJob
� UFEndJob

Delphi Data Types Formula Editor Data Types

ShortInt
Integer
LongInt
Real
Single
Double

NumberVar

Currency CurrencyVar

Date DateVar

Boolean BooleanVar

String StringVar
640 Crystal Reports Technical Reference Guide

12 : Creating User-Defined Functions in Delphi 3.0
For more explanation of these function names, see “Special Purpose Functions” on
page 642.

In addition, User-Defined Functions cannot use the same name as any of the
functions exposed by the IDispatch interface used by COM:

� QueryInterface
� AddRef
� Release
� GetTypeInfoCount
� GetTypeInfo
� GetIDsOfNames
� Invoke

Function Name Prefixing
To ensure a unique name when User-Defined Functions appear in the Formula
Editor, Crystal Reports appends a prefix to each function name that is generated
from the project and class names. The first part of the prefix is the project name
without the CRUFL prefix. The rest of the function name prefix is the class name.

Once the prefix for the function name is generated, all non-alphanumeric
characters are removed, and the prefix is applied to the original function name.
The following table illustrates this process:

Passing Parameters By Reference and By Value
Arguments can be passed to User-Defined Functions written in Delphi 3.0, either
by value or by reference. For instance, both of the following functions are valid:

Function Test1 (num1: Integer): Integer;

Function Test1 (var num1: Integer): Integer;

Project Name: CRUFLTestFunctions

Class Name: Conversion

User Defined Function Name: Date_To_String()

Formula Editor Function: TestFunctionsConversionDateToString(
)

Crystal Reports Technical Reference Guide 641

Delphi and Crystal Reports
Error Handling
If it is possible for your User-Defined Function to produce an error, the Crystal
Reports Formula Editor should be notified of the error. Many types of errors are
automatically handled by the Formula Editor. Passing the wrong type of data to a
function, for instance, will be recognized and trapped by Crystal Reports. However,
if you design a function that can produce an error unique to that function, you
should provide a means for reporting that error to the Formula Editor.

To send error messages to the Formula Editor, define the UFErrorText string
property in your Class Module. This property should be defined Public, using
code similar to this:

Property UFErrorText: String;

Any time you trap for an error condition, simply set the UFErrorText property to
the error text you want reported in Crystal Reports. Setting the value of this
property triggers the error in Crystal Reports, and Crystal Reports displays a
dialog box containing the error message that you assigned to UFErrorText.

Note: You should not use the UFErrorText property for anything other than
returning errors from User-Defined Functions. The U2LCOM.DLL UFL regularly
resets the value of this property, so data can be lost if stored in UFErrorText for
any reason other than reporting an error.

Special Purpose Functions
You can define several special purpose functions in your Class Module in addition
to the User-Defined Functions that you are creating. The Crystal Reports Formula
Editor can look for and process any of the following class methods:
Function UFInitialize: Integer;

Function UFTerminate: Integer;

Procedure UFStartJob (job: Integer)

Procedure UFEndJob (job: Integer)

Be sure to declare the methods in your code exactly as they appear above. If not
declared correctly, they will be ignored by Crystal Reports. These methods are
completely optional when creating your Delphi Automation Server. They are
provided to assist you with the design of your User-Defined Functions.

UFInitialize

This function is called just after the DLL is loaded into memory. Use this function
to handle one-time initialization of variables.

Returns a value of 0 (zero) to indicate successful initialization. Any non-zero value
indicates initialization failed.
642 Crystal Reports Technical Reference Guide

12 : Creating User-Defined Functions in Delphi 3.0
UFTerminate

This function is called just before the DLL is unloaded from memory. Use this
function to clean up any allocated memory or other data before unloading the DLL.

Returns a value of 0 (zero) when finished cleaning up memory.

UFStartJob

This procedure is called by Crystal Reports just before User-Defined Functions are
evaluated (or reevaluated). The Crystal Reports job number is passed to the function
as the only parameter. Use this function to handle any initialization on a per-job basis.

UFEndJob

This procedure is called by Crystal Reports when the current job finishes, which
happens when all pages of a report have been generated, before UFStartJob is
called again, or before UFTerminate is called. This function also accepts the Crystal
Reports job number as its only parameter. Handle any clean-up necessary on a per-
job basis using this function.
Crystal Reports Technical Reference Guide 643

Delphi and Crystal Reports
644 Crystal Reports Technical Reference Guide

International Office Directory A

This appendix provides contact information by region. For
technical support information, see the Technical Support
Guide.
Crystal Reports Technical Reference Guide 645

International Office Directory
International Office Directory
The following section lists the contact information for Sales and Product Support
at each Seagate Software office, worldwide.

For more information, visit our web site at http://www.seagatesoftware.com.
� North and South American Offices
� Asia/Pacific Offices
� Europe
� Africa and Middle East

North and South American Offices

Canada and USA - North & South American Head Office
Seagate Software
840 Cambie Street
Vancouver, BC V6B 4J2
Canada

Sales and General Inquiries
Telephone: 604 681 3435

Toll-Free: 1 800 877 2340

Fax: 604 681 2934

Latin America

Sales and General Inquiries

Telephone: 604 681 3435

Fax: 604 681 2934

Asia/Pacific Offices
Australia

Seagate Software Pty Ltd.
Level 9, 52 Alfred Street
Milsons Point, NSW 2061
Australia
646 Crystal Reports Technical Reference Guide

A : International Office Directory
Sales and General Inquiries
Telephone: +61 2 9955 4088

Fax: +61 2 9955 7682

Hong Kong
Seagate Software (HK)
Suite 2603, 26th Floor
Universal Trade Center
3 Arbuthnot Road, Central
Hong Kong

Sales and General Inquiries
Telephone: +852 2575 2576

Fax: +852 2893 2727

Japan
Seagate Software
3F, Bridgestone Bldg
2-13-12 Hirakawa-cho,
Chiyoda-ku
Tokyo 102-0093

Sales and General Inquiries
Telephone: +81 3 5226 3601

Fax:+81 3 5226 3606

Email: sales_jp@img.seagatesoftware.com

Malaysia
Seagate Software
(a subsidiary of Seagate Technology)
Level 36 Menara Citibank
165 Jalan Ampang
Kuala Lumpur 50450
Malaysia

Sales and General Inquiries
Telephone: 603 2169-6307 or 603-2169-6308

Fax: 603-2169-6168

Email : southasia@seagatesoftware.com
Crystal Reports Technical Reference Guide 647

Europe
Singapore
Seagate Software
14 Science Park Drive
#03-02 The Maxwell
Singapore Science Park
118226 Singapore

Sales and General Inquiries

Telephone: +65 777 0533

Fax: +65 777 8786

Europe
United Kingdom - EMEA and Northern European Head Office

Seagate Software
The Broadwalk
54 The Broadway
Ealing,
London, W5 5JN
United Kingdom

Seagate Software
St. Matthews Court
4 Civic Drive
Ipswich, Suffolk, 1P1-2QA
United Kingdom

Sales and General Inquiries

Telephone: +44 (0) 208 566 2020

Fax: +44 (0) 208 231 0600

Austria
Seagate Software
Frankfurter-Str. 21-25
D-65760 Eschborn
Germany

Sales and General Inquiries

Telephone: +49 (0) 69 9509 6310

Fax: +49 (0) 69 9509 6314
648 Crystal Reports Technical Reference Guide

A : International Office Directory
Belgium
Seagate Software
62 bis, Avenue Andre Morizet
Boulogne-Billancourt Cedex
Paris, F-92643
France

Sales and General Inquiries

Telephone: +33 (0) 155 174 082

Fax: +33 (0) 155 174 086

France - SEMEA. Southern Europe and Middle East Head Office
Seagate Software
62 bis, Avenue Andre Morizet
Boulogne-Billancourt Cedex
Paris, 92643
France

Sales and General Inquiries

Telephone: +33 (0) 155 174 082
or: +33 (0) 1 41 10 16 00

Fax: +33 (0) 155 174 086
or: +33 (0) 1 41 10 16 57

Germany - Central European Head Office
Seagate Software GmbH
Frankfurter-Str. 21-25
D-65760 Eschborn
Germany

Sales and General Inquiries

Telephone: +49 (0) 69 95 09 63 10

Fax: +49 (0) 69 95 09 63 14
Crystal Reports Technical Reference Guide 649

Europe
Ireland
The Broadwalk
54 The Broadway
Ealing, London
W5 5JN England

Sales and General Inquiries

Telephone: +44 (0) 208 566 2020

Fax: +44 (020) 208 231 0600

Italy
Seagate Software
Via Conservatorio 22
20122 Milano
Italy

Sales and General Inquiries

Telephone: +39 027 729 310

Fax: +39 02 772 940

Netherlands
Seagate Software
Hojel City Centre
GebouwD, 4e etage
Graadt Van Roggenweg 328
Postbox 19127

3501 DC Utrecht
Netherlands

Sales and General Inquiries

Telephone: +44 (0) 208 566 2020

Fax: +44 (0) 208 231 0600

Spain
Seagate Software
Paseo de la Castellana 93-4a
28046, Madrid
Spain
650 Crystal Reports Technical Reference Guide

A : International Office Directory
Sales and General Inquiries

Telephone: +34 91 555 5198

Fax: +34 915 559 957

Sweden
Seagate Software
Kanalvagen 10C
Upplands Vasby
194 61 Sweden

Sales and General Inquiries

Telephone: +46 (0) 858 771 171

Fax: + 46 (0) 858 771 172

Switzerland
Seagate Software
World Trade Centre
PO Box 112
Leutschenbachstrasse 95
CH-8050 Zurich
Switzerland

Sales and General Inquiries

Telephone: +41 1 308 3922

Fax: +41 1 308 3500

Africa and Middle East

South Africa
Seagate Software
Sandown Village Office Park
East Court
1 Gwen Lane cnr Maude Street
Sandton 2146
South Africa
Crystal Reports Technical Reference Guide 651

Africa and Middle East
Postal Address

Seagate Software
PO Box 78720
Sandton 2146
Republic of South Africa

Sales and General Inquiries

Telephone: +27 11 3059700

Fax: +27 11 3059702
652 Crystal Reports Technical Reference Guide

Index
A
ActivateView method

Report Viewer CRViewer Object................. 250
Active Data Driver 564, 571

functions
CreateFieldDefFile 602
CreateReportOnRuntimeDS 603
SetActiveDataSource.............................. 604

using .. 565
working with .. 564

ActiveX
Crystal Data Object (CDO) 575
Crystal Smart Viewers 235
Report Viewer Object Model 246

ActiveX Control... 10
adding to project .. 10
changing properties 12
changing properties at runtime...................... 12
using .. 11

ActiveX Data Sources .. 564
using at design time 572

Add method
Report Designer CrossTabGroups
Collection ... 82

Report Designer DatabaseTables
Collection ... 98

Report Designer FieldDefinitions
Collection ... 105

Report Designer FormulaFieldDefinitions
Collection ... 114

Report Designer ObjectSummaryFieldDefinitions
Collection ... 126

Report Designer ParameterFieldDefinitions
Collection ... 149

Report Designer ReportAlerts Collection 165
Report Designer RunningTotalFieldDefinitions
Collection ... 173

Report Designer Sections Collection 186
Report Designer SortFields Collection 188
Report Designer SQLExpressionFieldDefinitions
Collection ... 192

Report Designer SubreportLinks
Collection ... 194

Report Designer SummaryFieldDefinitions
Collection... 200

Report Designer TableLinks Collection 203
AddADOCommand method

Report Designer Database Object................. 85
AddBlobFieldObject method

Report Designer Section Object.................. 176
AddBoxObject method

Report Designer Section Object.................. 176
AddCrossTabObject method

Report Designer Section Object.................. 177
AddCurrentRange method

Report Designer ParameterFieldDefinition
Object .. 145

AddCurrentValue method
Report Designer ParameterFieldDefinition
Object .. 145

AddDefaultValue method
Report Designer ParameterFieldDefinition
Object .. 146

AddField method
CrystalComObject 591

AddFieldObject method
Report Designer Section Object.................. 177

AddGraphObject method
Report Designer Section Object.................. 178

AddGroup method
Report Designer Report Object 155

AddLineObject method
Report Designer Section Object.................. 178

AddOLEDBSource method
Report Designer Database Object................. 86

AddParameter method
Report Viewer WebReportSource Object 267

AddParameterEx method
Report Viewer WebReportSource Object 268

AddPictureObject method
Report Designer Section Object.................. 179

AddReportVariable method
Report Designer Report Object 156

AddRows method
CrystalComObject 592

AddSpecialVarFieldObject method
Report Designer Section Object.................. 180
Crystal Reports User’s Guide 653

AddSubreportObject method
Report Designer Section Object180

AddSummaryFieldObject method
Report Designer Section Object181

AddTextObject method
Report Designer Section Object181

AddUnboundFieldObject method
Report Designer Section Object182

AddView method
Report Viewer CRViewer Object250

ADO data sources ...564
AfterFormatPage Event

Report Designer Report Object....................162
API, Report Engine...31
applets, Crystal Smart Viewer243
Application Object

creating in VB ...14
applications, Report Engine64
Automation Server

adding to VB project13
Application Object

creating in VB ..14
distributing in VB applications.......................19
error handling in VB......................................16
handling preview window events in VB.........17
object name conflicts in VB...........................16
Registration and Distribution in a
VB project ...628

Report Object
obtaining in VB ..14
using in VB ..15

sample application in VB19
sample Code in VB633
using in VB ...14

AutoSetUnboundFieldSource method
Report Designer Report Object....................156

axes, automatic scaling..4

B
BeforeFormatPageEvent

Report Designer Report Object....................162

C
C syntax

COLORREF structure, Windows533
DEVMODE structure, Windows533
PEAddParameterCurrentRange278
PEAddParameterCurrentValue279
PEAddParameterDefaultValue280
PEAlertInstanceInfo structure453
PECancelPrintJob ..281

PECanCloseEngine 282
PECheckFormula .. 282
PECheckGroupSelectionFormula................. 283
PECheckNthTableDifferences 284
PECheckSelectionFormula 285
PECheckSQLExpression 286
PEClearParameterCurrentValuesAndRanges .287
PECloseButtonClickedEventInfo structure 454
PECloseEngine .. 287
PEClosePrintJob .. 288
PECloseSubreport 289
PECloseWindow ... 290
PEConvertPFInfotoVInfo.............................. 290
PEConvertVInfotoPFInfo.............................. 291
PEDeleteNthGroupSortField........................ 292
PEDeleteNthParameterDefaultValue 293
PEDeleteNthSortField.................................. 294
PEDiscardSavedData................................... 295
PEDrillOnDetailEventInfo structure 454
PEDrillOnGroupEventInfo structure............. 455
PEEnableEvent .. 297
PEEnableEventInfo structure 457
PEEnableNthAlert 296, 297
PEEnableProgressDialog.............................. 297
PEExportOptions structure........................... 458
PEExportPrintWindow................................. 298
PEExportTo ... 299
PEFieldMappingEventInfo structure 462
PEFieldValueInfo structure 463
PEFontColorInfo structure 464
PEFormulaSyntax structure.......................... 466
PEFreeDevMode ... 300
PEGeneralPrintWindowEventInfo structure.. 467
PEGetAllowPromptDialog 301
PEGetAreaFormat 301
PEGetAreaFormatFormula 302
PEGetEnableEventInfo................................. 303
PEGetErrorCode.. 304
PEGetErrorText ... 305
PEGetExportOptions 306
PEGetFieldMappingType............................. 306
PEGetFontInfo... 310
PEGetFormula... 307
PEGetFormulaSyntax................................... 308
PEGetGraphAxisInfo 309
PEGetGraphOptionInfo............................... 311
PEGetGraphTextDefaultInfo 312
PEGetGraphTypeInfo 313
PEGetGroupCondition 315
PEGetGroupOptions 316
654 Crystal Reports User’s Guide

PEGetGroupSelectionFormula 317
PEGetHandleString 318
PEGetJobStatus ... 319
PEGetMargins... 320
PEGetNDetailCopies 321
PEGetNFormulas .. 322
PEGetNGroups ... 322
PEGetNGroupSortFields 323
PEGetNPages ... 324
PEGetNParameterCurrentRanges 325
PEGetNParameterCurrentValues 325
PEGetNParameterDefaultValues 326
PEGetNParameterFields 327
PEGetNReportAlerts 328
PEGetNSections.. 328
PEGetNSectionsInArea 329
PEGetNSortFields 330
PEGetNSQLExpressions 330
PEGetNSubreportsInSection........................ 331
PEGetNTables .. 332
PEGetNthAlertInstanceInfo 333
PEGetNthFormula....................................... 334
PEGetNthGroupSortField 335
PEGetNthParameterCurrentRange 336
PEGetNthParameterCurrentValue 337
PEGetNthParameterDefaultValue................ 338
PEGetNthParameterField 340
PEGetNthParameterType 341
PEGetNthParameterValueDescription 342
PEGetNthReportAlert 343
PEGetNthSortField...................................... 344
PEGetNthSQLExpression 345
PEGetNthSubreportInSection 346
PEGetNthTableLocation 347
PEGetNthTableLogOnInfo 347
PEGetNthTablePrivateInfo 349
PEGetNthTableSessionInfo.......................... 349
PEGetNthTableType 350
PEGetParameterMinMaxValue 351
PEGetParameterPickListOption 353
PEGetParameterValueInfo........................... 354
PEGetPrintDate... 355
PEGetPrintOptions...................................... 356
PEGetReportOptions................................... 357
PEGetReportSummaryInfo........................... 358
PEGetReportTitle .. 358
PEGetSectionCode...................................... 360
PEGetSectionFormat 361
PEGetSectionFormatFormula 361
PEGetSectionHeight 363

PEGetSelectedPrinter363
PEGetSelectionFormula365
PEGetSQLExpression366
PEGetSQLQuery ...366
PEGetSubreportInfo367
PEGetTextInfo ...312
PEGetTrackCursorInfo368
PEGetVersion ..369
PEGetWindowHandle370
PEGetWindowOptions371
PEGraphAxisInfo structure...........................468
PEGraphOptionInfo structure471
PEGraphTypeInfo structure473
PEGroupOptions structure...........................474
PEGroupTreeButtonClickedEventInfo
structure ..476

PEHasSavedData...372
PEHyperlinkEventInfo structure477
PEIsPrintJobFinished373
PEJobInfo structure478
PELaunchSeagateAnalysisEventInfo
structure ..479

PELogOffServer ...373
PELogOnInfo structure.................................479
PELogOnServer ...374
PELogOnSQLServerWithPrivateInfo.............375
PEMouseClickEventInfo structure481
PENextPrintWindowMagnification377
PEObjectInfo structure.................................483
PEOpenEngine ..377
PEOpenPrintJob ..378
PEOpenSubreport..379
PEOutputToPrinter380
PEOutputToWindow382
PEParameterFieldInfo structure484
PEParameterPickListOption structure487
PEParameterValueInfo structure...................488
PEPrintControlsShowing384
PEPrintOptions structure..............................489
PEPrintReport ..385
PEPrintWindow ...387
PEReadingRecordsEventInfo structure491
PEReportAlertInfo structure..........................494
PEReportFieldMappingInfo structure............492
PEReportOptions structure...........................496
PEReportSummaryInfo structure499
PESearchButtonClickedEventInfo structure...500
PESectionOptions structure501
PESelectPrinter ..389
PESessionInfo structure................................503
Crystal Reports User’s Guide 655

PESetAllowPromptDialog390
PESetAreaFormat ...391
PESetAreaFormatFormula392
PESetDialogParentWindow393
PESetEventCallback.....................................394
PESetFieldMappingType401
PESetFont ..401
PESetFontInfo ..408
PESetFormula ..405
PESetFormulaSyntax406
PESetGraphAxisInfo407
PESetGraphOptionInfo409
PESetGraphTextDefaultOption410
PESetGraphTypeInfo412
PESetGroupCondition413
PESetGroupOptions414
PESetGroupSelectionFormula415
PESetMargins ..416
PESetNDetailCopies417
PESetNthAlertConditionFormula..................418
PESetNthAlertDefaultMessage419
PESetNthAlertMessageFormula....................420
PESetNthGroupSortField420
PESetNthParameterDefaultValue422
PESetNthParameterField423
PESetNthParameterValueDescription...........424
PESetNthSortField425
PESetNthTableLocation426
PESetNthTableLogOnInfo427
PESetNthTablePrivateInfo429
PESetNthTableSessionInfo429
PESetParameterMinMaxValue431
PESetParameterPickListOption.....................432
PESetParameterValueInfo433
PESetPrintDate ..434
PESetPrintOptions435
PESetReportOptions436
PESetReportSummaryInfo437
PESetReportTitle..437
PESetSectionFormat.....................................438
PESetSectionFormatFormula439
PESetSectionHeight441
PESetSelectionFormula441
PESetSQLExpression442
PESetSQLQuery ..443
PESetTextInfo ..411
PESetTrackCursorInfo444
PESetWindowOptions445
PEShowGroupEventInfo structure505
PEShow...Page ..446

PEShowPrintControls 447
PEStartEventInfo structure............................ 506
PEStartPrintJob .. 448
PEStopEventInfo structure............................ 506
PESubreportInfo structures 507
PETableDifferenceInfo structure 508
PETableLocation structure 510
PETablePrivateInfo structure........................ 511
PETableType structure................................. 512
PETestNthTableConnectivity 449
PETrackCursorInfo structure 514
PEValueInfo structure.................................. 516
PEVerifyDatabase 451
PEVersionInfo ... 359
PEVersionInfo structure 518
PEWindowOptions structure 519
PEZoomLevelChangingEventInfo structure .. 521
PEZoomPreviewWindow 451
ReimportSubreport...................................... 388
UXDDiskOptions structure 522
UXDMAPIOptions structure 523
UXDPostFolderOptions structure 525
UXDSMIOptions structure 524
UXDVIMOptions structure.......................... 526
UXFCharSeparatedOptions structure 527
UXFCommaTabSeparatedOptions
structure.. 528

UXFDIFOptions structure............................ 528
UXFHTML3Options structure...................... 529
UXFODBCOptions structure 530
UXFPaginatedTextOptions structure............ 530
UXFRecordStyleOptions structure 531

CancelPrinting method
Report Designer Report Object 157

CanClose method
Report Designer Application Object.............. 69

charts, enhancements.. 4
Check method

Report Designer FormulaFieldDefinition
Object .. 113

Report Designer SQLExpressionFieldDefinition
Object .. 191

CheckDifferences method
Report Designer DatabaseTable Object......... 94

ClearCurrentValueAndRange method
Report Designer ParameterFieldDefinition
Object .. 146

Clicked Event
Report Viewer CRViewer Object................. 256

CloseButtonClicked Event
Report Viewer CRViewer Object................. 256
656 Crystal Reports User’s Guide

CloseView method
Report Viewer CRViewer Object 250

codes
section, see section codes

Collections
Areas, Report Designer 77
CRFields, Report Viewer 246
CrossTabGroups, Report Designer 81
DatabaseFieldDefinitions, Report Designer ... 93
DatabaseTables, Report Designer 98
FieldDefinitions, Report Designer 104
FormulaFieldDefinitions, Report Designer... 114
GroupNameFieldDefinitions, Report
Designer ... 121

ObjectSummaryFieldDefinitions,
Report Designer .. 125

Pages, Report Designer 141
ParameterFieldDefinitions, Report
Designer ... 148

Report Designer.. 68
ReportObjects, Report Designer.................. 168
RunningTotalFieldDefinitions, Report
Designer ... 172

Sections, Report Designer 185
SortFields, Report Designer 187
SQLExpressionFieldDefinitions, Report
Designer ... 191

SubreportLinks, Report Designer 193
SummaryFieldDefinitions, Report
Designer ... 200

TableLinks, Report Designer 202
COLORREF structure, Windows 533
constants

CRPE .. 541
CRPE, Area/Section Format Formula 541
CRPE, Chart Option, Bar Size 542
CRPE, Chart Option, Color 542
CRPE, Chart Option, Data Point.................. 542
CRPE, Chart Option, Gridline 542
CRPE, Chart Option, Legend Layout 543
CRPE, Chart Option, Legend Placement 543
CRPE, Chart Option, Marker Shape............. 543
CRPE, Chart Option, Marker Size................ 543
CRPE, Chart Option, Number Format 544
CRPE, Chart Option, Pie Size...................... 544
CRPE, Chart Option, Slice Detachment....... 544
CRPE, Chart Option, Viewing Angle 545
CRPE, Chart Options 541
CRPE, Chart Subtype, 3D Riser 553
CRPE, Chart Subtype, 3D Surface 553
CRPE, Chart Subtype, Area 552

CRPE, Chart Subtype, Bar552
CRPE, Chart Subtype, Bubble554
CRPE, Chart Subtype, Doughnut..................553
CRPE, Chart Subtype, Line...........................552
CRPE, Chart Subtype, Misc554
CRPE, Chart Subtype, Pie553
CRPE, Chart Subtype, Radar554
CRPE, Chart Subtype, Scatter553
CRPE, Chart Subtype, Stock.........................554
CRPE, Database Type545
CRPE, Error Codes545
CRPE, Event Id ..550
CRPE, Field Mapping Type551
CRPE, Formula Syntax551
CRPE, Graph Subtype..................................551
CRPE, Graph Text Font554
CRPE, Graph Title Type...............................555
CRPE, Graph Type555
CRPE, Group Condition...............................556
CRPE, Group Condition, Boolean Type557
CRPE, Group Condition, Date and
DateTime Types ..556

CRPE, Group Condition, Mask and Type556
CRPE, Group Condition, Other Types556
CRPE, Job Destination557
CRPE, Job Status ..558
CRPE, Object Type......................................558
CRPE, Ole Object Type558
CRPE, Ole Object Update559
CRPE, Parameter Field Value Type559
CRPE, Range Info ..559
CRPE, Section Codes559
CRPE, Sort Method560
CRPE, Sort Order...560
CRPE, Track Cursor560
CRPE, Zoom Level561
Print Engine...541

Controls
ActiveX ...10
Grid ..20

ConvertDatabaseDriver method
Report Designer Database Object..................86

CRAlignment Enum
Report Designer ..207

CRAMPMType Enum
Report Designer ..207

CRAreaKind Enum
Report Designer ..207

CRBarSize Enum
Report Designer ..207
Crystal Reports User’s Guide 657

CRBindingMatchType Enum
Report Designer ..208

CRBooleanOutputType Enum
Report Designer ..208

CRConvertDateTimeType Enum
Report Designer ..208

CRCurrencyPositionType Enum
Report Designer ..208

CRCurrencySymbolType Enum
Report Designer ..208

CRDatabaseType Enum
Report Designer ..209

CRDataSource ...597
CRDateCalendarType Enum

Report Designer ..209
CRDateEraType Enum

Report Designer ..209
CRDateOrder Enum

Report Designer ..209
CRDateWindowsDefaultType Enum

Report Designer ..209
CRDayType Enum

Report Designer ..210
CRDiscreteOrRangeKind Enum

Report Designer ..210
CRDivisionMethod Enum

Report Designer ..210
CRDrillType Enum

Report Viewer ...268
Create Report Expert

database definition tool570
CreatePageGenerator method

Report Designer PageEngine Object133
CreateSubreportPageGenerator method

Report Designer PageGenerator Object136
creating

formatted bound reports22
CRExchangeDestinationType Enum

Report Designer ..210
CRExportDestinationType Enum

Report Designer ..210
CRExportFormatType Enum

Report Designer ..211
CRFieldKind Enum

Report Designer ..212
CRFieldMappingType Enum

Report Designer ..212
CRFieldType Enum

Report Viewer ...268
CRFieldValueType Enum

Report Designer ..212
CRFormulaSyntax Enum

Report Designer ..213

CRGraphColor Enum
Report Designer .. 213

CRGraphDataPoint Enum
Report Designer .. 213

CRGraphDataType Enum
Report Designer .. 213

CRGraphDirection Enum
Report Designer .. 214

CRGraphType Enum
Report Designer .. 214

CRGridlineType Enum
Report Designer .. 215

CRGroupCondition Enum
Report Designer .. 216

CRHourType Enum
Report Designer .. 216

CRHTMLPageStyle Enum
Report Designer .. 217

CRHTMLToolbarStyle Enum
Report Designer .. 217

CRImageType Enum
Report Designer .. 217

CRLeadingDayPosition Enum
Report Designer .. 217

CRLeadingDayType Enum
Report Designer .. 217

CRLegendPosition Enum
Report Designer .. 218

CRLineSpacingType Enum
Report Designer .. 218

CRLineStyle Enum
Report Designer .. 218

CRLinkJoinType Enum
Report Designer .. 218

CRLinkLookUpType Enum
Report Designer .. 219

CRLoadingType Enum
Report Viewer... 269

CRMarkerShape Enum
Report Designer .. 219

CRMarkerSize Enum
Report Designer .. 219

CRMinuteType Enum
Report Designer .. 219

CRMonthType Enum
Report Designer .. 220

CRNegativeType Enum
Report Designer .. 220

CRNumberFormat Enum
Report Designer .. 220

CRObjectKind Enum
Report Designer .. 221
658 Crystal Reports User’s Guide

CRObjectType Enum
Report Viewer .. 269

CRPaperOrientation Enum
Report Designer.. 221

CRPaperSize Enum
Report Designer.. 221

CRPaperSource Enum
Report Designer.. 223

CRParameterFieldType Enum
Report Designer.. 223

CRParameterPickListSortMethod Enum
Report Designer.. 223

CRPE
constants .. 541
functions .. 278
obsolete calls ... 561
structures.. 453

CRPE API enhancements 2
CRPieLegendLayout Enum

Report Designer.. 224
CRPieSize Enum

Report Designer.. 224
CRPlaceHolderType Enum

Report Designer.. 224
CRPrinterDuplexType Enum

Report Designer.. 224
CRPrintingProgress Enum

Report Designer.. 225
CRRangeInfo Enum

Report Designer.. 225
CRRenderResultType Enum

Report Designer.. 225
CRReportFileFormat Enum

Report Designer.. 225
CRReportKind Enum

Report Designer.. 225
CRReportVariableValueType Enum

Report Designer.. 226
CRRotationAngle Enum

Report Designer.. 226
CRRoundingType Enum

Report Designer.. 226
CRRunningTotalCondition Enum

Report Designer.. 227
CRSearchDirection Enum

Report Designer.. 227
CRSecondType Enum

Report Designer.. 227
CRSliceDetachment Enum

Report Designer.. 227
CRSortDirection Enum

Report Designer.. 228

CRSpecialVarType Enum
Report Designer ..228

CRSummaryType Enum
Report Designer ..229

CRTableDifferences Enum
Report Designer ..229

CRTextFormat Enum
Report Designer ..230

CRTimeBase Enum
Report Designer ..230

CRTopOrBottomNGroupSortOrder Enum
Report Designer ..230

CRTrackCursor Enum
Report Viewer ...270

CRValueFormatType Enum
Report Designer ..231

CRViewer Object ..236
CRViewingAngle Enum

Report Designer ..231
CRYearType Enum

Report Designer ..231
Crystal ActiveX Control..10
Crystal Data Object (CDO)575
Crystal Data Object Model578
Crystal Data Object, using576
Crystal Data Objects..590
Crystal Data Source Type Library 579, 597
Crystal Data Sources..587
Crystal DataSouce object

passing to Active Data Driver585
Crystal Report Engine

before making calls27
distributing applications64
introduction ..26
structures ..54
using ...28
variable length strings....................................51
when to open and close6

Crystal Report Engine API31
using ...32
using in Visual Basic5

Crystal Report Engine Automation Server12
Crystal Report Engine Object Library, viewing17
Crystal Report Viewer

See Report Viewer
Crystal Reports, formula language syntax support...4
Crystal Smart Viewer

ActiveX ...235
adding Java Bean ..243
adding to VB project236
appearance, controlling...............................240
application development234
Crystal Reports User’s Guide 659

connecting to Web Reports Server...............241
events ...238
Java applet ..243
Java Bean ..242
moving through report239
printing reports..240
secure data in reports237
specifying report ...237
using in applications233

CrystalComObject ...590
cursors, new, on-demand and hyperlink5
custom-print links

coding ..36
establishing ...36
sample of ..40

D
DAO data sources ...564
Data Definition Files..565

creating...569
data security ..237
data, hierarchical grouping5
database, definition tool570
dBASE syntax

PECancelPrintJob ..282
PECanCloseEngine282
PECheckFormula ...283
PECheckGroupSelectionFormula.................284
PECheckSelectionFormula...........................286
PECloseEngine ..288
PEClosePrintJob...289
PECloseSubreport ..289
PECloseWindow ...290
PEDeleteNthGroupSortField293
PEDeleteNthSortField295
PEDiscardSavedData296
PEExportPrintWindow299
PEGetErrorCode ..305
PEGetNFormulas ...322
PEGetNGroups..323
PEGetNGroupSortFields324
PEGetNSortFields ..330
PEGetNTables ...332
PEGetVersion ..370
PEGetWindowHandle370
PEIsPrintJobFinished373
PENextPrintWindowMagnification377
PEOpenEngine ..378
PEOpenPrintJob ..379
PEOutputToPrinter381

PEOutputToWindow................................... 384
PEPrintReport.. 387
PEPrintWindow .. 387
PESetFont.. 405
PESetFormula.. 406
PESetGroupCondition 414
PESetGroupSelectionFormula...................... 416
PESetMargins .. 417
PESetNDetailCopies.................................... 418
PESetNthGroupSortField 422
PESetNthSortField 426
PESetPrintDate .. 435
PESetReportTitle ... 438
PESetSelectionFormula................................ 442
PESetSQLQuery .. 444
PEShow...Page .. 447
PEShowPrintControls 448
PEStartPrintJob .. 449
PETestNthTableConnectivity 450
PEZoomPreviewWindow 452

DblClicked Event
Report Viewer CRViewer Object................. 256

Delete method
Report Designer CrossTabGroups
Collection ... 82

Report Designer DatabaseTables
Collection ... 99

Report Designer FieldDefinitions
Collection ... 105

Report Designer FormulaFieldDefinitions
Collection ... 115

Report Designer ObjectSummaryFieldDefinitions
Collection ... 126

Report Designer ParameterFieldDefinitions
Collection ... 149

Report Designer ReportAlerts Collection 166
Report Designer RunningTotalFieldDefinitions
Collection ... 173

Report Designer Sections Collection 186
Report Designer SortFields Collection 188
Report Designer SQLExpressionFieldDefinitions
Collection ... 192

Report Designer SubreportLinks
Collection ... 194

Report Designer SummaryFieldDefinitions
Collection ... 201

Report Designer TableLinks Collection........ 203
DeleteField method

CrystalComObject 593
DeleteGroup method

Report Designer Report Object 157
660 Crystal Reports User’s Guide

DeleteNthDefaultValue method
Report Designer ParameterFieldDefinition
Object .. 146

DeleteObject method
Report Designer Section Object 182

Delphi
creating User-Defined Functions,
see User-Defined Functions.

Delphi C syntax
PESetNthAlertMessageFormula 420

Delphi syntax
PEAddParameterCurrentRange 279
PEAddParameterCurrentValue 280
PEAddParameterDefaultValue..................... 281
PEAlertInstanceInfo structure 453
PECancelPrintJob.. 282
PECanCloseEngine...................................... 282
PECheckFormula .. 283
PECheckGroupSelectionFormula 284
PECheckNthTableDifferences 285
PECheckSelectionFormula 286
PECheckSQLExpression 286
PEClearParameterCurrentValuesAndRanges 287
PECloseButtonClickedEventInfo 454
PECloseEngine.. 288
PEClosePrintJob .. 289
PECloseSubreport 289
PECloseWindow... 290
PEConvertPFInfotoVInfo 291
PEConvertVInfotoPFInfo 292
PEDeleteNthGroupSortField 293
PEDeleteNthParameterDefaultValue 294
PEDeleteNthSortField 295
PEDiscardSavedData 296
PEDrillOnDetailEventInfo structure 455
PEDrillOnGroupEventInfo structure 456
PEEnableEvent .. 297
PEEnableEventInfo structure........................ 458
PEEnableProgressDialog 298
PEExportOptions structure 462
PEExportPrintWindow 299
PEExportTo ... 300
PEFieldMappingEventInfo structure 463
PEFieldValueInfo structure 464
PEFontColorInfo structure 466
PEGeneralPrintWindowEventInfo
structure ... 468

PEGetAllowPromptDialog 301
PEGetAreaFormat 302
PEGetAreaFormatFormula........................... 303
PEGetEnableEventInfo 304

PEGetErrorCode ..305
PEGetErrorText ..305
PEGetExportOptions....................................306
PEGetFieldMappingType307
PEGetFormula ...308
PEGetGraphAxisInfo310
PEGetGraphFontInfo311
PEGetGraphOptionInfo311
PEGetGraphTextInfo313
PEGetGraphTypeInfo314
PEGetGroupCondition.................................316
PEGetGroupOptions317
PEGetGroupSelectionFormula318
PEGetHandleString......................................319
PEGetJobStatus ..320
PEGetMargins ...321
PEGetNDetailCopies321
PEGetNFormulas ...322
PEGetNGroups..323
PEGetNGroupSortFields324
PEGetNPages ..324
PEGetNParameterCurrentRanges325
PEGetNParameterCurrentValues..................326
PEGetNParameterDefaultValues327
PEGetNParameterFields...............................328
PEGetNReportAlerts328
PEGetNSections ..329
PEGetNSortFields ..330
PEGetNSQLExpressions...............................331
PEGetNSubreportsInSection332
PEGetNTables ...332
PEGetNthAlertInstanceInfo333
PEGetNthFormula334
PEGetNthGroupSortField.............................336
PEGetNthParameterCurrentRange................337
PEGetNthParameterCurrentValue338
PEGetNthParameterDefaultValue339
PEGetNthParameterField341
PEGetNthParameterType341
PEGetNthParameterValueDescription343
PEGetNthReportAlert343
PEGetNthSortField345
PEGetNthSQLExpression346
PEGetNthSubreportInSection346
PEGetNthTableLocation347
PEGetNthTableLogOnInfo348
PEGetNthTablePrivateInfo349
PEGetNthTableSessionInfo350
PEGetNthTableType351
PEGetParameterMinMaxValue352
Crystal Reports User’s Guide 661

PEGetParameterPickListOption....................354
PEGetParameterValueInfo355
PEGetPrintDate ...356
PEGetPrintOptions357
PEGetReportOptions357
PEGetReportSummaryInfo358
PEGetReportTitle...359
PEGetSectionCode360
PEGetSectionFormat....................................361
PEGetSectionFormatFormula362
PEGetSectionHeight363
PEGetSelectedPrinter...................................365
PEGetSelectionFormula365
PEGetSQLExpression366
PEGetSQLQuery ...367
PEGetSubreportInfo.....................................368
PEGetTrackCursorInfo369
PEGetVersion ..370
PEGetWindowHandle370
PEGetWindowOptions371
PEGraphAxisInfo structure...........................471
PEGraphOptionInfo structure473
PEGraphTypeInfo structure..........................474
PEGroupOptions structure...........................476
PEGroupTreeButtonClickedEventInfo
structure ..477

PEHasSavedData ...372
PEIsPrintJobFinished373
PEJobInfo structure479
PELogOffServer ...374
PELogOnInfo structure481
PELogOnServer ...375
PELogOnSQLServerWithPrivateInfo.............376
PEMouseClickEventInfo structure483
PENextPrintWindowMagnification377
PEOpenEngine ..378
PEOpenPrintJob ..379
PEOpenSubreport..380
PEOutputToPrinter381
PEOutputToWindow384
PEParameterFieldInfo structure487
PEParameterPickListOption structure488
PEParameterValueInfo structure...................489
PEPrintControlsShowing385
PEPrintOptions structure491
PEPrintReport ..386
PEPrintWindow...387
PEReadingRecordsEventInfo structure492
PEReportAlertInfo structure..........................495
PEReportFieldMappingInfo structure............493

PEReportOptions structure 498, 519
PEReportSummaryInfo structure 500
PESearchButtonClickedEventInfo structure .. 501
PESectionOptions structure 503
PESelectPrinter.. 390
PESessionInfo structure 505
PESetAllowPromptDialog............................ 391
PESetAreaFormat .. 392
PESetAreaFormatFormula............................ 393
PESetDialogParentWindow 394
PESetEventCallback 400
PESetFieldMappingType.............................. 401
PESetFont.. 405
PESetFormula.. 406
PESetGraphAxisInfo 408
PESetGraphOFontInfo 409
PESetGraphOptionInfo................................ 410
PESetGraphTextInfo 411
PESetGraphTypeInfo 412
PESetGroupCondition 414
PESetGroupOptions 415
PESetGroupSelectionFormula...................... 416
PESetMargins .. 417
PESetNDetailCopies.................................... 418
PESetNthAlertConditionFormula 419
PESetNthAlertDefaultMessage 419
PESetNthGroupSortField 421
PESetNthParameterDefaultValue 423
PESetNthParameterField.............................. 424
PESetNthParameterValueDescription 425
PESetNthSortField 426
PESetNthTableLocation............................... 427
PESetNthTableLogOnInfo............................ 428
PESetNthTablePrivateInfo............................ 429
PESetNthTableSessionInfo 430
PESetParameterMinMaxValue 432
PESetParameterParameterPickListOption 433
PESetParameterValueInfo 434
PESetPrintDate .. 435
PESetPrintOptions 436
PESetReportOptions 436
PESetReportSummaryInfo............................ 437
PESetReportTitle ... 438
PESetSectionFormat 439
PESetSectionFormatFormula........................ 440
PESetSectionHeight..................................... 441
PESetSelectionFormula................................ 442
PESetSQLExpression 443
PESetSQLQuery .. 444
PESetTrackCursorInfo.................................. 445
662 Crystal Reports User’s Guide

PESetWindowOptions 446
PEShowGroupEventInfo structure................ 505
PEShow...Page.. 447
PEShowPrintControls 448
PEStartEventInfo structure 506
PEStartPrintJob.. 449
PEStopEventInfo structure 507
PESubreportInfo structure 508
PETableDifferenceInfo structure.................. 510
PETableLocation structure 511
PETablePrivateInfo structure 512
PETableType structure 513
PETestNthTableConnectivity 450
PETrackCursorInfo structure........................ 515
PEValueInfo structure 518
PEVerifyDatabase 451
PEVersionInfo ... 360
PEWindowOptions structure 521
PEZoomLevelChangingEventInfo structure .. 522
PEZoomPreviewWindow 452
UXDDiskOptions structure 523
UXDMAPIOptions structure........................ 524
UXDPostFolderOptions structure 526
UXDSMIOptions structure 525
UXFCharSeparatedOptions structure........... 527
UXFCommaTabSeparatedOptions
structure ... 528

UXFDIFOptions structure 529
UXFHTML3Options structure 529
UXFODBCOptions structure 530
UXFPaginatedTextOptions structure 531
UXFRecordStyleOptions structure 531

development
Report Engine API... 31

DEVMODE structure, Windows 533
DiscardSavedData method

Report Designer Report Object 157
distributing Report Engine applications................ 64
DLL

VB Wrapper ... 9
DownloadFinished Event

Report Viewer CRViewer Object 257
DownloadStarted Event

Report Viewer CRViewer Object 257
DrillOnDetail Event

Report Viewer CRViewer Object 258
DrillOnGraph Event

Report Viewer CRViewer Object 258
DrillOnGraph method

Report Designer PageGenerator Object 137

DrillOnGroup Event
Report Viewer CRViewer Object258

DrillOnMap method
Report Designer PageGenerator Object137

DrillOnSubreport Event
Report Viewer CRViewer Object259

DrillOnSubreport method
Report Designer PageGenerator Object138

Drivers
Active Data ...571
database (ADO, DAO, and RDO)................564
using Active Data ..565

E
enhancements

charts ..4
Crystal Report Print Engine version 8.52
Crystal Report Print Engine version 8.x3
PRTrack CursorInfo ...5

Enumerated Types
CRAlignment, Report Designer207
CRAMPMType, Report Designer207
CRAreaKind, Report Designer207
CRBarSize, Report Designer207
CRBindingMatchType, Report Designer.......208
CRBooleanOutputType, Report Designer.....208
CRConvertDateTimeType, Report
Designer..208

CRCurrencyPositionType, Report Designer ..208
CRCurrencySymbolType, Report Designer...208
CRDatabaseType, Report Designer209
CRDateCalendarType, Report Designer209
CRDateEraType, Report Designer209
CRDateOrder, Report Designer209
CRDateWindowsDefaultType,
Report Designer...209

CRDayType, Report Designer210
CRDiscreteOrRangeKind, Report Designer ..210
CRDivisionMethod, Report Designer210
CRDrillType, Report Viewer268
CRExchangeDestinationType,
Report Designer...210

CRExportDestinationType,
Report Designer...210

CRExportFormatType, Report Designer211
CRFieldKind, Report Designer212
CRFieldMappingType, Report Designer212
CRFieldType, Report Viewer268
CRFieldValueType, Report Designer212
CRFormulaSyntax, Report Designer213
CRGraphColor, Report Designer213
Crystal Reports User’s Guide 663

CRGraphDataPoint, Report Designer213
CRGraphDataType, Report Designer213
CRGraphDirection, Report Designer214
CRGraphType, Report Designer214
CRGridlineType,Report Designer215
CRGroupCondition, Report Designer216
CRHourType, Report Designer216
CRHTMLPageStyle, Report Designer217
CRHTMLToolbarStyle, Report Designer.......217
CRImageType, Report Designer217
CRLeadingDayPosition, Report Designer217
CRLeadingDayType, Report Designer..........217
CRLegendPosition, Report Designer218
CRLineSpacingType, Report Designer..........218
CRLineStyle, Report Designer218
CRLinkJoinType, Report Designer................218
CRLinkLookUpType, Report Designer219
CRLoadingType, Report Viewer...................269
CRMarkerShape, Report Designer219
CRMarkerSize, Report Designer219
CRMinuteType, Report Designer219
CRMonthType, Report Designer220
CRNegativeType, Report Designer220
CRNumberFormat, Report Designer220
CRObjectKind, Report Designer221
CRObjectType, Report Viewer269
CRPaperOrientation, Report Designer221
CRPaperSize, Report Designer.....................221
CRPaperSource, Report Designer223
CRParameterFieldType, Report Designer223
CRParameterPickListSortMethod,
Report Designer...223

CRPieLegendLayout, Report Designer..........224
CRPieSize, Report Designer.........................224
CRPlaceHolderType, Report Designer224
CRPrinterDuplexType, Report Designer.......224
CRPrintingProgress, Report Designer225
CRRangeInfo, Report Designer225
CRRenderResultType, Report Designer225
CRReportFileFormat, Report Designer225
CRReportKind, Report Designer225
CRReportVariableValueType,
Report Designer...226

CRRotationAngle, Report Designer226
CRRoundingType, Report Designer226
CRRunningTotalCondition,
Report Designer...227

CRSearchDirection, Report Designer227
CRSecondType, Report Designer227
CRSliceDetachment, Report Designer..........227

CRSortDirection, Report Designer 228
CRSpecialVarType, Report Designer 228
CRSummaryType, Report Designer 229
CRTableDifferences, Report Designer 229
CRTextFormat, Report Designer 230
CRTimeBase, Report Designer 230
CRTopOrBottomNGroupSortOrder, Report
Designer ... 230

CRTrackCursor, Report Viewer 270
CRValueFormatType, Report Designer 231
CRViewingAngle, Report Designer 231
CRYearType, Report Designer 231
Report Designer .. 207
Report Viewer... 268

Error Table
See User-Defined Functions, errors in C.

errors
User-Defined Functions in C. 616
User-Defined Functions in Delphi. 642
User-Defined Functions in VB..................... 632

establishing
custom-print links ... 36
print-only links ... 32

Events
AfterFormatPage, Report Designer
Report Object ... 162

BeforeFormatPage, Report Designer
Report Object ... 162

Clicked, Report Viewer CRViewer Object ... 256
CloseButtonClicked, Report Viewer CRViewer
Object .. 256

CRViewer Object, Report Viewer 255
DblClicked, Report Viewer CRViewer
Object .. 256

DownloadFinished, Report Viewer CRViewer
Object .. 257

DownloadStarted, Report Viewer
CRViewer Object 257

DrillOnDetail, Report Viewer
CRViewer Object 258

DrillOnGraph, Report Viewer
CRViewer Object 258

DrillOnGroup, Report Viewer
CRViewer Object 258

DrillOnSubreport, Report Viewer
CRViewer Object 259

ExportButtonClicked, Report Viewer CRViewer
Object .. 259

FieldMapping, Report Designer
Report Object ... 162

FirstPageButtonClicked, Report Viewer
CRViewer Object 260
664 Crystal Reports User’s Guide

Format, Report Designer Section Object 183
GoToPageNButtonClicked, Report Viewer
CRViewer Object 260

GroupTreeButtonClicked, Report Viewer
CRViewer Object 260

HelpButtonClicked, Report Viewer CRViewer
Object .. 261

LastPageButtonClicked, Report Viewer
CRViewer Object 261

NextPageButtonClicked, Report Viewer
CRViewer Object 261

NoData, Report Designer Report Object 163
OnReportSourceError, Report Viewer
CRViewer Object 261

Preview window events in Automation Server17
PrevPageButtonClicked, Report Viewer
CRViewer Object 262

PrintButtonClicked, Report Viewer CRViewer
Object .. 262

RefreshButtonClicked, Report Viewer
CRViewer Object 262

Report Object, Report Designer 162
Report Viewer, JavaBean 276
SearchButtonClicked, Report Viewer
CRViewer Object 263

SearchExpertButtonClicked, Report Viewer
CRViewer Object 263

Section Object, Report Designer 183
SelectionFormulaBuilt, Report Viewer
CRViewer Object 263

SelectionFormulaButtonClicked, Report Viewer
CRViewer Object 264

ServerRequestEvent, Report Viewer
JavaBean... 276

ShowGroup, Report Viewer CRViewer
Object .. 264

StopButtonClicked, Report Viewer CRViewer
Object .. 265

ViewChanged, Report Viewer
CRViewer Object 265

ViewChangeEvent, Report Viewer JavaBean 276
ViewChanging, Report Viewer
CRViewer Object 265

ZoomLevelChanged, Report Viewer
CRViewer Object 266

events
Crystal Smart Viewer 238

events, preview window
handling ... 59

export functions
considerations for using 59

Export method
Report Designer PageGenerator Object138
Report Designer Report Object....................157

ExportButtonClicked Event
Report Viewer CRViewer Object259

exporting
reports ..56

F
FieldMapping Event

Report Designer Report Object....................162
Files

Data Definition ...565
Data Definition, creating569
.def, See Files, Module Definition.
DLL, see DLL
Module Definition.......................................619
Module Definition, See also User-Defined
Functions, programming in C.

UFJOB ..620
FindText method

Report Designer PageGenerator Object138
FirstPageButtonClicked Event

Report Viewer CRViewer Object260
Format Event

Report Designer Section Object183
formatted bound reports

creating...22
formula language

Crystal syntax support4
Function Definition Table, See User-Defined

Functions, programming in C.
Function Definition, See User-Defined Functions,

programming in C.
Function Example Table, See User-Defined

Functions, programming in C.
Function Template Table, See User-Defined

Functions, programming in C.
functions

CRPE...278
Crystal Active Data Driver...........................601
Print Engine...278

G
GetColCount method

CrystalComObject.......................................593
GetCurrentPageNumber method

Report Viewer CRViewer Object250
GetEOF method

CrystalComObject.......................................593
GetFieldData method

CrystalComObject.......................................594
Crystal Reports User’s Guide 665

GetFieldName method
CrystalComObject.......................................594

GetFields method
Report Viewer CRVEventInfo Object247

GetFieldType method
CrystalComObject.......................................595

GetNextRows method
Report Designer Report Object....................158

GetNthCurrentRange method
Report Designer ParameterFieldDefinition
Object ...147

GetNthCurrentValue method
Report Designer ParameterFieldDefinition
Object ...147

GetNthDefaultValue method
Report Designer ParameterFieldDefinition
Object ...147

GetPageNumberForGroup method
Report Designer PageGenerator Object139

GetReportVariableValue method
Report Designer Report Object....................158

GetVersion method
Report Designer Application Object69

GetViewName method
Report Viewer CRViewer Object251

GetViewPath method
Report Viewer CRViewer Object251

GoToPageNButtonClicked Event
Report Viewer CRViewer Object260

Grid Controls...20
GroupTreeButtonClicked Event

Report Viewer CRViewer Object260

H
HelpButtonClicked Event

Report Viewer CRViewer Object261
Helper Modules...609

See also User-Defined Functions,
programming in C.

I
implementing

InitForJob ..622
TermForJob ...622

ImportSubreport method
Report Designer Section Object183

InitForJob ..614
implementing..622
See also Modules, UFJOB
See also User-Defined Functions,
programming in C.

J
Java

Report Viewer Bean 245
Report Viewer Object Model 271

Java Bean, Smart Viewer 242
Java, Crystal Smart Viewer applet 243

L
LastPageButtonClicked Event

Report Viewer CRViewer Object................. 261
Libraries

Crystal Data Source Type.................... 579, 597
Crystal Report Engine Object 17
UFL, See User-Defined Functions

links
coding custom-print...................................... 36
establishing custom-print 36
establishing print-only................................... 32

LogOffServer method
Report Designer Application Object.............. 70
Report Designer Database Object 88

LogOnServer method
Report Designer Application Object.............. 71
Report Designer Database Object 89

LogOnServerEx method
Report Designer Application Object.............. 71
Report Designer Database Object 89

M
methods

ActivateView, Report Viewer
CRViewer Object 250

Add, Report Designer CrossTabGroups
Collection ... 82

Add, Report Designer DatabaseTables
Collection ... 98

Add, Report Designer FieldDefinitions
Collection ... 105

Add, Report Designer FormulaFieldDefinitions
Collection ... 114

Add, Report Designer
ObjectSummaryFieldDefinitions Collection126

Add, Report Designer
ParameterFieldDefinitions Collection 149

Add, Report Designer ReportAlerts
Collection ... 165

Add, Report Designer
RunningTotalFieldDefinitions Collection ... 173

Add, Report Designer Sections Collection ... 186
Add, Report Designer SortFields Collection . 188
Add, Report Designer
SQLExpressionFieldDefinitions Collection . 192
666 Crystal Reports User’s Guide

Add, Report Designer SubreportLinks
Collection ... 194

Add, Report Designer SummaryFieldDefinitions
Collection ... 200

Add, Report Designer TableLinks Collection203
AddADOCommand, Report Designer Database
Object .. 85

AddBlobFieldObject, Report Designer Section
Object .. 176

AddBoxObject, Report Designer Section
Object .. 176

AddCrossTabObject, Report Designer Section
Object .. 177

AddCurrentRange, Report Designer
ParameterFieldDefinition Object 145

AddCurrentValue, Report Designer
ParameterFieldDefinition Object 145

AddDefaultValue, Report Designer
ParameterFieldDefinition Object 146

AddField, CrystalComObject 591
AddFieldObject, Report Designer Section
Object .. 177

AddGraphObject, Report Designer Section
Object .. 178

AddGroup, Report Designer Report Object . 155
AddLineObject, Report Designer Section
Object .. 178

AddOLEDBSource, Report Designer Database
Object .. 86

AddParameter, Report Viewer WebReportSource
Object .. 267

AddParameterEx, Report Viewer WebReportSource
Object .. 268

AddPictureObject, Report Designer Section
Object .. 179

AddReportVariable, Report Designer Report
Object .. 156

AddRows, CrystalComObject 592
AddSpecialVarFieldObject, Report Designer
Section Object .. 180

AddSubreportObject, Report Designer Section
Object .. 180

AddSummaryFieldObject, Report Designer Section
Object .. 181

AddTextObject, Report Designer Section
Object .. 181

AddUnboundFieldObject, Report Designer Section
Object .. 182

AddView, Report Viewer CRViewer Object 250
Application Object, Report Designer 68
Area Object, Report Designer 76

AutoSetUnboundFieldSource, Report Designer
Report Object ..156

CancelPrinting, Report Designer Report
Object ...157

CanClose, Report Designer Application
Object ...69

Check, Report Designer FormulaFieldDefinition
Object ...113

Check, Report Designer
SQLExpressionFieldDefinition Object191

CheckDifferences, Report Designer
DatabaseTable Object94

ClearCurrentValueAndRange, Report Designer
ParameterFieldDefinition Object146

closeCurrentView, Report Viewer JavaBean.274
CloseView, Report Viewer CRViewer Object250
ConvertDatabaseDriver, Report Designer
Database Object..86

CreatePageGenerator, Report Designer
PageEngine Object133

CreateSubreportPageGenerator, Report
Designer PageGenerator Object136

CrossTabGroups, Report Designer81
CRVEventInfo Object, Report Viewer247
CRViewer Object, Report Viewer249
Database Object, Report Designer.................85
DatabaseTable Object, Report Designer94
DatabaseTables Collection, Report Designer .98
Delete, Report Designer CrossTabGroups
Collection ...82

Delete, Report Designer DatabaseTables
Collection ...99

Delete, Report Designer FieldDefinitions
Collection ...105

Delete, Report Designer FormulaFieldDefinitions
Collection ...115

Delete, Report Designer
ObjectSummaryFieldDefinitions Collection126

Delete, Report Designer
ParameterFieldDefinitions Collection.........149

Delete, Report Designer ReportAlerts
Collection ...166

Delete, Report Designer
RunningTotalFieldDefinitions Collection....173

Delete, Report Designer Sections Collection 186
Delete, Report Designer SortFields
Collection ...188

Delete, Report Designer
SQLExpressionFieldDefinitions Collection .192

Delete, Report Designer SubreportLinks
Collection ...194
Crystal Reports User’s Guide 667

Delete, Report Designer SummaryFieldDefinitions
Collection ...201

Delete, Report Designer TableLinks
Collection ...203

DeleteField, CrystalComObject593
DeleteGroup, Report Designer Report
Object ...157

DeleteNthDefaultValue, Report Designer
ParameterFieldDefinition Object146

DeleteObject, Report Designer Section
Object ...182

DiscardSavedData, Report Designer
Report Object ..157

DrillOnGraph, Report Designer PageGenerator
Object ...137

DrillOnMap, Report Designer PageGenerator
Object ...137

DrillOnSubreport, Report Designer PageGenerator
Object ...138

Export, Report Designer PageGenerator
Object ...138

Export, Report Designer Report Object157
ExportOptions Object, Report Designer.......104
exportView, Report Viewer JavaBean274
FieldDefinitions Collection, Report Designer105
FieldMappingData Object, Report Designer 111
FindText, Report Designer PageGenerator
Object ...138

FormulaFieldDefinition Object, Report
Designer..113

FormulaFieldDefinitions Collection, Report
Designer..114

GetColCount, CrystalComObject593
GetCurrentPageNumber, Report Viewer
CRViewer Object250

GetEOF, CrystalComObject.........................593
GetFieldData, CrystalComObject594
GetFieldName, CrystalComObject594
GetFields, Report Viewer CREventnfo Object247
GetFieldType, CrystalComObject595
GetNextRows, Report Designer Report
Object ...158

GetNthCurrentRange, Report Designer
ParameterFieldDefinition Object147

GetNthCurrentValue, Report Designer
ParameterFieldDefinition Object147

GetNthDefaultValue, Report Designer
ParameterFieldDefinition Object147

GetPageNumberForGroup, Report Designer
PageGenerator Object139

GetReportVariableValue, Report Designer Report
Object ...158

GetVersion, Report Designer Application
Object .. 69

GetViewName, Report Viewer CRViewer
Object .. 251

GetViewPath, Report Viewer CRViewer
Object .. 251

ImportSubreport, Report Designer Section
Object .. 183

LogOffServer, Report Designer Application
Object .. 70

LogOffServer, Report Designer Database
Object .. 88

LogOnServer, Report Designer Application
Object .. 71

LogOnServer, Report Designer Database
Object .. 89

LogOnServerEx, Report Designer Application
Object .. 71

LogOnServerEx, Report Designer Database
Object .. 89

MoveFirst, CRDataSource 600
MoveFirst, CrystalComObject 595
MoveNext, CRDataSource 600
MoveNext, CrystalComObject 596
MoveTo, CrystalComObject........................ 596
NewReport, Report Designer Application
Object .. 72

ObjectSummaryFieldDefinitions Collection,
Report Designer .. 126

OLEObject Object, Report Designer 129
OpenReport, Report Designer Application
Object .. 72

OpenSubreport, Report Designer Report
Object .. 159

OpenSubreport, Report Designer
SubreportObject Object 196

Page Object, Report Designer 131
PageEngine Object, Report Designer 133
PageGenerator Object, Report Designer...... 136
ParameterFieldDefinition Object,
Report Designer .. 145

ParameterFieldDefinitions Collection, Report
Designer ... 149

PrinterSetup, Report Designer Report Object159
PrintOut, Report Designer Report Object 159
PrintReport, Report Viewer CRViewer
Object .. 252

printView, Report Viewer JavaBean............. 274
PromptForExportOptions, Report Designer
ExportOptions Object................................ 104

ReadRecords, Report Designer
Report Object ... 160
668 Crystal Reports User’s Guide

Refresh, Report Viewer CRViewer Object ... 252
refreshReport, Report Viewer JavaBean 275
ReimportSubreport, Report Designer
SubreportObject Object 197

RenderEPF, Report Designer Page Object ... 131
RenderHTML, Report Designer Page Object 131
RenderTotallerETF, Report Designer PageEngine
Object .. 133

RenderTotallerETF, Report Designer PageGenerator
Object .. 139

RenderTotallerHTML, Report Designer PageEngine
Object .. 134

RenderTotallerHTML, Report Designer
PageGenerator Object 140

Report Object, Report Designer 155
Report Viewer, JavaBean 273
ReportAlertInstances Collection,
Report Designer .. 165

Reset, CrystalComObject 596
Reset, Report Designer ExportOptions
Object .. 104

RunningTotalFieldDefinition Object, Report
Designer ... 170

RunningTotalFieldDefinitions Collection, Report
Designer ... 173

SaveAs, Report Designer Report Object 160
SearchByFormula, Report Viewer
CRViewer Object 252

SearchForText, Report Viewer
CRViewer Object 253

searchForText, Report Viewer JavaBean 275
Section Object, Report Designer 175
Sections Collection, Report Designer 186
SelectPrinter, Report Designer Report
Object .. 160

SetDataSource, Report Designer Database
Object .. 90

SetDataSource, Report Designer DatabaseTable
Object .. 95

SetDialogParentWindow, Report Designer Report
Object .. 161

SetEvaluateConditionField, Report Designer
RunningTotalFieldDefinition Object.......... 170

SetInstanceIDField, Report Designer Area
Object .. 76

SetLineSpacing, Report Designer FieldObject
Object .. 111

SetLineSpacing, Report Designer TextObject
Object .. 206

SetLogOnInfo, Report Designer DatabaseTable
Object .. 96

SetMatchLogOnInfo, Report Designer Application
Object ...73

SetMorePrintEngineErrorMessages, Report Designer
Application Object73

SetNoEvaluateCondition, Report Designer
RunningTotalFieldDefinition Object171

SetNoResetCondition, Report Designer
RunningTotalFieldDefinition Object171

SetNthDefaultValue, Report Designer
ParameterFieldDefinition Object148

SetOleLocation, Report Designer OleObject
Object ...129

SetParentIDField, Report Designer Area
Object ...76

SetReportVariableValue, Report Designer Report
Object ...161

SetResetConditionField, Report Designer
RunningTotalFieldDefinition Object171

SetSecondarySummarizedField, Report Designer
RunningTotalFieldDefinition Object171

SetSecondarySummarizedField, Report Designer
SummaryFieldDefinition Object199

SetSessionInfo, Report Designer DatabaseTable
Object ...96

SetSummarizedField, Report Designer
RunningTotalFieldDefinition Object172

SetSummarizedField, Report Designer
SummaryFieldDefinition Object199

SetTableLocation, Report Designer DatabaseTable
Object ...97

SetText, Report Designer TextObject Object 206
SetUnboundFieldSource, Report Designer
FieldObject Object111

ShowFirstPage, Report Viewer CRViewer
Object ...253

ShowGroup, Report Viewer CRViewer
Object ...253

ShowLastPage, Report Viewer CRViewer
Object ...253

showLastPage, Report Viewer JavaBean.......275
ShowNextPage, Report Viewer CRViewer
Object ...253

ShowNthPage, Report Viewer CRViewer
Object ...254

showPage, Report Viewer JavaBean.............276
ShowPreviousPage, Report Viewer CRViewer
Object ...254

SortFields Collection, Report Designer.........188
SQLExpressionFieldDefinition Object, Report
Designer..191

SQLExpressionFieldDefinitions Collection, Report
Designer..192
Crystal Reports User’s Guide 669

stopAllCommands, Report Viewer JavaBean 276
SubreportLinks Collection, Report Designer.193
SubreportObject Object, Report Designer ...196
SummaryFieldDefinition Object,
Report Designer...199

SummaryFieldDefinitions Collection, Report
Designer..200

TableLinks Collection, Report Designer203
TestConnectivity, Report Designer
DatabaseTable Object97

TextObject Object, Report Designer............206
Verify, Report Designer Database Object91
ViewReport, Report Viewer CRViewer
Object ...254

WebReportSource Object, Report Viewer....267
Zoom, Report Viewer CRViewer Object254

Microsoft
Windows structures.....................................533
Windows, COLORREF structure533
Windows, DEVMODE structure533

Module Definition (.def) Files619
Modules

Helper ..609
Helper, See also User-Defined Functions,
programming in C.

UFJOB ..620
MoveFirst method

CRDataSource...600
CrystalComObject.......................................595

MoveNext method
CRDataSource...600
CrystalComObject.......................................596

MoveTo method
CrystalComObject.......................................596

N
NewReport method

Report Designer Application Object72
NextPageButtonClicked Event

Report Viewer CRViewer Object261
NoData Event

Report Designer Report Object....................163

O
Object Model

ActiveX Report Viewer245
Crystal Data Objects590
Crystal Data Source.....................................590
CrystalComObject.......................................590
Report Designer ..66

Objects
Application, Report Designer68

Area, Report Designer 74
Automation Server Application,
see Application Object

Automation Server Report, see Report Object
BlobFieldObject, Report Designer................. 77
BoxObject, Report Designer 77
CRField, Report Viewer............................... 246
CrossTabGroup, Report Designer 80
CrossTabObject, Report Designer 82
CRVEventInfo, Report Viewer 247
CRViewer, Report Viewer 247
CRVTrackCursorInfo, Report Viewer 266
Crystal Data.. 575, 590
Crystal Data Object Model 578
CrystalComObject 590
Database, Report Designer............................ 85
DatabaseFieldDefiinition, Report Designer.... 92
DatabaseTable, Report Designer 93
ExportOptions, Report Designer 100
FieldMappingData, Report Designer 106
FormattingInfo, Report Designer 112
FormulaFieldDefinition, Report Designer 112
GraphObject, Report Designer.................... 115
GroupNameFieldDefinition,
Report Designer .. 120

IFieldDefinition, Report Designer 121
IReportObject, Report Designer 122
LineObject, Report Designer 123
MapObject, Report Designer 124
naming conflicts with Report Designer 67
OlapGridObject, Report Designer............... 127
OLEObject, Report Designer 128
Page, Report Designer................................. 130
PageEngine, Report Designer 132
PageGenerator, Report Designer 135
ParameterFieldDefinition, Report Designer . 142
passing CRDataSource object to
Active Data Driver 585

PrintingStatus, Report Designer 150
releasing in VB ... 15
Report Designer .. 68
Report, Report Designer 150
Rowset, see Rowset Object
RunningTotalFieldDefinition,
Report Designer .. 168

Section, Report Designer............................. 174
SortField, Report Designer 187
SpecialVarFieldDefinition, Report Designer 189
SQLExpressionFieldDefinition,
Report Designer .. 190

SubreportLink, Report Designer 193
670 Crystal Reports User’s Guide

SubreportObject, Report Designer 195
SummaryFieldDefinition, Report Designer .. 198
TableLink, Report Designer......................... 202
TextObject, Report Designer....................... 204
WebReportBroker, Report Viewer 266
WebReportSource, Report Viewer 267

objects
CRViewer ... 236

OCX
adding to project .. 10
changing properties 12
using .. 11

OLE control
adding to project .. 10
changing properties 12
changing properties at runtime 12
using .. 11

OnReportSourceError Event
Report Viewer CRViewer Object 261

opening
Crystal Report Engine 6

OpenReport method
Report Designer Application Object 72

OpenSubreport method
Report Designer Report Object 159
Report Designer SubreportObject Object.... 196

overview
User-Defined Functions in C....................... 606
User-Defined Functions in Delphi 636
User-Defined Functions in VB 624

overviews
automatic scaling for axes............................... 4
charting enhancements................................... 4
default titles.. 4
formula language syntax support 4

P
Parameter Blocks .. 616

See also, User-Defined Functions,
programming in C.

parameters
ranges .. 45
values... 45

PEAddParameterCurrentRange 278
PEAddParameterCurrentValue........................... 279
PEAddParameterDefaultValue 280
PEAlertInstanceInfo structure............................. 453
PECancelPrintJob .. 281
PECanCloseEngine .. 282
PECheckFormula... 282
PECheckGroupSelectionFormula....................... 283

PECheckSelectionFormula285
PECheckSelectionNthTableDifferences284
PECheckSQLExpression286
PEClearParameterCurrentValuesAndRanges287
PECloseButtonClickedEventInfo structure454
PECloseEngine ...287
PEClosePrintJob ...288
PECloseSubreport ..289
PECloseWindow ..290
PEConvertPFInfotoVInfo.....................................290
PEConvertVInfotoPFInfo.....................................291
PEDeleteNthGroupSortField292
PEDeleteNthParameterDefaultValue293
PEDeleteNthSortField ..294
PEDiscardSavedData ...295
PEDrillOnDetailEventInfo structure454
PEDrillOnGroupEventInfo structure455
PEEnableEvent ...297
PEEnableEventInfo structure457
PEEnableNthAlert ..296
PEEnableProgressDialog297
PEExportOptions structure458
PEExportPrintWindow..298
PEExportTo ..299
PEFieldMappingEventInfo structure462
PEFieldValueInfo structure463
PEFontColorInfo structure464
PEFormulaSyntax structure.................................466
PEFreeDevMode ..300
PEGeneralPrintWindowEventInfo structure467
PEGetAllowPromptDialog..................................301
PEGetAreaFormat ..301
PEGetAreaFormatFormula..................................302
PEGetEnableEventInfo..303
PEGetErrorCode...304
PEGetErrorText ..305
PEGetExportOptions ..306
PEGetFieldMappingType306
PEGetFormula ...307
PEGetFormulaSyntax ...308
PEGetGraphAxisInfo ..309
PEGetGraphFontInfo..310
PEGetGraphOptionInfo......................................311
PEGetGraphTextDefaultInfo...............................312
PEGetGraphTextInfo ..312
PEGetGraphTypeInfo ...313
PEGetGroupCondition315
PEGetGroupOptions ..316
PEGetGroupSelectionFormula317
PEGetHandleString ..318
Crystal Reports User’s Guide 671

PEGetJobStatus ..319
PEGetMargins..320
PEGetNDetailCopies ...321
PEGetNFormulas ...322
PEGetNGroups ..322
PEGetNGroupSortFields323
PEGetNPages...324
PEGetNParameterCurrentRanges325
PEGetNParameterCurrentValues325
PEGetNParameterDefaultValues326
PEGetNParameterFields327
PEGetNReportAlerts ..328
PEGetNSections...328
PEGetNSectionsInArea329
PEGetNSortFields ..330
PEGetNSQLExpressions330
PEGetNSubreportsInSection...............................331
PEGetNTables ...332
PEGetNthAlertInstanceInfo333
PEGetNthFormula..334
PEGetNthGroupSortField335
PEGetNthParameterCurrentRange336
PEGetNthParameterCurrentValue337
PEGetNthParameterDefaultValue.......................338
PEGetNthParameterField340
PEGetNthParameterType341
PEGetNthParameterValueDescription342
PEGetNthReportAlert ...343
PEGetNthSortField...344
PEGetNthSQLExpression....................................345
PEGetNthSubreportInSection346
PEGetNthTableLocation347
PEGetNthTableLogOnInfo347
PEGetNthTablePrivateInfo349
PEGetNthTableSessionInfo.................................349
PEGetNthTableType ..350
PEGetParameterMinMaxValue351
PEGetParameterPickListOption353
PEGetParameterValueInfo..................................354
PEGetPrintDate..355
PEGetPrintOptions...356
PEGetReportOptions..357
PEGetReportSummaryInfo..................................358
PEGetReportTitle ...358
PEGetSectionCode...360
PEGetSectionFormat ..361
PEGetSectionFormatFormula361
PEGetSectionHeight ..363
PEGetSelectedPrinter ...363
PEGetSelectionFormula365

PEGetSQLExpression ... 366
PEGetSQLQuery ... 366
PEGetSubreportInfo ... 367
PEGetTrackCursorInfo 368
PEGetVersion .. 369
PEGetWindowHandle 370
PEGetWindowOptions 371
PEGraphAxisInfo structure 468
PEGraphOptionInfo structure 471
PEGraphTypeInfo structure 473
PEGroupOptions structure 474
PEGroupTreeButtonClickedEventInfo structure .. 476
PEHasSavedData ... 372
PEHyperlinkEventInfo structure 477
PEIsPrintJobFinished .. 373
PEJobInfo structure .. 478
PELaunchSeagateAnalysisEventInfo structure 479
PELogOffServer ... 373
PELogOnInfo structure....................................... 479
PELogOnServer ... 374
PELogOnSQLServerWithPrivateInfo................... 375
PEMouseClickEventInfo structure....................... 481
PENextPrintWindowMagnification 377
PEObjectInfo structure....................................... 483
PEOpenEngine .. 377
PEOpenPrintJob .. 378
PEOpenSubreport.. 379
PEOutputToPrinter .. 380
PEOutputToWindow ... 382
PEParameterFieldInfo structure 484
PEParameterPickListOption structure 487
PEParameterValueInfo structure......................... 488
PEPrintControlsShowing 384
PEPrintOptions structure.................................... 489
PEPrintReport .. 385
PEPrintWindow ... 387
PEReadingRecordsEventInfo structure 491
PEReimportSubreport .. 388
PEReportAlertInfo structure................................ 494
PEReportFieldMappingInfo structure.................. 492
PEReportOptions structure................................. 496
PEReportSummaryInfo structure 499
PESearchButtonClickedEventInfo structure......... 500
PESectionOptions structure 501
PESelectPrinter .. 389
PESessionInfo structure...................................... 503
PESetAllowPromptDialog 390
PESetAreaFormat ... 391
PESetAreaFormatFormula 392
PESetDialogParentWindow 393
672 Crystal Reports User’s Guide

PESetEventCallback... 394
PESetFieldMappingType.................................... 401
PESetFont.. 401
PESetFormula.. 405
PESetFormulaSyntax.. 406
PESetGraphAxisInfo .. 407
PESetGraphFontInfo .. 408
PESetGraphOptionInfo 409
PESetGraphTextDefaultOption 410
PESetGraphTextInfo .. 411
PESetGraphTypeInfo ... 412
PESetGroupCondition 413
PESetGroupOptions .. 414
PESetGroupSelectionFormula 415
PESetMargins .. 416
PESetNDetailCopies .. 417
PESetNthAlertConditionFormula 418
PESetNthAlertDefaultMessage 419
PESetNthAlertMessageFormula.......................... 420
PESetNthGroupSortField 420
PESetNthParameterDefaultValue 422
PESetNthParameterField.................................... 423
PESetNthParameterValueDescription 424
PESetNthSortField ... 425
PESetNthTableLocation 426
PESetNthTableLogOnInfo.................................. 427
PESetNthTablePrivateInfo.................................. 429

SetActiveDataSource 604
PESetNthTableSessionInfo 429
PESetParameterMinMaxValue 431
PESetParameterPickListOption 432
PESetParameterValueInfo 433
PESetPrintDate .. 434
PESetPrintOptions ... 435
PESetReportOptions .. 436
PESetReportSummaryInfo 437
PESetReportTitle.. 437
PESetSectionFormat .. 438
PESetSectionFormatFormula.............................. 439
PESetSectionHeight ... 441
PESetSelectionFormula...................................... 441
PESetSQLExpression.. 442
PESetSQLQuery .. 443
PESetTrackCursorInfo.. 444
PESetWindowOptions 445
PEShowGroupEventInfo structure 505
PEShow...Page .. 446
PEShowPrintControls .. 447
PEStartEventInfo structure.................................. 506
PEStartPrintJob .. 448

PEStopEventInfo structure506
PESubreportInfo structure...................................507
PETableDifferenceInfo structure508
PETableLocation structure..................................510
PETablePrivateInfo structure511
PETableType structure512
PETestNthTableTableConnectivity449
PETrackCursorInfo ...5
PETrackCursorInfo structure514
PEValueInfo structure...516
PEVerifyDatabase ..451
PEVersionInfo ..359
PEVersionInfo structure......................................518
PEWindowOptions structure519
PEZoomLevelChangingEventInfo structure521
PEZoomPreviewWindow451
Picture Function

Sample User-Defined Function....................617
See also User-Defined Functions,
programming in C.

preview window events, handling........................59
PrevPageButtonClicked Event

Report Viewer CRViewer Object262
Print Engine

before making calls27
Print Engine constants..541
Print Engine functions ..278
Print Engine obsolete calls561
Print Engine structures453
PrintButtonClicked Event

Report Viewer CRViewer Object262
PrinterSetup method

Report Designer Report Object....................159
print-only link

establishing ...32
example code for ..35

PrintOut method
Report Designer Report Object....................159

PrintReport method
Report Viewer CRViewer Object252

programming
Report Engine API ...31
User-Defined Functions in C 606, 608
User-Defined Functions in Delphi636
User-Defined Functions in VB624

PromptForExportOptions method
Report Designer ExportOptions Object104

Properties
Area Object, Report Designer........................74
Areas Collections, Report Designer................77
BlobFieldObject Object, Report Designer......77
Crystal Reports User’s Guide 673

BoxObject Object, Report Designer79
CRField Object, Report Viewer246
CRFields Collection, Report Viewer.............246
CrossTabGroup Object, Report Designer80
CrossTabGroups Collection, Report Designer 81
CrossTabObject, Report Designer..................82
CRVEventInfo Object, Report Viewer247
CRViewer Object, Report Viewer248
CRVTrackCursorInfo Object, Report Viewer 266
Database Object, Report Designer85
DatabaseFieldDefiinition Object,
Report Designer...92

DatabaseFieldDefinitions Collection, Report
Designer..93

DatabaseTable Object, Report Designer93
DatabaseTables Collection, Report Designer .98
ExportOptions Object, Report Designer.......100
FieldDefinitions Collection, Report Designer104
FieldMappingData Object, Report Designer 106
FormattingInfo Object, Report Designer112
FormulaFieldDefinition Object,
Report Designer...112

FormulaFieldDefinitions Collection, Report
Designer..114

GraphObject Object, Report Designer.........115
GroupNameFieldDefinition Object, Report
Designer..120

GroupNameFieldDefinitions Collection, Report
Designer..121

IFieldDefinition Object, Report Designer121
IReportObject Object, Report Designer122
LineObject Object, Report Designer............123
MapObject Object, Report Designer124
ObjectSummaryFieldDefinitions Collection,
Report Designer...125

OlapGridObject Object, Report Designer....127
OLEObject Object, Report Designer............128
Page Object, Report Designer130
PageEngine Object, Report Designer132
PageGenerator Object, Report Designer135
Pages Collection, Report Designer...............141
ParameterFieldDefinition Object,
Report Designer...142

ParameterFieldDefinitions Collection, Report
Designer..148

PrintingStatus Object, Report Designer150
Report Object, Report Designer...................150
Report Viewer, JavaBean271
ReportAlert Object, Report Designer163
ReportAlertInstance Object, Report Designer167

ReportAlertInstances Collection,
Report Designer .. 167

ReportAlerts Collection, Report Designer 164
ReportObjects Collection, Report Designer . 168
RunningTotalFieldDefinition Object, Report
Designer ... 169

RunningTotalFieldDefinitions Collection, Report
Designer ... 172

Section Object, Report Designer 174
Sections Collection, Report Designer 185
SortField Object, Report Designer 187
SortFields Collection, Report Designer 187
SpecialVarFieldDefinition Object,
Report Designer .. 189

SQLExpressionFieldDefinition Object, Report
Designer ... 190

SQLExpressionFieldDefinitions Collection, Report
Designer ... 191

SubreportLink Object, Report Designer 193
SubreportLinks Collection, Report Designer 193
SubreportObject Object, Report Designer ... 195
SummaryFieldDefinition Object,
Report Designer .. 198

SummaryFieldDefinitions Collection, Report
Designer ... 200

TableLink Object, Report Designer 202
TableLinks Collection, Report Designer....... 202
TextObject Object, Report Designer 204
WebReportSource Object, Report Viewer ... 267

properties, RowCount, CrystalComObject 591

R
RDO data sources ... 564
ReadRecords method

Report Designer Report Object 160
REAPI.. 31

structures .. 54
variable length strings 51

Refresh method
Report Viewer CRViewer Object................. 252

RefreshButtonClicked Event
Report Viewer CRViewer Object................. 262

ReImportSubreport method
Report Designer SubreportObject Object 197

RenderEPF method
Report Designer Page Object 131

RenderHTML method
Report Designer Page Object 131

RenderTotallerETF method
Report Designer PageEngine Object 133
Report Designer PageGenerator Object....... 139
674 Crystal Reports User’s Guide

RenderTotallerHTML method
Report Designer PageEngine Object 134
Report Designer PageGenerator Object 140

Report Designer
Application Object 68
Application Object methods 68
Area object... 74
Area object methods..................................... 76
Area object Properties 74
Areas Collection ... 77
Areas Collection Properties........................... 77
BlobFieldObject Object................................ 77
BlobFieldObject Object Properties 77
BoxObject Object .. 77
BoxObject Object Properties 79
Collections ... 68
CrossTabGroup Object 80
CrossTabGroup Object Properties................. 80
CrossTabGroups Collection 81
CrossTabGroups Collection methods 81
CrossTabGroups Collection Properties 81
CrossTabObject Object 82
CrossTabObject Object Properties 82
Database Object... 85
Database Object methods............................. 85
Database Object Properties 85
DatabaseFieldDefinition Object.................... 92
DatabaseFieldDefinition Object Properties ... 92
DatabaseFieldDefinitions Collection 93
DatabaseFieldDefinitions Collection
Properties ... 93

DatabaseTable Object 93
DatabaseTable Object methods 94
DatabaseTable Object Properties 93
DatabaseTables Collection 98
DatabaseTables Collection methods 98
DatabaseTables Collection Properties 98
Enumerated Types 207
ExportOptions Object 100
ExportOptions Object methods 104
ExportOptions Object Properties................. 100
FieldDefinitions Collection 104
FieldDefinitions Collection methods 105
FieldDefinitions Collection Properties 104
FieldMappingData Object 106
FieldMappingData Object methods 111
FieldMappingData Object Properties 106
FormattingInfo Object 112
FormattingInfo Object Properties 112
FormulaFieldDefinition Object 112

FormulaFieldDefinition Object methods113
FormulaFieldDefinition Object Object112
FormulaFieldDefinitions Collection114
FormulaFieldDefinitions Collection methods114
FormulaFieldDefinitions Collection
Properties ..114

GraphObject Object115
GraphObject Object Properties115
GroupNameFieldDefinition Object120
GroupNameFieldDefinition Object
Properties ..120

GroupNameFieldDefinitions Collection.......121
GroupNameFieldDefinitions Collection
Properties ..121

IFieldDefinition Object................................121
IFieldDefinition Object Properties121
IReportObject Object122
IReportObject Object Properties..................122
LineObject Object123
LineObject Object Properties123
MapObject Object124
MapObject Object Properties124
Object Model..66
object naming conflicts67
Objects ...68
ObjectSummaryFieldDefinitions Collection .125
ObjectSummaryFieldDefinitions Collection
methods ..126

ObjectSummaryFieldDefinitions Collection
Properties ..125

OlapGridObject Object127
OlapGridObject Object Properties127
OLEObject Object128
OLEObject Object methods129
OLEObject Object Properties128
Page Object ..130
Page Object methods131
Page Object Properties130
PageEngine Object132
PageEngine Object methods133
PageEngine Object Properties......................132
PageGenerator Object.................................135
PageGenerator Object methods...................136
PageGenerator Object Properties135
Pages Collection ...141
Pages Collection Properties141
ParameterFieldDefinition Object142
ParameterFieldDefinition Object methods ...145
ParameterFieldDefinition Object Properties .142
ParameterFieldDefinitions Collection148
Crystal Reports User’s Guide 675

ParameterFieldDefinitions Collection
methods ..149

ParameterFieldDefinitions Collection
Properties ..148

PrintingStatus Object...................................150
PrintingStatus Object Properties150
Report Object ...150
Report Object Events...................................162
Report Object methods155
Report Object Properties150
ReportAlert Object Properties163
ReportAlertInstance Object Properties167
ReportAlertInstances Collection methods.....165
ReportAlertInstances Collection Properties ..167
ReportAlerts Collection Properties164
ReportObjects Collection168
ReportObjects Collection Properties168
RunningTotalFieldDefinition Object168
RunningTotalFieldDefinition Object
methods ..170

RunningTotalFieldDefinition Object
Properties ..169

RunningTotalFieldDefinitions Collection172
RunningTotalFieldDefinitions Collection
methods ..173

RunningTotalFieldDefinitions Collection
Properties ..172

Section Object ..174
Section Object Events183
Section Object methods175
Section Object Properties174
Sections Collection185
Sections Collection methods186
Sections Collection Properties185
SortField Object ..187
SortField Object Properties..........................187
SortFields Collection187
SortFields Collection methods188
SortFields Collection Properties187
SpecialVarFieldDefinition Object189
SpecialVarFieldDefinition Object Properties 189
SQLExpressionFieldDefinition Object..........190
SQLExpressionFieldDefinition Object
methods ..191

SQLExpressionFieldDefinition Object
Properties ..190

SQLExpressionFieldDefinitions Collection ...191
SQLExpressionFieldDefinitions Collection
methods ..192

SQLExpressionFieldDefinitions Collection
Properties ..191

SubreportLink Object.................................. 193
SubreportLink Object Properties 193
SubreportLinks Collection 193
SubreportLinks Collection methods 193
SubreportLinks Collection Properties 193
SubreportObject Object 195
SubreportObject Object methods................ 196
SubreportObject Object Properties.............. 195
SummaryFieldDefinition Object.................. 198
SummaryFieldDefinition Object methods.... 199
SummaryFieldDefinition Object Properties . 198
SummaryFieldDefinitions Collection 200
SummaryFieldDefinitions Collection
methods .. 200

SummaryFieldDefinitions Collection
Properties.. 200

TableLink Object Object............................. 202
TableLink Object Properties 202
TableLinks Collection 202
TableLinks Collection methods 203
TableLinks Collection Properties 202
TextObject Object 204
TextObject Object methods 206
TextObject Object Properties 204

Report Engine
API ... 31
before making calls....................................... 27
distributing applications 64
introduction.. 26
using .. 28

Report Engine API
overview .. 31
structures .. 54
using in Visual Basic 5
variable length strings 51

report groups, hierarchical relationships 5
Report Object

obtaining in VB... 14
using in VB ... 15

Report Viewer
ActiveX Object Model 245
closeCurrentView method, Java Bean.......... 274
CREventInfo Object 247
CREventInfo Object methods 247
CREventInfo Object Properties 247
CRField Object ... 246
CRField Object Properties 246
CRFields Collection 246
CRFields Collection Properties 246
CRViewer Object.. 247
CRViewer Object Events 255
676 Crystal Reports User’s Guide

CRViewer Object methods 249
CRViewer Object Properties 248
CRVTrackCursorInfo Object 266
CRVTrackCursorInfo Object Properties 266
Enumerated Types 268
Events, Java Bean.. 276
exportView method, Java Bean 274
Java Bean ... 245
methods, Java Bean 273
printView method, Java Bean...................... 274
Properties, Java Bean 271
refreshReport method, Java Bean 275
searchForText method, Java Bean 275
ServerRequestEvent, Java Bean 276
showLastPage method, Java Bean 275
showPage method, Java Bean 276
stopAllCommands method, Java Bean......... 276
ViewChangeEvent, Java Bean 276
WebReportBroker Object 266
WebReportSource Object 267
WebReportSource Object methods 267
WebReportSource Object Properties........... 267

reports
and secure data in Crystal Smart Viewer 237
creating formatted bound 22
establishing custom-print link 36
exporting .. 56
moving through with Crystal Smart Viewer . 239
printing with Crystal Smart Viewer.............. 240
specifying with Crystal Smart Viewer 237

Reset method
CrystalComObject 596
Report Designer ExportOptions Object 104

RowCount property
CrystalComObject 591

Rowset Object
adding fields... 577

S
sample code

Crystal ActiveX control in Visual Basic
Creating a Bound Report.......................... 22
Creating a formatted Bound Report at

runtime ... 23

Crystal Report Engine Automation Server in Visual
Basic

Creating an Application object14
handling errors ...16
Handling Preview Window events............17
Obtaining a report object14
releasing objects.......................................15
Using the Report object15

Crystal Report Engine in C
Custom-Print link40

Crystal Report Engine in Visual Basic
passing dates/date ranges............................7

Crystal Report Viewer in VB Script242
Crystal Report Viewer in Visual
Basic236–??, 237, 238, 239, 240, ??–241

RDC in Visual Basic
Add method (ReportAlerts collection)165
ConvertDatabaseDriver method87
GetVersion method69
ReimportSubreport method.....................197

SaveAs method
Report Designer Report Object....................160

scaling, axes ..4
SearchButtonClicked Event

Report Viewer CRViewer Object263
SearchByFormula method

Report Viewer CRViewer Object252
SearchExpertButtonClicked Event

Report Viewer CRViewer Object263
SearchForText method

Report Viewer CRViewer Object253
section codes

decoding...48
working with...46

Section Map ..49
SelectionFormulaBuilt Event

Report Viewer CRViewer Object263
SelectionFormulaButtonClicked Event

Report Viewer CRViewer Object264
SelectPrinter method

Report Designer Report Object....................160
SetActiveDataSource function

PESetTablePrivateInfo..................................604
SetDataSource method

Report Designer Database Object..................90
Report Designer DatabaseTable Object95

SetDialogParentWindow method
Report Designer Report Object....................161

SetEvaluateConditionField method
Report Designer RunningTotalFieldDefinition
Object ...170
Crystal Reports User’s Guide 677

SetInstanceIDField method
Report Designer Area Object.........................76

SetLineSpacing method
Report Designer FieldObject Object............111
Report Designer TextObject Object.............206

SetLogOnInfo method
Report Designer DatabaseTable Object96

SetMatchLogOnInfo method
Report Designer Application Object73

SetMorePrintEngineErrorMessages method
Report Designer Application Object73

SetNoEvaluateCondition method
Report Designer RunningTotalFieldDefinition
Object ...171

SetNoResetCondition method
Report Designer RunningTotalFieldDefinition
Object ...171

SetNthDefaultValue method
Report Designer ParameterFieldDefinition
Object ...148

SetOleLocation method
Report Designer OleObject Object129

SetParentIDField method
Report Designer Area Object.........................76

SetReportVariableValue method
Report Designer Report Object....................161

SetResetConditionField method
Report Designer RunningTotalFieldDefinition
Object ...171

SetSecondarySummarizedField method
Report Designer RunningTotalFieldDefinition
Object ...171

Report Designer SummaryFieldDefinition
Object ...199

SetSessionInfo method
Report Designer DatabaseTable Object96

SetSummarizedField method
Report Designer RunningTotalFieldDefinition
Object ...172

Report Designer SummaryFieldDefinition
Object ...199

SetTableLocation method
Report Designer DatabaseTable Object97

SetText method
Report Designer TextObject Object.............206

SetUnboundFieldSource method
Report Designer FieldObject Object............111

ShowFirstPage method
Report Viewer CRViewer Object253

ShowGroup Event
Report Viewer CRViewer Object264

ShowGroup method
Report Viewer CRViewer Object253

ShowLastPage method
Report Viewer CRViewer Object................. 253

ShowNextPage method
Report Viewer CRViewer Object................. 253

ShowNthPage method
Report Viewer CRViewer Object................. 254

ShowPreviousPage method
Report Viewer CRViewer Object................. 254

Smart Viewers
see Crystal Smart Viewer

StopButtonClicked Event
Report Viewer CRViewer Object................. 265

structures
CRPE .. 453
Microsoft Windows 533
Print Engine .. 453
Report Engine API ... 54

subreports
ondemand and hyperlinks............................... 5
reimporting... 197
working with .. 55

T
Tables

Error, See User-Defined Functions, Errors in C.
Function Definition, See User-Defined Functions,
programming in C.

Function Example, See User-Defined Functions,
programming in C.

Function Template, See User-Defined Functions,
programming in C.

TermForJob ... 615
implementing ... 622
See also Modules, UFJOB
See also User-Defined Functions,
programming in C.

TestConnectivity method
Report Designer DatabaseTable Object......... 97

titles, default ... 4
Type Library, Crystal Data Source...................... 597

U
UFEndJob.. 633, 643

See also User-Defined Functions, programming in
Delphi.

See also User-Defined Functions, programming in
VB.

UFInitialize ... 633, 642
See also User-Defined Functions, programming in
Delphi.

See also User-Defined Functions, programming in
VB.
678 Crystal Reports User’s Guide

UFJOB .. 620
See also User-Defined Functions, programming in C

UFL, See User-Defined Functions
UFStartJob ...633, 643

See also User-Defined Functions, programming in
Delphi.

See also, User-Defined Functions, programming in
VB.

UFTerminate..633, 643
See also User-Defined Functions, programming in
Delphi.

See also User-Defined Functions, programming in
VB.

User Function Libraries, See User-Defined Functions
User-Defined Errors

see User-Defined Functions, errors in C.
User-Defined Functions

arrays in Delphi .. 640
arrays in VB .. 630
data types in C.. 607
data types in Delphi 640
errors in C .. 616
errors in Delphi. ... 642
errors in VB .. 632
function name prefixing in Delphi 641
function name prefixing in VB 631
implementing in C 615
naming in C ... 606
overview in C ... 606
overview in Delphi 636
overview in VB... 624
passing parameters by reference and by
value in VB ... 632

passing parameters by value and by
reference in Delphi 641

programming in C606–622
programming in Delphi 636
programming in VB 624
reserved names in Delphi 640
reserved names in VB 630
return types in C ... 608
sample Automation Server in VB 633
sample in C .. 617
special purpose functions in Delphi 642
special purpose functions in VB 632
User-Defined Functions in C....................... 605
User-Defined Functions in Delphi 635
User-Defined Functions in VB 623
using in VB... 629
variable types in VB.................................... 630

using
Crystal Report Engine API in Visual Basic........ 5

the Crystal Report Engine28
the Crystal Report Engine API32

UXDDiskOptions structure522
UXDMAPIOptions structure...............................523
UXDPostFolderOptions structure525
UXDSMIOptions structure524
UXDVIMOptions structure.................................526
UXFCharSeparatedOptions structure527
UXFCommaTabSeparatedOptions structure528
UXFDIFOptions structure...................................528
UXFHTML3Options structure529
UXFODBCOptions structure530
UXFPaginatedTextOptions structure...................530
UXFRecordStyleOptions structure531

V
variable length strings ..51
VB syntax

PEAddParameterCurrentRange279
PEAddParameterCurrentValue280
PEAddParameterDefaultValue281
PECancelPrintJob ..281
PECanCloseEngine282
PECheckFormula...283
PECheckGroupSelectionFormula284
PECheckNthTableDifferences285
PECheckSelectionFormula...........................286
PECheckSQLExpression...............................286
PEClearParameterCurrentValuesAndRanges.287
PECloseButtonClickedEventInfo...................454
PECloseEngine ..288
PEClosePrintJob...289
PECloseSubreport ..289
PECloseWindow ...290
PEConvertPFInfotoVInfo291
PEConvertVInfotoPFInfo292
PEDeleteNthGroupSortField293
PEDeleteNthParameterDefaultValue............294
PEDeleteNthSortField295
PEDiscardSavedData296
PEDrillOnGroupEventInfo structure456
PEEnableEventInfo structure458
PEEnableNthAlert ..297
PEEnableProgressDialog298
PEExportOptions structure461
PEExportPrintWindow299
PEExportTo..300
PEFieldValueInfo structure...........................463
PEFontColorInfo structure............................465
PEFormulaSyntax structure466
Crystal Reports User’s Guide 679

PEFreeDevMode ...300
PEGeneralPrintWindowEventInfo structure ..467
PEGetAllowPromptDialog301
PEGetAreaFormat ..302
PEGetAreaFormatFormula303
PEGetErrorCode ..304
PEGetErrorText ..305
PEGetExportOptions....................................306
PEGetFieldMappingType307
PEGetFormula ...308
PEGetFormulaSyntax309
PEGetGraphAxisInfo310
PEGetGraphFontInfo310
PEGetGraphOptionInfo311
PEGetGraphTextDefaultOption312
PEGetGraphTextInfo313
PEGetGraphTypeInfo314
PEGetGroupCondition316
PEGetGroupOptions317
PEGetGroupSelectionFormula318
PEGetHandleString......................................319
PEGetJobStatus ..320
PEGetMargins ...320
PEGetNDetailCopies321
PEGetNFormulas ...322
PEGetNGroups..323
PEGetNGroupSortFields324
PEGetNPages ..324
PEGetNParameterCurrentRanges325
PEGetNParameterCurrentValues..................326
PEGetNParameterDefaultValues327
PEGetNParameterFields328
PEGetNReportAlerts328
PEGetNSections ..329
PEGetNSectionsInArea329
PEGetNSortFields ..330
PEGetNSQLExpressions...............................331
PEGetNSubreportsInSection331
PEGetNTables ...332
PEGetNthAlertInstanceInfo333
PEGetNthFormula334
PEGetNthGroupSortField336
PEGetNthParameterCurrentRange337
PEGetNthParameterCurrentValue338
PEGetNthParameterDefaultValue339
PEGetNthParameterField341
PEGetNthParameterType341
PEGetNthParameterValueDescription..........342
PEGetNthReportAlert343
PEGetNthSortField344

PEGetNthSQLExpression............................. 345
PEGetNthSubreportInSection 346
PEGetNthTableLocation.............................. 347
PEGetNthTableLogOnInfo........................... 348
PEGetNthTableSessionInfo.......................... 350
PEGetNthTableType 351
PEGetParameterMinMaxValue 352
PEGetParameterPickListOption 354
PEGetParameterValueInfo 355
PEGetPrintDate ... 356
PEGetPrintOptions 357
PEGetReportOptions 357
PEGetReportSummaryInfo 358
PEGetReportTitle .. 359
PEGetSectionCode 360
PEGetSectionFormat 361
PEGetSectionFormatFormula....................... 362
PEGetSectionHeight 363
PEGetSelectedPrinter 364
PEGetSelectionFormula............................... 365
PEGetSQLExpression................................... 366
PEGetSQLQuery ... 367
PEGetSubreportInfo 368
PEGetVersion.. 369
PEGetWindowHandle................................. 370
PEGetWindowOptions................................ 371
PEGraphAxisInfo structure 470
PEGraphOptionInfo structure 472
PEGraphTypeInfo structure 473
PEGroupOptions structure 476
PEGroupTreeButtonClickedEventInfo
structure.. 477

PEHasSavedData .. 372
PEIsPrintJobFinished 373
PEJobInfo structure...................................... 478
PELogOffServer ... 374
PELogOnInfo structure 481
PELogOnServer ... 375
PELogOnSQLServerWithPrivateInfo 376
PENextPrintWindowMagnification 377
PEOpenEngine .. 378
PEOpenPrintJob .. 379
PEOpenSubreport 380
PEOutputToPrinter 381
PEOutputToWindow................................... 384
PEParametePickListOption structure............ 488
PEParameterFieldInfo structure.................... 486
PEParameterValueInfo structure 489
PEPrintControlsShowing.............................. 385
PEPrintOptions structure 490
680 Crystal Reports User’s Guide

PEPrintReport ... 386
PEPrintWindow .. 387
PEReadingRecordsEventInfo structure 491
PEReimportSubreport.................................. 388
PEReportAlertInfo structure 495
PEReportOptions structure453, 498
PEReportSummaryInfo structure.................. 499
PESearchButtonClickedEventInfo structure .. 500
PESectionOptions structure......................... 503
PESelectPrinter ... 390
PESessionInfo structure 504
PESetAllowPromptDialog 391
PESetAreaFormat .. 392
PESetAreaFormatFormula 393
PESetDialogParentWindow......................... 393
PESetFieldMappingType 401
PESetFont ... 404
PESetFormula ... 406
PESetFormulaSyntax 407
PESetGraphAxisInfo 407
PESetGraphFontInfo.................................... 408
PESetGraphOptionInfo 409
PESetGraphTextDefaultOption.................... 410
PESetGraphTextInfo 411
PESetGraphTypeInfo................................... 412
PESetGroupCondition 414
PESetGroupOptions 415
PESetGroupSelectionFormula 416
PESetMargins.. 417
PESetNDetailCopies 418
PESetNthAlertConditionFormula 419
PESetNthAlertDefaultMessage..................... 419
PESetNthAlertMessageFormula 420
PESetNthGroupSortField 421
PESetNthParameterDefaultValue................. 422
PESetNthParameterField 424
PESetNthParameterValueDescription 425
PESetNthSortField....................................... 426
PESetNthTableLocation 427
PESetNthTableLogOnInfo 428
PESetNthTableSessionInfo 430
PESetParameterMinMaxValue..................... 432
PESetParameterPickListOption 433
PESetParameterValueInfo............................ 434
PESetPrintDate.. 435
PESetPrintOptions....................................... 436
PESetReportOptions.................................... 436
PESetReportSummaryInfo 437
PESetReportTitle ... 438
PESetSectionFormat 439

PESetSectionFormatFormula440
PESetSectionHeight441
PESetSelectionFormula442
PESetSQLExpression443
PESetSQLQuery ..444
PESetTrackCursorInfo445
PESetWindowOptions446
PEShow...Page ..447
PEShowPrintControls...................................448
PEStartEventInfo structure506
PEStartPrintJob ..449
PEStopEventInfo structure507
PESubreportInfo structure508
PETableDifferenceInfo structure510
PETableLocation structure511
PETableType structure513
PETestNthTableConnectivity450
PETrackCursorInfo structure515
PEValueInfo structure517
PEVerifyDatabase ..451
PEVersionInfo..360
PEVersionInfo structure519
PEWindowOptions structure521
PEZoomLevelChangingEventInfo structure ...522
PEZoomPreviewWindow.............................452

Verify method
Report Designer Database Object..................91

ViewChanged Event
Report Viewer CRViewer Object265

ViewChanging Event
Report Viewer CRViewer Object265

ViewReport method
Report Viewer CRViewer Object254

Visual Basic
ActiveX Controls ...10
adding ActiveX Control to project10
adding Automation Server to project13
adding Crystal Smart Viewer to project236
changing properties for ActiveX Control12
changing properties for ActiveX Control
at runtime..12

creating User-Defined Functions,
See User-Defined Functions.

dates and date ranges7
embedded quotes in VB calls6
formula language support4
hard-coded nulls in VB user defined types8
releasing objects ...15
sample Automation Server application19
section codes and ...50
solutions ...1
Crystal Reports User’s Guide 681

string issues in VB links8
using ActiveX Control11
using Automation Server14
using the Crystal Report Engine API in5
Wrapper DLL ..9

Visual Basic applications, when to open Crystal Report
Engine ..6

W
Web Reports Server, connecting to Crystal Smart Viewer

241
Windows

see Microsoft Windows

Z
Zoom method

Report Viewer CRViewer Object................. 254
ZoomLevelChanged Event

Report Viewer CRViewer Object................. 266
682 Crystal Reports User’s Guide

	Visual Basic Solutions 1
	Enhancements to the Crystal Report Print Engine API
	Version 8.5 enhancements
	Create, modify, and monitor Report Alerts
	Get report version information
	New additions to the PEReportOptions structure
	Additional error codes

	Version 8 enhancements
	Launch Seagate Analysis
	Basic and Crystal Syntax support
	Charting enhancements
	Hierarchical grouping
	Hyperlinks & On-demand subreports

	Using the Crystal Report Engine API in Visual Basic
	When to Open/Close the Crystal Report Engine
	Embedded Quotes in Visual Basic Calls to the Crystal Report Engine
	Incorrect syntax
	Correct syntax

	Passing Dates/Date Ranges in Visual Basic using the Crystal Report Engine API Calls
	Identifying String Issues in Visual Basic Links to the Crystal Report Engine
	To Identify a String Issue (bug)

	Hard-coded Nulls in Visual Basic User Defined Types
	Visual Basic Wrapper DLL
	CRPE32.DEP

	Crystal ActiveX Controls
	Adding the ActiveX Control to your Project
	Using the ActiveX Controls
	Changing Properties for the ActiveX Control
	Changing Properties at Runtime

	Crystal Report Engine Automation Server
	Adding the Automation Server to your Visual Basic Project
	Using the Automation Server in Visual Basic
	Creating an Application Object
	Obtaining a Report Object
	Using the Report Object
	Releasing Objects
	Handling Errors

	Object Name Conflicts
	Viewing the Crystal Report Engine Object Library
	Handling Preview Window Events
	Distributing the Automation Server with Visual Basic Applications
	Sample Applications

	Grid Controls and the Crystal Report Engine
	Bound Report Driver and Bound Report Files
	Crystal ActiveX Control Properties
	Custom
	DataSource (Data Control)
	BoundReportFooter (Boolean)
	BoundReportHeading (string expression)
	ReportSource (numeric expression)

	Creating a Bound Report using the Crystal ActiveX Control
	Creating a Formatted Bound Report
	Creating a Formatted Bound Report at Runtime
	Sample Application

	Crystal Report Engine 2
	Introduction to the Crystal Report Engine
	Sample Applications
	SQL and ODBC
	Exporting Reports
	Before using the Crystal Report Engine in your application
	Using the Crystal Report Engine
	Using the Crystal Report Engine API in Delphi

	Crystal Report Engine API
	Declarations for the Crystal Report Engine API (REAPI)
	Using the Crystal Report Engine API
	The Print-Only Link
	PEPrintReport Arguments
	Example code for a Print-Only Link

	The Custom-Print Link
	Coding a Custom-Print Link
	A Sample Custom-Print Link
	Code Evaluation

	Working with Parameter Values and Ranges
	Working with section codes
	Encoding
	sectionType
	groupNumber
	sectionNumber
	Decoding
	Section Map
	Section Codes in Visual Basic

	Crystal Report Engine API variable length strings
	Sample Code
	Code Evaluation
	Crystal Report Engine API structures
	Working with subreports
	Opening the primary report
	Retrieving an interim subreport handle
	Retrieving the subreport name
	Opening the subreport and retrieving the job handle
	Running other Crystal Report Engine functions

	Changing report formats
	Exporting reports
	PEExportTo overview
	PEExportOptions Structure
	Considerations when using the export functions

	Handling preview window events
	Distributing Crystal Report Engine applications
	Additional sources of information

	Report Designer Component Object Model 3
	Overview of the Report Designer Object Model
	Unification of the RDC object model
	Object Naming Conflicts
	Objects and Collections
	Application Object
	Application Object Methods
	CanClose Method (Application Object)
	GetVersion Method (Application Object)
	LogOffServer Method (Application Object)
	LogOnServer Method (Application Object)
	LogOnServerEx Method (Application Object)
	NewReport Method (Application Object)
	OpenReport Method (Application Object)
	SetMatchLogOnInfo Method (Application Object)
	SetMorePrintEngineErrorMessages Method (Application Object)

	Area Object
	Area Object Properties
	Area Object Methods
	SetInstanceIDField Method (Area Object)
	SetParentIDField (Area Object)

	Areas Collection
	Areas Collection Properties

	BlobFieldObject Object
	BlobFieldObject Object Properties

	BoxObject Object
	BoxObject Object Properties

	CrossTabGroup Object
	CrossTabGroup Properties

	CrossTabGroups Collection
	CrossTabGroups Collection Properties
	CrossTabGroups Collection Methods
	Add Method (CrossTabGroups Collection)
	Delete Method (CrossTabGroups Collection)

	CrossTabObject Object
	CrossTabObject Object Properties

	Database Object
	Database Object Properties
	Database Object Methods
	AddADOCommand Method (Database Object)
	AddOLEDBSource Method (Database Object)
	ConvertDatabaseDriver Method (Database Object)
	LogOffServer Method (Database Object)
	LogOnServer Method (Database Object)
	LogOnServerEx Method (Database Object)
	SetDataSource Method (Database Object)
	Verify Method (Database Object)

	DatabaseFieldDefinition Object
	DatabaseFieldDefinition Object Properties

	DatabaseFieldDefinitions Collection
	DatabaseFieldDefinitions Collection Properties

	DatabaseTable Object
	DatabaseTable Object Properties
	DatabaseTable Object Methods
	CheckDifferences Method (DatabaseTable Object)
	SetDataSource Method (DatabaseTable Object)
	SetLogOnInfo Method (DatabaseTable Object)
	SetSessionInfo Method (DatabaseTable Object)
	SetTableLocation Method (DatabaseTable Object)
	TestConnectivity Method (DatabaseTable Object)

	DatabaseTables Collection
	DatabaseTables Collection Properties
	DatabaseTables Collection Methods
	Add Method (DatabaseTables Collection)
	Delete Method (DatabaseTables Collection)

	ExportOptions Object
	ExportOptions Object Properties
	ExportOptions Object Methods
	PromptForExportOptions Method (ExportOptions Object)
	Reset Method (ExportOptions Object)

	FieldDefinitions Collection
	FieldDefinitions Collection Properties
	FieldDefinitions Collection Methods
	Add Method (FieldDefinitions Collection)
	Delete Method (FieldDefinitions Collection)

	FieldMappingData Object
	FieldMappingData Object Properties

	FieldObject Object
	FieldObject Object Methods
	SetLineSpacing Method (FieldObject Object)
	SetUnboundFieldSource Method (FieldObject Object)

	FormattingInfo Object
	FormattingInfo Object Properties

	FormulaFieldDefinition Object
	FormulaFieldDefinition Object Properties
	FormulaFieldDefinition Object Methods
	Check Method (FormulaFieldDefinition Object)

	FormulaFieldDefinitions Collection
	FormulaFieldDefinitions Collection Properties
	FormulaFieldDefinitions Collection Methods
	Add Method (FormulaFieldDefinitions Collection)
	Delete Method (FormulaFieldDefinitions Collection)

	GraphObject Object
	GraphObject Object Properties

	GroupNameFieldDefinition Object
	GroupNameFieldDefinition Object Properties
	GroupNameFieldDefinitions Collection

	FieldDefinition Object
	FieldDefinition Object Properties

	IReportObject
	ReportObject Properties

	LineObject Object
	LineObject Object Properties

	MapObject Object
	MapObject Object Properties

	ObjectSummaryFieldDefinitions Collection
	ObjectSummaryFieldDefinitions Collection Properties
	ObjectSummaryFieldDefinitions Collection Methods
	Add Method (ObjectSummaryFieldDefinitions Collection)
	Delete Method (ObjectSummaryFieldDefinitions Collection)

	OlapGridObject Object
	OlapGridObject Object Properties

	OleObject Object
	OleObject Object Properties
	OleObject Object Methods
	SetOleLocation Method (OleObject Object)

	Page Object
	Page Object Properties
	Page Object Methods
	RenderEPF Method (Page Object)
	RenderHTML Method (Page Object)

	PageEngine Object
	PageEngine Object Properties
	PageEngine Object Methods
	CreatePageGenerator Method (PageEngine Object)
	RenderTotallerETF Method (PageEngine Object)
	RenderTotallerHTML Method (PageEngine Object)

	PageGenerator Object
	PageGenerator Object Properties
	PageGenerator Object Methods
	CreateSubreportPageGenerator Method (PageGenerator Object)
	DrillOnGraph Method (PageGenerator Object)
	DrillOnMap Method (PageGenerator Object)
	DrillOnSubreport Method (PageGenerator Object)
	Export Method (PageGenerator Object)
	FindText Method (PageGenerator Object)
	GetPageNumberForGroup Method (PageGenerator Object)
	RenderTotallerETF Method (PageGenerator Object)
	RenderTotallerHTML Method (PageGenerator Object)

	Pages Collection
	Pages Collection Properties

	ParameterFieldDefinition Object
	ParameterFieldDefinition Object Properties
	ParameterFieldDefinition Object Methods
	AddCurrentRange Method (ParameterFieldDefinition Object)
	AddCurrentValue Method (ParameterFieldDefinition Object)
	AddDefaultValue Method (ParameterFieldDefinition Object)
	ClearCurrentValueAndRange Method (ParameterFieldDefinition Object)
	DeleteNthDefaultValue Method (ParameterFieldDefinition Object)
	GetNthCurrentRange Method (ParameterFieldDefinition Object)
	GetNthCurrentValue Method (ParameterFieldDefinition Object)
	GetNthDefaultValue Method (ParameterFieldDefinition Object)
	SetNthDefaultValue Method (ParameterFieldDefinition Object)

	ParameterFieldDefinitions Collection
	ParameterFieldDefinitions Collection Properties
	ParameterFieldDefinitions Collection Methods
	Add Method (ParameterFieldDefinitions Collection)
	Delete Method (ParameterFieldDefinitions Collection)

	PrintingStatus Object
	PrintingStatus Object Properties

	Report Object
	Report Object Properties
	Report Object Methods
	AddGroup Method (Report Object)
	AddReportVariable Method (Report Object)
	AutoSetUnboundFieldSource Method (Report Object)
	CancelPrinting Method (Report Object)
	DeleteGroup Method (Report Object)
	DiscardSavedData Method (Report Object)
	Export Method (Report Object)
	GetNextRows Method (Report Object)
	GetReportVariableValue Method (Report Object)
	OpenSubreport Method (Report Object)
	PrinterSetup Method (Report Object)
	PrintOut Method (Report Object)
	ReadRecords Method (Report Object)
	SaveAs Method (Report Object)
	SelectPrinter Method (Report Object)
	SetDialogParentWindow Method (Report Object)
	SetReportVariableValue Method (Report Object)

	Report Object Events
	AfterFormatPage Event (Report Object)
	BeforeFormatPage Event (Report Object)
	FieldMapping Event (Report Object)
	NoData Event (Report Object)

	ReportAlert Object
	ReportAlert Object Properties

	ReportAlerts Collection
	ReportAlerts Collection Properties
	ReportAlerts Collection Methods
	Add Method (ReportAlerts Collection)
	Delete Method (ReportAlerts Collection)

	ReportAlertInstance Object
	ReportAlertInstance Object Properties

	ReportAlertInstances Collection
	ReportAlertInstances Properties

	ReportObjects Collection
	ReportObjects Collection Properties

	RunningTotalFieldDefinition Object
	RunningTotalFieldDefinition Object Properties
	RunningTotalFieldDefinition Object Methods
	SetEvaluateConditionField Method (RunningTotalFieldDefinition Object)
	SetNoEvaluateCondition Method (RunningTotalFieldDefinition Object)
	SetNoResetCondition Method (RunningTotalFieldDefinition Object)
	SetResetConditionField Method (RunningTotalFieldDefinition Object)
	SetSecondarySummarizedField Method (RunningTotalFieldDefinition Object)
	SetSummarizedField Method (RunningTotalFieldDefinition Object)

	RunningTotalFieldDefinitions Collection
	RunningTotalFieldDefinitions Collection Properties
	RunningTotalFieldDefinitions Collection Methods
	Add Method (RunningTotalFieldDefinitions Collection)
	Delete Method (RunningTotalFieldDefinitions Collection)

	Section Object
	Section Object Properties
	Section Object Methods
	AddBlobFieldObject Method (Section Object)
	AddBoxObject Method (Section Object)
	AddCrossTabObject Method (Section Object)
	AddFieldObject Method (Section Object)
	AddGraphObject Method (Section Object)
	AddLineObject Method (Section Object)
	AddPictureObject Method (Section Object)
	AddSpecialVarFieldObject Method (Section Object)
	AddSubreportObject Method (Section Object)
	AddSummaryFieldObject Method (Section Object)
	AddTextObject Method (Section Object)
	AddUnboundFieldObject Method (Section Object)
	DeleteObject Method (Section Object)
	ImportSubreport Method (Section Object)

	Section Object Events
	Format Event (Section Object)

	Sections Collection
	Sections Collection Properties
	Sections Collection Methods
	Add Method (Sections Collection)
	Delete Method (Sections Collection)

	SortField Object
	SortField Object Properties

	SortFields Collection
	SortFields Collection Properties
	SortFields Collection Methods
	Add Method (SortFields Collection)
	Delete Method (SortFields Collection)

	SpecialVarFieldDefinition Object
	SpecialVarFieldDefinition Object Properties

	SQLExpressionFieldDefinition Object
	SQLExpressionFieldDefinition Object Properties
	SQLExpressionFieldDefinition Object Methods
	Check Method (SQLExpressionFieldDefinition Object)

	SQLExpressionFieldDefinitions Collection
	SQLExpressionFieldDefinitions Collection Properties
	SQLExpressionFieldDefinitions Collection Methods
	Add Method (SQLExpressionFieldDefinitions Collection)
	Delete Method (SQLExpressionFieldDefinitions Collection)

	SubreportLink Object
	SubreportLink Object Properties

	SubreportLinks Collection
	SubreportLinks Collection Properties
	SubreportLinks Collection Methods
	Add Method (SubreportLinks Collection)
	Delete Method (SubreportLinks Collection)

	SubreportObject Object
	SubreportObject Object Properties
	SubreportObject Object Methods
	OpenSubreport Method (SubreportObject Object)
	ReImportSubreport Method (Subreport Object)

	SummaryFieldDefinition Object
	SummaryFieldDefinition Object Properties
	SummaryFieldDefinition Object Methods
	SetSecondarySummarizedField Method (SummaryFieldDefinition Object)
	SetSummarizedField Method (SummaryFieldDefinition Object)

	SummaryFieldDefinitions Collection
	SummaryFieldDefinitions Collection Properties
	SummaryFieldDefinitions Collection Methods
	Add Method (SummaryFieldDefinitions Collection)
	Delete Method (SummaryFieldDefinitions Collection)

	TableLink Object
	TableLink Object Properties

	TableLinks Collection
	TableLinks Collection Properties
	TableLinks Collection Methods
	Add Method (TableLinks Collection)
	Delete Method (TableLinks Collection)

	TextObject Object
	TextObject Object Properties
	TextObject Object Methods
	SetLineSpacing Method (TextObject Object)
	SetText Method (TextObject Object)

	Enumerated Types
	CRAlignment
	CRAMPMType
	CRAreaKind
	CRBarSize
	CRBindingMatchType
	CRBooleanOutputType
	CRConvertDateTimeType
	CRCurrencyPositionType
	CRCurrencySymbolType
	CRDatabaseType
	CRDateCalendarType
	CRDateEraType
	CRDateOrder
	CRDateWindowsDefaultType
	CRDayType
	CRDiscreteOrRangeKind
	CRDivisionMethod
	CRExchangeDestinationType
	CRExportDestinationType
	CRExportFormatType
	CRFieldKind
	CRFieldMappingType
	CRFieldValueType
	CRFormulaSyntax
	CRGraphColor
	CRGraphDataPoint
	CRGraphDataType
	CRGraphDirection
	CRGraphType
	CRGridlineType
	CRGroupCondition
	CRHierarchicalSummaryType
	CRHourType
	CRHTMLPageStyle
	CRHTMLToolbarStyle
	CRImageType
	CRLeadingDayPosition
	CRLeadingDayType
	CRLegendPosition
	CRLineSpacingType
	CRLineStyle
	CRLinkJoinType
	CRLinkLookUpType
	CRMarkerShape
	CRMarkerSize
	CRMinuteType
	CRMonthType
	CRNegativeType
	CRNumberFormat
	CRObjectKind
	CRPaperOrientation
	CRPaperSize
	CRPaperSource
	CRParameterFieldType
	CRParameterPickListSortMethod
	CRPieLegendLayout
	CRPieSize
	CRPlaceHolderType
	CRPrinterDuplexType
	CRPrintingProgress
	CRRangeInfo
	CRRenderResultType
	CRReportFileFormat
	CRReportKind
	CRReportVariableValueType
	CRRotationAngle
	CRRoundingType
	CRRunningTotalCondition
	CRSearchDirection
	CRSecondType
	CRSliceDetachment
	CRSortDirection
	CRSpecialVarType
	CRSummaryType
	CRTableDifferences
	CRTextFormat
	CRTimeBase
	CRTopOrBottomNGroupSortOrder
	CRValueFormatType
	CRViewingAngle
	CRYearType

	Programming the Crystal Report Viewers 4
	Enhancements to the Report Viewer
	Application Development with Crystal Report Viewers
	Crystal Report Viewer for ActiveX
	Adding the Report Viewer to a Visual Basic project
	Using the CRViewer object
	Specifying a report
	Working with secure data in reports
	Handling Report Viewer events
	Moving through a report
	Printing the report
	Controlling the appearance of the Report Viewer
	Connecting to the Web Reports Server

	The Crystal Report Viewer Java Bean
	Adding the Report Viewer Bean to the project
	Creating a simple applet with the Report Viewer

	Report Viewer Object Model 5
	Report Viewer/ActiveX Object Model Technical Reference
	CRField Object (CRVIEWERLib)
	CRField Object Properties

	CRFields Collection (CRVIEWERLib)
	CRFields Collection Properties

	CRVEventInfo Object (CRVIEWERLib)
	CRVEventInfo Object Properties

	CRVEventInfo Object Methods
	GetFields Method (CRVEventInfo Object)

	CRViewer Object (CRVIEWERLib)
	CRViewer Object Properties
	CRViewer Object Methods
	ActivateView Method (CRViewer Object)
	AddView Method (CRViewer Object)
	CloseView Method (CRViewer Object)
	GetCurrentPageNumber Method (CRViewer Object)
	GetViewName Method (CRViewer Object)
	GetViewPath Method (CRViewer Object)
	PrintReport Method (CRViewer Object)
	Refresh Method (CRViewer Object)
	SearchByFormula Method (CRViewer Object)
	SearchForText Method (CRViewer Object)
	ShowFirstPage Method (CRViewer Object)
	ShowGroup Method (CRViewer Object)
	ShowLastPage Method (CRViewer Object)
	ShowNextPage Method (CRViewer Object)
	ShowNthPage Method (CRViewer Object)
	ShowPreviousPage Method (CRViewer Object)
	ViewReport Method (CRViewer Object)
	Zoom Method (CRViewer Object)

	CRViewer Object Events
	Clicked Event (CRViewer Object)
	CloseButtonClicked Event (CRViewer Object)
	DblClicked Event (CRViewer Object)
	DownloadFinished Event (CRViewer Object)
	DownloadStarted Event (CRViewer Object)
	DrillOnDetail Event (CRViewer Object)
	DrillOnGraph Event (CRViewer Object)
	DrillOnGroup Event (CRViewer Object)
	DrillOnSubreport Event (CRViewer Object)
	ExportButtonClicked Event (CRViewer Object)
	FirstPageButtonClicked Event (CRViewer Object)
	GoToPageNClicked Event (CRViewer Object)
	GroupTreeButtonClicked Event (CRViewer Object)
	HelpButtonClicked Event (CRViewer Object)
	LastPageButtonClicked Event (CRViewer Object)
	NextPageButtonClicked Event (CRViewer Object)
	OnReportSourceError Event (CRViewer Object)
	PrevPageButtonClicked Event (CRViewer Object)
	PrintButtonClicked Event (CRViewer Object)
	RefreshButtonClicked Event (CRViewer Object)
	SearchButtonClicked Event (CRViewer Object)
	SearchExpertButtonClicked Event (CRViewer Object)
	SelectionFormulaBuilt Event (CRViewer Object)
	SelectionFormulaButtonClicked Event (CRViewer Object)
	ShowGroup Event (CRViewer Object)
	StopButtonClicked Event (CRViewer Object)
	ViewChanged Event (CRViewer Object)
	ViewChanging Event (CRViewer Object)
	ZoomLevelChanged Event (CRViewer Object)

	CRVTrackCursorInfo Object (CRVIEWERLib)
	CRVTrackCursorInfo Object Properties

	WebReportBroker Object (CRWEBREPORTBROKERLib)
	WebReportSource Object (CRWEBREPORTBROKERLib)
	WebReportSource Object Properties

	WebReportSource Object Methods
	AddParameter Method (WebReportSource Object)
	AddParameterEx Method (WebReportSource Object)

	Enumerated Types
	CRDrillType (CRViewerLib)
	CRFieldType (CRViewerLib)
	CRLoadingType (CRViewerLib)
	CRObjectType (CRViewerLib)
	CRTrackCursor (CRViewerLib)

	The Report Viewer/Java Bean Technical Reference
	The Report Viewer/Java Bean Properties
	The Report Viewer/Java Bean Methods
	closeCurrentView
	exportView
	printView
	refreshReport
	searchForText
	showLastPage
	showPage
	stopAllCommands

	The Report Viewer/Java Bean Events
	ServerRequestEvent
	ViewChangeEvent

	Crystal Report Engine 6
	Print Engine Functions
	PEAddParameterCurrentRange
	PEAddParameterCurrentValue
	PEAddParameterDefaultValue
	PECancelPrintJob
	PECanCloseEngine
	PECheckFormula
	PECheckGroupSelectionFormula
	PECheckNthTableDifferences
	PECheckSelectionFormula
	PECheckSQLExpression
	PECloseEngine
	PEClosePrintJob
	PECloseSubreport
	PECloseWindow
	PEConvertPFInfotoVInfo
	PEConvertVInfotoPFInfo
	PEDeleteNthGroupSortField
	PEDeleteNthParameterDefaultValue
	PEDeleteNthSortField
	PEDiscardSavedData
	PEEnableNthAlert
	PEEnableEvent
	PEEnableProgressDialog
	PEExportPrintWindow
	PEExportTo
	PEFreeDevMode
	PEGetAllowPromptDialog
	PEGetAreaFormat
	PEGetAreaFormatFormula
	PEGetEnableEventInfo
	PEGetErrorCode
	PEGetErrorText
	PEGetExportOptions
	PEGetFieldMappingType
	PEGetFormula
	PEGetFormulaSyntax
	PEGetGraphAxisInfo
	PEGetGraphFontInfo
	PEGetGraphOptionInfo
	PEGetGraphTextDefaultOption
	PEGetGraphTextInfo
	PEGetGraphTypeInfo
	PEGetGroupCondition
	PEGetGroupOptions
	PEGetGroupSelectionFormula
	PEGetHandleString
	PEGetJobStatus
	PEGetMargins
	PEGetNDetailCopies
	PEGetNFormulas
	PEGetNGroups
	PEGetNGroupSortFields
	PEGetNPages
	PEGetNParameterCurrentRanges
	PEGetNParameterCurrentValues
	PEGetNParameterDefaultValues
	PEGetNParameterFields
	PEGetNReportAlerts
	PEGetNSections
	PEGetNSectionsInArea
	PEGetNSortFields
	PEGetNSQLExpressions
	PEGetNSubreportsInSection
	PEGetNTables
	PEGetNthAlertInstanceInfo
	PEGetNthFormula
	PEGetNthGroupSortField
	PEGetNthParameterCurrentRange
	PEGetNthParameterCurrentValue
	PEGetNthParameterDefaultValue
	PEGetNthParameterField
	PEGetNthParameterType
	PEGetNthParameterValueDescription
	PEGetNthReportAlert
	PEGetNthSortField
	PEGetNthSQLExpression
	PEGetNthSubreportInSection
	PEGetNthTableLocation
	PEGetNthTableLogOnInfo
	PEGetNthTablePrivateInfo
	PEGetNthTableSessionInfo
	PEGetNthTableType
	PEGetParameterMinMaxValue
	PEGetParameterPickListOption
	PEGetParameterValueInfo
	PEGetPrintDate
	PEGetPrintOptions
	PEGetReportOptions
	PEGetReportSummaryInfo
	PEGetReportTitle
	PEGetReportVersion
	PEGetSectionCode
	PEGetSectionFormat
	PEGetSectionFormatFormula
	PEGetSectionHeight
	PEGetSelectedPrinter
	PEGetSelectionFormula
	PEGetSQLExpression
	PEGetSQLQuery
	PEGetSubreportInfo
	PEGetTrackCursorInfo
	PEGetVersion
	PEGetWindowHandle
	PEGetWindowOptions
	PEHasSavedData
	PEIsPrintJobFinished
	PELogOffServer
	PELogOnServer
	PELogOnSQLServerWithPrivateInfo
	PENextPrintWindowMagnification
	PEOpenEngine
	PEOpenPrintJob
	PEOpenSubreport
	PEOutputToPrinter
	PEOutputToWindow
	PEPrintControlsShowing
	PEPrintReport
	PEPrintWindow
	PEReimportSubreport
	PESelectPrinter
	PESetAllowPromptDialog
	PESetAreaFormat
	PESetAreaFormatFormula
	PESetDialogParentWindow
	PESetEventCallback
	PESetFieldMappingType
	PESetFont
	PESetFormula
	PESetFormulaSyntax
	PESetGraphAxisInfo
	PESetGraphFontInfo
	PESetGraphOptionInfo
	PESetGraphTextDefaultOption
	PESetGraphTextInfo
	PESetGraphTypeInfo
	PESetGroupCondition
	PESetGroupOptions
	PESetGroupSelectionFormula
	PESetMargins
	PESetNDetailCopies
	PESetNthAlertConditionFormula
	PESetNthAlertDefaultMessage
	PESetNthAlertMessageFormula
	PESetNthGroupSortField
	PESetNthParameterDefaultValue
	PESetNthParameterField
	PESetNthParameterValueDescription
	PESetNthSortField
	PESetNthTableLocation
	PESetNthTableLogOnInfo
	PESetNthTablePrivateInfo
	PESetNthTableSessionInfo
	PESetParameterMinMaxValue
	PESetParameterPickListOption
	PESetParameterValueInfo
	PESetPrintDate
	PESetPrintOptions
	PESetReportOptions
	PESetReportSummaryInfo
	PESetReportTitle
	PESetSectionFormat
	PESetSectionFormatFormula
	PESetSectionHeight
	PESetSelectionFormula
	PESetSQLExpression
	PESetSQLQuery
	PESetTrackCursorInfo
	PESetWindowOptions
	PEShow...Page
	PEShowPrintControls
	PEStartPrintJob
	PETestNthTableConnectivity
	PEVerifyDatabase
	PEZoomPreviewWindow

	Print Engine Structures
	PEAlertInstanceInfo
	PECloseButtonClickedEventInfo
	PEDrillOnDetailEventInfo
	PEDrillOnGroupEventInfo
	PEEnableEventInfo
	PEExportOptions
	PEFieldMappingEventInfo
	PEFieldValueInfo
	PEFontColorInfo
	PEFormulaSyntax
	PEGeneralPrintWindowEventInfo
	PEGraphAxisInfo
	PEGraphOptionInfo
	PEGraphTypeInfo
	PEGroupOptions
	PEGroupTreeButtonClickedEventInfo
	PEHyperlinkEventInfo
	PEJobInfo
	PELaunchSeagateAnalysisEventInfo
	PELogOnInfo
	PEMouseClickEventInfo
	PEObjectInfo
	PEParameterFieldInfo
	PEParameterPickListOption
	PEParameterValueInfo
	PEPrintOptions
	PEReadingRecordsEventInfo
	PEReportFieldMappingInfo
	PEReportAlertInfo
	PEReportOptions
	PEReportSummaryInfo
	PESearchButtonClickedEventInfo
	PESectionOptions
	PESessionInfo
	PEShowGroupEventInfo
	PEStartEventInfo
	PEStopEventInfo
	PESubreportInfo
	PETableDifferenceInfo
	PETablePrivateInfo
	PETableType
	PETrackCursorInfo
	PEValueInfo
	PEVersionInfo
	PEWindowOptions
	PEZoomLevelChangingEventInfo
	UXDDiskOptions
	UXDMAPIOptions
	UXDSMIOptions
	UXDPostFolderOptions
	UXDVIMOptions
	UXFCharSeparatedOptions
	UXFCommaTabSeparatedOptions
	UXFDIFOptions
	UXFHTML3Options
	UXFODBCOptions
	UXFPaginatedTextOptions
	UXFRecordStyleOptions

	Microsoft Windows Structures
	COLORREF
	DEVMODE

	Print Engine Constants
	Area/Section Format Formula Constants
	Chart Options Constants
	Chart Bar Size Constants
	Chart Color Constants
	Chart Data Point Constants
	Chart Gridline Constants
	Chart Legend Layout Constants
	Chart Legend Placement Constants
	Chart Marker Shape Constants
	Chart Marker Size Constants
	Chart Number Format Constants
	Chart Pie Size Constants
	Chart Slice Detachment Constants
	Chart Viewing Angle Constants
	Database Type Constants
	Error Codes
	Event Id Constants
	Field Mapping Type Constants

	Graph Subtype Constants
	Bar Charts
	Line Charts
	Area Charts
	Pie Charts
	Doughnut Charts
	3D Riser Charts
	3D Surface Charts
	Scatter Charts
	Radar Charts
	Bubble Charts
	Stock (High/Low/Close Type) Charts
	Misc Chart Types

	Graph Text Font Constants
	Graph Title Type Constants
	Graph Type Constants
	Group Condition Constants
	Group Condition Masks and Type Constants
	All field types except Date and Boolean
	Date and DateTime Fields
	DateTime and Time Fields
	Boolean Fields

	Job Destination Constants
	Job Status Constants
	Object Type Constants
	Ole Object Type Constants
	Ole Object Update Constants
	Parameter Field Value Type Constants
	Range Info Constants
	Section Codes
	Sort Method Constants
	Sort Order Constants
	Track Cursor Constants
	Zoom Level Constants

	Obsolete Functions, Structures, and Constants
	Obsolete Functions
	Obsolete Structures
	Obsolete Constants

	Active Data 7
	Active Data Driver
	Data Definition Files
	Using the Active Data Driver
	Select the design time data source
	Design the Report
	Obtain a Recordset from the Runtime Data Source
	Open the Report
	Pass the Recordset to the Active Data Driver
	Print the Report

	Creating Data Definition Files
	Database Definition Tool
	Active Data Driver Functions

	Using ActiveX Data Sources at Design Time
	ODBC with ADO and RDO
	ADO and OLE DB
	DAO

	Crystal Data Object
	CDO vs. the Crystal Data Source Type Library
	Using the Crystal Data Object
	Obtain a CDO Rowset Object
	Add Fields to the Rowset Object
	Obtain Data as Rows
	Add Rows to the Rowset Object

	Crystal Data Object Model

	Crystal Data Source Type Library
	Creating a new project and class
	When to use the Crystal Data Source Type Library
	Creating a new project
	Adding a class module to a project
	Adding a Sub Main() procedure

	Adding the type library
	Adding a reference to the Crystal Data Source Type Library
	Viewing in the Object Browser
	Using Implements in the class declaration

	Implementing the functions
	Adding procedures
	Implementing procedures
	Compiling the ActiveX DLL

	Passing the CRDataSource object to the Active Data Driver
	Adding a reference to MyDataSourcePrj
	Creating an instance of MyDataSource

	Crystal Data Source Projects

	Crystal Data Source Object Models 8
	Crystal Data Source Object Models
	Crystal Data Objects
	CrystalComObject
	CrystalComObject Properties
	RowCount

	CrystalComObject Methods
	AddField
	AddRows
	DeleteField
	GetColCount
	getEOF
	GetFieldData
	GetFieldName
	GetFieldType
	MoveFirst
	MoveNext
	MoveTo
	Reset

	Crystal Data Source Type Library
	CRDataSource
	CRDataSource Properties
	Bookmark
	EOF
	FieldCount
	FieldName
	FieldType
	FieldValue
	RecordCount

	CRDataSource Methods
	MoveFirst
	MoveNext

	The Crystal Active Data Driver Reference 9
	Overview
	CreateFieldDefFile
	CreateReportOnRuntimeDS
	SetActiveDataSource

	Creating User-Defined Functions in C 10
	Overview of User-Defined Functions in C
	Programming User-Defined Functions in C
	Name of the function
	Purpose of the function
	Function data
	Return types
	Programming the UFL
	The “Picture” example
	Helper Modules

	Setting Up a UFL Project
	Function Definition
	Function Definition Table
	Function Templates Table
	Function Examples Table
	Error Table
	InitForJob Function
	TermForJob Function
	UFL Function Implementation

	Returning User-Defined Errors
	Obtaining parameter values from the parameter block
	Picture Function - a sample UFL function
	Module Definition (.def) File
	UFJOB Modules
	UFJOB.C
	UFJOB.H

	Implement InitJob and TermJob

	Creating User-Defined Functions in Visual Basic 11
	Overview of User-Defined Functions in Visual Basic
	Programming User-Defined Functions in Visual Basic
	Using Visual Basic 4.0
	Set Up the Main Subroutine
	Add a Class Module to the Project
	Add User Functions to the Class Module
	Name the Project
	Compile the Project as an OLE DLL

	Using Visual Basic 5.0
	Create a New ActiveX DLL Project
	Add User Functions to the Class Module
	Name the Project
	Build the DLL

	Registration of the Automation Server and Distribution of the Visual Basic Project
	Using the User-Defined Functions

	Visual Basic and Crystal Reports
	Variable Types
	Using Arrays
	Reserved Names
	Function Name Prefixing
	Passing Parameters By Reference and By Value
	Error Handling
	Special Purpose Functions
	UFInitialize
	UFTerminate
	UFStartJob
	UFEndJob

	Sample UFL Automation Server

	Creating User-Defined Functions in Delphi 3.0 12
	Overview of User-Defined Functions in Delphi
	Programming User-Defined Functions in Delphi
	Using Delphi 3.0
	Create the Project
	Create the Automation Object
	Add Methods to the Type Library
	Register the Type Library
	Create the User-Defined Functions
	Build the Project
	Using the User-Defined Functions

	Delphi and Crystal Reports
	Data Types
	Using Arrays
	Reserved Names
	Function Name Prefixing
	Passing Parameters By Reference and By Value
	Error Handling
	Special Purpose Functions
	UFInitialize
	UFTerminate
	UFStartJob
	UFEndJob

	International Office Directory
	North and South American Offices
	Canada and USA - North & South American Head Office
	Sales and General Inquiries

	Latin America
	Sales and General Inquiries

	Asia/Pacific Offices
	Australia
	Sales and General Inquiries

	Hong Kong
	Sales and General Inquiries

	Japan
	Sales and General Inquiries

	Malaysia
	Sales and General Inquiries

	Singapore
	Sales and General Inquiries

	Europe
	United Kingdom - EMEA and Northern European Head Office
	Sales and General Inquiries

	Austria
	Sales and General Inquiries

	Belgium
	Sales and General Inquiries

	France - SEMEA. Southern Europe and Middle East Head Office
	Sales and General Inquiries

	Germany - Central European Head Office
	Sales and General Inquiries

	Ireland
	Sales and General Inquiries

	Italy
	Sales and General Inquiries

	Netherlands
	Sales and General Inquiries

	Spain
	Sales and General Inquiries

	Sweden
	Sales and General Inquiries

	Switzerland
	Sales and General Inquiries

	Africa and Middle East
	South Africa
	Postal Address
	Sales and General Inquiries

